Open Access

Adaptive Impedance Control of Robot Manipulators with Parametric Uncertainty for Constrained Path–Tracking

International Journal of Applied Mathematics and Computer Science's Cover Image
International Journal of Applied Mathematics and Computer Science
Advanced Diagnosis and Fault-Tolerant Control Methods (special section, pp. 233-333), Vicenç Puig, Dominique Sauter, Christophe Aubrun, Horst Schulte (Eds.)

Cite

Anderson, R.J. and Spong, M.W. (1988). Hybrid impedance control of robotic manipulators, IEEE Journal on Robotics and Automation 4(5): 549-556.10.1109/56.20440Search in Google Scholar

Belter, D., Łabecki, P., Fankhauser, P. and Siegwart, R. (2016). RGB-D terrain perception and dense mapping for legged robots, International Journal of Applied Mathematics and Computer Science 26(1): 81-97, DOI: 10.1515/amcs-2016-0006.10.1515/amcs-2016-0006Open DOISearch in Google Scholar

Canudas, C., Siciliano, B. and Bastin, G. (1996). Theory of Robot Control, Springer, London.Search in Google Scholar

Carelli, R. and Kelly, R. (1991). An adaptive impedance/force controller for robot manipulators, IEEE Transactions on Automatic Control 36(8): 967-971.10.1109/9.133190Search in Google Scholar

Chiaverini, S., Siciliano, B. and Villani, L. (1999). A survey of robot interaction control schemes with experimental comparison, IEEE/ASME Transactions on Mechatronics 4(3): 273-285.10.1109/3516.789685Search in Google Scholar

Chien, M.-C. and Huang, A.-C. (2004). Adaptive impedance control of robot manipulators based on function approximation technique, Robotica 22(4): 395-403.10.1017/S0263574704000190Search in Google Scholar

Dulęba, I. and Opałka, M. (2013). A comparison of jacobian-based methods of inverse kinematics for serial robot manipulators, International Journal of Applied Mathematics and Computer Science 23(2): 373-382, DOI: 10.2478/amcs-2013-0028.10.2478/amcs-2013-0028Open DOISearch in Google Scholar

Gribovskaya, E., Kheddar, A. and Billard, A. (2011). Motion learning and adaptive impedance for robot control during physical interaction with humans, Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, pp. 4326-4332.Search in Google Scholar

Hagn, U., Nickl, M., Jörg, S., Passig, G., Bahls, T., Nothhelfer, A., Hacker, F., Le-Tien, L., Albu-Schäffer, A. et al. (2008). The DLR MIRO: A versatile lightweight robot for surgical applications, Industrial Robot: An International Journal 35(4): 324-336.10.1108/01439910810876427Search in Google Scholar

Haninger, K., Lu, J. and Tomizuka, M. (2016). Robust impedance control with applications to a series-elastic actuated system, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, South Korea, pp. 5367-5372.Search in Google Scholar

He, W., Dong, Y. and Sun, C. (2016). Adaptive neural impedance control of a robotic manipulator with input saturation, IEEE Transactions on Systems, Man, and Cybernetics: Systems 46(3): 334-344.10.1109/TSMC.2015.2429555Search in Google Scholar

Hogan, N. (1985). Impedance control: An approach to manipulation: Part I-Theory, Part II-Implementation, Part III-Applications, ASME Journal of Dynamic Systems, Measurement, and Control 107(1): 1-24.10.1115/1.3140701Search in Google Scholar

Horn, R.A. and Johnson, C.R. (2012). Matrix Analysis, Cambridge University Press, New York, NY.Search in Google Scholar

Hussain, S., Xie, S.Q. and Jamwal, P.K. (2013). Adaptive impedance control of a robotic orthosis for gait ehabilitation, IEEE Transactions on Cybernetics 43(3): 1025-1034.10.1109/TSMCB.2012.222237423193241Search in Google Scholar

Jianbin, H., Zongwu, X., Minghe, J., Zainan, J. and Hong, L. (2009). Adaptive impedance-controlled manipulator based on collision detection, Chinese Journal of Aeronautics 22(1): 105-112.10.1016/S1000-9361(08)60075-8Search in Google Scholar

Jiang, Z.-H. (2005). Impedance control of flexible robot arms with parametric uncertainties, Journal of Intelligent and Robotic Systems 42(2): 113-133.10.1007/s10846-005-0933-xSearch in Google Scholar

Kang, S.H., Jin, M. and Chang, P.H. (2009). A solution to the accuracy/robustness dilemma in impedance control, IEEE/ASME Transactions on Mechatronics 14(3): 282-294.10.1109/TMECH.2008.2005524Search in Google Scholar

Kelly, R., Santibáñez, V. and Loría, A. (2005). Control of Robot Manipulators in Joint Space, Springer-Verlag, London.Search in Google Scholar

Khalil, H.K. (1996). Nonlinear Systems, Prentice-Hall, Upper Saddle River, NJ.Search in Google Scholar

Li, Z., Huang, Z., He, W. and Su, C.-Y. (2017). Adaptive impedance control for an upper limb robotic exoskeleton using biological signals, IEEE Transactions on Industrial Electronics 64(2): 1664-1674.10.1109/TIE.2016.2538741Search in Google Scholar

Lu, W.-S. and Meng, Q.-H. (1991). Impedance control with adaptation for robotic manipulations, IEEE Transactions on Robotics and Automation 7(3): 408-415.10.1109/70.88152Search in Google Scholar

Marchal-Crespo, L. and Reinkensmeyer, D.J. (2009). Review of control strategies for robotic movement training after neurologic injury, Journal of Neuroengineering and Rehabilitation 6(20): 1-15.10.1186/1743-0003-6-20271033319531254Search in Google Scholar

Martínez, P.A., Castelán, M. and Arechavaleta, G. (2016). Vision based persistent localization of a humanoid robot for locomotion tasks, International Journal of Applied Mathematics and Computer Science 26(3): 669-682, DOI: 10.1515/amcs-2016-0046.10.1515/amcs-2016-0046Open DOISearch in Google Scholar

Mendoza, M., Bonilla, I., Reyes, F. and González-Galván, E. (2012). A Lyapunov-based design tool of impedance controllers for robot manipulators, Kybernetika 48(6): 1136-1155.Search in Google Scholar

Michel, A.N., Hou, L. and Liu, D. (2008). Stability of Dynamical Systems, Birkhaüser, Boston, MA.Search in Google Scholar

Pérez-Ibarra, J.C., Dos Santos, W.M., Krebs, H.I. and Siqueira, A.A. (2014). Adaptive impedance control for robot-aided rehabilitation of ankle movements, Proceedings of the 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Sao Paulo, Brazil, pp. 664-669.Search in Google Scholar

Rahimifard, S., Talebi, H. and Mohammadi, A.D. (2016). Impedance control of non-passive bilateral teleoperation systems with uncertain dynamics, Proceedings of the 24th Iranian Conference on Electrical Engineering (ICEE), Shiraz, Iran, pp. 1931-1936.Search in Google Scholar

Reyes, F. and Kelly, R. (1997). Experimental evaluation of identification schemes on a direct drive robot, Robotica 15(05): 563-571.10.1017/S0263574797000659Search in Google Scholar

Rodríguez-Liñán, M.C., Mendoza, M., Bonilla, I. and Chávez-Olivares, C.A. (2017). Saturating stiffness control of robot manipulators with bounded inputs, International Journal of Applied Mathematics and Computer Science 27(1): 79-90, DOI: 10.1515/amcs-2017-0006.10.1515/amcs-2017-0006Open DOISearch in Google Scholar

Rouche, N., Habets, P. and Laloy, M. (1977). Stability Theory by Lyapunov’s Direct Method, Springer, New York, NY.10.1007/978-1-4684-9362-7Search in Google Scholar

Sciavicco, L. and Siciliano, B. (2000). Modelling and Control of Robot Manipulators, Springer, London.10.1007/978-1-4471-0449-0Search in Google Scholar

Sharifi, M., Behzadipour, S. and Vossoughi, G. (2012). Model reference adaptive impedance control of rehabilitation robots in operational space, Proceedings of the 4th IEEE RAS & EMBS International Conference on Biomedical10.1109/BioRob.2012.6290690Search in Google Scholar

Robotics and Biomechatronics (BioRob), Rome, Italy, pp. 1698-1703.Search in Google Scholar

Sharifi, M., Behzadipour, S. and Vossoughi, G. (2014). Nonlinear model reference adaptive impedance control for human-robot interactions, Control Engineering Practice 32(1): 9-27.10.1016/j.conengprac.2014.07.001Search in Google Scholar

Slotine, J.-J.E., Li, W. (1991). Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs, NJ. Song, A., Pan, L., Xu, G. and Li, H. (2015). Adaptive motion control of arm rehabilitation robot based on impedance identification, Robotica 33(9): 1795-1812.Search in Google Scholar

Spong, M., Hutchinson, S. and Vidyasagar, M. (2005). Robot Modeling and Control, Wiley, New York, NY.Search in Google Scholar

Takegaki, M. and Arimoto, S. (1981). A new feedback method for dynamic control of manipulators, ASME Journal of Dynamic Systems, Measurement, and Control 103(2): 119-125.10.1115/1.3139651Search in Google Scholar

Wang, H. and Xie, Y. (2009). Adaptive inverse dynamics control of robots with uncertain kinematics and dynamics, Automatica 45(9): 2114-2119.10.1016/j.automatica.2009.05.011Search in Google Scholar

Xu, G., Song, A. and Li, H. (2011). Adaptive impedance control for upper-limb rehabilitation robot using evolutionary dynamic recurrent fuzzy neural network, Journal of Intelligent & Robotic Systems 62(3): 501-525.10.1007/s10846-010-9462-3Search in Google Scholar

Yang, C., Chen, J. and Cheng, L. (2016). Neural learning enhanced teleoperation control of robots with uncertainties, Proceedings of the 9th International Conference on Human System Interactions (HSI), Portsmouth, UK, pp. 223-228.Search in Google Scholar

Yarza, A., Santibanez, V. and Moreno-Valenzuela, J. (2013). An adaptive output feedback motion tracking controller for robot manipulators: Uniform global asymptotic stability and experimentation, International Journal of Applied Mathematics and Computer Science 23(3): 599-611, DOI: 10.2478/amcs-2013-0045.10.2478/amcs-2013-0045Open DOISearch in Google Scholar

eISSN:
2083-8492
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Mathematics, Applied Mathematics