Open Access

The Effect of Elastic and Inelastic Scattering on Electronic Transport in Open Systems

International Journal of Applied Mathematics and Computer Science's Cover Image
International Journal of Applied Mathematics and Computer Science
Information Technology for Systems Research (special section, pp. 427-515), Piotr Kulczycki, Janusz Kacprzyk, László T. Kóczy, Radko Mesiar (Eds.)

Cite

Bak, T., Nowotny, J. and Nowotny, M.K. (2006). Defect disorder of titanium dioxide, Journal of Physical Chemistry B110(43): 21560–21567.10.1021/jp063700kSearch in Google Scholar

Ben Abdallah, N., Degond, P. and Genieys, S. (1996). An energy-transport model for semiconductors derived from the Boltzmann equation, Journal of Statistical Physics84(1): 205–231.10.1007/BF02179583Search in Google Scholar

Cabrera, R., Bondar, D.I., Jacobs, K. and Rabitz, H.A. (2015). Efficient method to generate time evolution of the Wigner function for open quantum systems, Physical Review A92(4): 042122.10.1103/PhysRevA.92.042122Search in Google Scholar

Caldeira, A.O. and Leggett, A.J. (1981). Influence of dissipation on quantum tunneling in macroscopic systems, Physical Review Letters46(4): 211–214.10.1103/PhysRevLett.46.211Search in Google Scholar

Chatterjee, K., Roadcap, J.R. and Singh, S. (2014). A new Green’s function Monte Carlo algorithm for the solution of the two-dimensional nonlinear Poisson–Boltzmann equation: Application to the modeling of the communication breakdown problem in space vehicles during re-entry, Journal of Computational Physics276: 479–485.10.1016/j.jcp.2014.07.042Search in Google Scholar

Chruściński, D. and Pascazio, S. (2017). A brief history of the GKLS equation, Open Systems and Information Dynamics24(3): 1740001.10.1142/S1230161217400017Search in Google Scholar

Costolanski, A.S. and Kelley, C.T. (2010). Efficient solution of the Wigner–Poisson equations for modeling resonant tunneling diodes, IEEE Transactions on Nanotechnology9(6): 708–715.10.1109/TNANO.2010.2053214Search in Google Scholar

Danielewicz, P. (1984). Quantum theory of nonequilibrium processes I, Annals of Physics152(2): 239–304.10.1016/0003-4916(84)90092-7Search in Google Scholar

Di Ventra, M. (2008). Electrical Transport in Nanoscale Systems, Cambridge University Press, Cambridge.10.1017/CBO9780511755606Search in Google Scholar

Ferry, D.K., Goodnick, S.M. and Bird, J. (2009). Transport in Nanostructures, Cambridge University Press, Cambridge.10.1017/CBO9780511840463Search in Google Scholar

Frensley, W.R. (1990). Boundary conditions for open quantum systems driven far from equilibrium, Reviews of Modern Physics62(3): 745–791.10.1103/RevModPhys.62.745Search in Google Scholar

Fujita, S. (1966). Introduction to Non-Equilibrium Quantum Statistical Mechanics, W.B. Saunders Company, Philadelphia, PA.Search in Google Scholar

Gómez, E.A., Thirumuruganandham, S.P. and Santana, A. (2014). Split-operator technique for propagating phase space functions: Exploring chaotic, dissipative and relativistic dynamics, Computer Physics Communications185(1): 136–143.10.1016/j.cpc.2013.08.025Search in Google Scholar

Hong, S. and Jang, J. (2018). Transient simulation of semiconductor devices using a deterministic Boltzmann equation solver, IEEE Journal of the Electron Devices Society6: 156–163.10.1109/JEDS.2017.2780837Search in Google Scholar

Hong, S.-M., Pham, A.-T. and Jungemann, C. (2011). Deterministic Solvers for the Boltzmann Transport Equation, Springer Science & Business Media, Vienna.10.1007/978-3-7091-0778-2Search in Google Scholar

Jacoboni, C., Bertoni, A., Bordone, P. and Brunetti, R. (2001). Wigner-function formulation for quantum transport in semiconductors: Theory and Monte Carlo approach, Mathematics and Computers in Simulation55(1–3): 67–78.10.1016/S0378-4754(00)00247-0Search in Google Scholar

Jacoboni, C., Poli, P. and Rota, L. (1988). A new Monte Carlo technique for the solution of the Boltzmann transport equation, Solid-State Electronics31(3): 523–526.10.1016/0038-1101(88)90332-2Search in Google Scholar

Jonasson, O. and Knezevic, I. (2015). Dissipative transport in superlattices within the Wigner function formalism, Journal of Computational Electronics14(4): 879–887.10.1007/s10825-015-0734-9Search in Google Scholar

Kim, K.-Y. (2007). A discrete formulation of the Wigner transport equation, Journal of Applied Physics102(11): 113705.10.1063/1.2818363Search in Google Scholar

Kim, K.-Y. and Kim, S. (2015). Effect of uncertainty principle on the Wigner function-based simulation of quantum transport, Solid-State Electronics111: 22–26.10.1016/j.sse.2015.04.007Search in Google Scholar

Kohn, W. and Luttinger, J.M. (1957). Quantum theory of electrical transport phenomena, Physical Review108(3): 590–611.10.1103/PhysRev.108.590Search in Google Scholar

Kulczycki, P., Kacprzyk, J., Kóczy, L., Mesiar, R. and Wisniewski, R. (2019). Information Technology, Systems Research, and Computational Physics, Springer, Cham, (in press).10.1007/978-3-030-18058-4Search in Google Scholar

Kulczycki, P., Kowalski, P. and Łukasik, S. (Eds) (2018). Contemporary Computational Science, AGH-UST Press, Cracow, p. 4.Search in Google Scholar

Leaf, B. (1968). Weyl transformation and the classical limit of quantum mechanics, Journal of Mathematical Physics9(1): 65–72.10.1063/1.1664478Search in Google Scholar

Lee, H.-W. (1995). Theory and application of the quantum phase-space distribution functions, Physics Reports259(3): 147–211.10.1016/0370-1573(95)00007-4Search in Google Scholar

Lifshits, I.M., Gredeskul, S.A. and Pastur, L.A. (1987). Introduction to the Theory of Disordered Systems, John Wiley and Sons, Inc., New York, NY.Search in Google Scholar

Luttinger, J.M. and Kohn, W. (1958). Quantum theory of electrical transport phenomena II, Physical Review109(6): 1892–1909.10.1103/PhysRev.109.1892Search in Google Scholar

Mahan, G.D. (2000). Many Particle Physics, Kluwer Academic Plenum Publishers, New York, NY.10.1007/978-1-4757-5714-9Search in Google Scholar

Muscato, O. and Wagner, W. (2016). A class of stochastic algorithms for the Wigner equation, SIAM Journal on Scientific Computing38(3): A1483–A1507.10.1137/16M105798XSearch in Google Scholar

Nedjalkov, M., Kosina, H., Selberherr, S., Ringhofer, C. and Ferry, D.K. (2004). Unified particle approach to Wigner–Boltzmann transport in small semiconductor devices, Physical Review B70(11): 115319.10.1103/PhysRevB.70.115319Search in Google Scholar

Nedjalkov, M., Selberherr, S., Ferry, D., Vasileska, D., Dollfus, P., Querlioz, D., Dimov, I. and Schwaha, P. (2013). Physical scales in the Wigner–Boltzmann equation, Annals of Physics328: 220–237.10.1016/j.aop.2012.10.001Search in Google Scholar

Nedjalkov, M. and Vitanov, P. (1989). Iteration approach for solving the Boltzmann equation with the Monte Carlo method, Solid-State Electronics32(10): 893–896.10.1016/0038-1101(89)90067-1Search in Google Scholar

Nowotny, J., Radecka, M. and Rekas, M. (1997). Semiconducting properties of undoped TiO2, Journal of Physics and Chemistry of Solids58(6): 927–937.10.1016/S0022-3697(96)00204-1Search in Google Scholar

Querlioz, D. and Dollfus, P. (2010). The Wigner Monte-Carlo Method for Nanoelectronic Devices: A Particle Description of Quantum Transport and Decoherence, ISTE Ltd. and John Wiley and Sons, Inc., New York, NY.Search in Google Scholar

Rammer, J. (2007). Quantum Field Theory of Non-Equilibrium States, Cambridge University Press, Cambridge.10.1017/CBO9780511618956Search in Google Scholar

Schieve, W.C. and Horwitz, L.P. (2009). Quantum Statistical Mechanics, Cambridge University Press, Cambridge.10.1017/CBO9780511626555Search in Google Scholar

Schleich, W.P. (2001). Quantum Optics in Phase Space, John Wiley and Sons, Inc., New York, NY.Search in Google Scholar

Schulz, D. and Mahmood, A. (2016). Approximation of a phase space operator for the numerical solution of the Wigner equation, IEEE Journal of Quantum Electronics52(2): 1–9.10.1109/JQE.2015.2504086Search in Google Scholar

Sellier, J., Amoroso, S., Nedjalkov, M., Selberherr, S., Asenov, A. and Dimov, I. (2014). Electron dynamics in nanoscale transistors by means of Wigner and Boltzmann approaches, Physica A: Statistical Mechanics and Its Applications398: 194–198.10.1016/j.physa.2013.12.045Search in Google Scholar

Sellier, J. and Dimov, I. (2014). The Wigner–Boltzmann Monte Carlo method applied to electron transport in the presence of a single dopant, Computer Physics Communications185(10): 2427–2435.10.1016/j.cpc.2014.05.013Search in Google Scholar

Spisak, B.J., Wołoszyn, M. and Szydłowski, D. (2015). Dynamical localisation of conduction electrons in one-dimensional disordered systems, Journal of Computational Electronics14(4): 916–921.10.1007/s10825-015-0733-xSearch in Google Scholar

Stashans, A., Lunell, S. and Grimes, R.W. (1996). Theoretical study of perfect and defective TiO2 crystals, Journal of Physics and Chemistry of Solids57(9): 1293–1301.10.1016/0022-3697(95)00321-5Search in Google Scholar

Tatarskiĭ, V.I. (1983). The Wigner representation of quantum mechanics, Soviet Physics Uspekhi26(4): 311–327.10.1070/PU1983v026n04ABEH004345Search in Google Scholar

Ter Haar, D. (1961). Theory and applications of the density matrix, Reports on Progress in Physics24(1): 304–362.10.1088/0034-4885/24/1/307Search in Google Scholar

Thomann, A. and Borz, A. (2017). Stability and accuracy of a pseudospectral scheme for the Wigner function equation, Numerical Methods for Partial Differential Equations33(1): 62–87.10.1002/num.22072Search in Google Scholar

Wigner, E. (1932). On the quantum correction for thermodynamic equilibrium, Physical Review40(5): 749–759.10.1103/PhysRev.40.749Search in Google Scholar

Zurek, W.H. (2003). Decoherence, einselection, and the quantum origins of the classical, Reviews of Modern Physics75(3): 715–775.10.1103/RevModPhys.75.715Search in Google Scholar

eISSN:
2083-8492
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Mathematics, Applied Mathematics