Open Access

Stabilization of an epidemic model via an N-periodic approach

International Journal of Applied Mathematics and Computer Science's Cover Image
International Journal of Applied Mathematics and Computer Science
Issues in Parameter Identification and Control (special section, pp. 9-122), Abdel Aitouche (Ed.)

Cite

Ainseba, B.E., Benosman, C. and Maga, P. (2010). A model for ovine brucellosis incorporating direct and indirect transmission, Journal of Biological Dynamics 4(1): 2-11, DOI: 10.1080/17513750903171688. 10.1080/1751375090317168822881067Open DOISearch in Google Scholar

EFSA/ECLC (2014). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2012, EFSA Journal 12(2): 3547. 10.2903/j.efsa.2014.3547Search in Google Scholar

Beaumont, C., Burie, J., Ducrot, A. and Zongo, P. (2012). Propagation of Salmonella within an industrial hen house, SIAM Journal of Applied Mathematics 72(4): 1113-1148, DOI: 10.1137/110822967.10.1137/110822967Open DOISearch in Google Scholar

Berman, A. and Plemmons, R. (1994). Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, PA.10.1137/1.9781611971262Search in Google Scholar

Bittanti, S. (1986). Deterministic and stochastic linear periodic systems, in S. Bittanti (Ed.), Time Series and Linear Systems, Lecture Notes in Control and Information Science, Vol. 86, Springer, Berlin, pp. 141-182.10.1007/BFb0043803Search in Google Scholar

Cantó, B., Coll, C. and Sánchez, E. (2013). Structured parametric epidemic model, International Journal of Computer Mathematics 91(2): 188-197, DOI: 10.1080/00207160.2013.800864.10.1080/00207160.2013.800864Open DOISearch in Google Scholar

Cantó, B., Coll, C. and Sánchez, E. (2014). A study on vaccination models for a seasonal epidemic process, Applied Mathematics and Computation 243: 152-160, DOI: 10.1016/j.amc.2015.05.104.10.1016/j.amc.2015.05.104Open DOISearch in Google Scholar

Ding, D., Ma, Q. and Ding, X. (2014). An unconditionally positive and global stability preserving NSFD scheme for an epidemic model with vaccination, International Journal of Applied Mathematics and Computer Science 24(3): 635-646, DOI: 10.2478/amcs-2014-0046.10.2478/amcs-2014-0046Open DOISearch in Google Scholar

Enatsu, Y., Nakata, Y. and Muroya, Y. (2012). Global stability for a discrete SIS epidemic model with immigration of infectives, Journal of Difference Equations and Applications 18(2): 1913-1924, DOI: 10.1080/10236198.2011.602973.10.1080/10236198.2011.602973Open DOISearch in Google Scholar

Joh, R., Wang, H., Weis, H. and Weitz, J. (2009). Dynamics of indirectly transmitted infectious diseases with immunological threshold, Bulletin of Mathematical Biology 71(4): 845-862.10.1007/s11538-008-9384-419096894Search in Google Scholar

Li, C. and Schneider, H. (2002). Applications of Perron-Frobenius theory to population dynamics, Journal Mathematical Biology 44(5): 450-462, DOI: 10.1007/s002850100132.10.1007/s002850100132Open DOISearch in Google Scholar

Li, X. and Wang, W. (2005). A discrete epidemic model with stage structure, Chaos Solitons & Fractals 26(3): 947-958, DOI: 10.1016/j.chaos.2005.01.063.10.1016/j.chaos.2005.01.063Open DOISearch in Google Scholar

Liao, S. and Yang, W. (2013). On the dynamics of a vaccination model with multiple transmission ways, International Journal of Applied Mathematics and Computer Science 23(4): 761-772, DOI: 10.2478/amcs-2013-0057.10.2478/amcs-2013-0057Open DOISearch in Google Scholar

Meyer, R. and Burrus, C. (1975). A unified analysis of multirate and periodically time-varying digital filters, IEEE Transactions on Circuits and Systems 22(3): 162-168.10.1109/TCS.1975.1084020Open DOISearch in Google Scholar

Prevost, K., Beaumont, C. and Magal, P. (2006). Asymptotic behavior in a Salmonella infection model, Mathematical Modelling of Natural Phenomena 2(1): 1-22.10.1051/mmnp:2008008Search in Google Scholar

Rass, L. and Radcliffe, J. (2000). Global asymptotic convergence results for multitype models, International Journal of Applied Mathematics and Computer Science 10(1): 63-79.Search in Google Scholar

van den Driessche, P. and Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences 180(1): 29-48.10.1016/S0025-5564(02)00108-6Search in Google Scholar

Wijaya, K.P., Sutimin, Soewono, E. and G¨otz, T. (2017). On the existence of a nontrivial equilibrium in relation to the basic reproductive number, International Journal of Applied Mathematics and Computer Science 27(3): 623-636, DOI: 10.1515/amcs-2017-0044.10.1515/amcs-2017-0044Open DOISearch in Google Scholar

Xiao, Y., Clancy, D., French, N. and Bowers, R. (2006). A semi-stochastic model for Salmonella infection in a multi-group herd, Mathematical Biosciences 200(2): 214-233.10.1016/j.mbs.2006.01.00616529775Search in Google Scholar

Zongo, P., Viet, A., Magal, P. and Beaumont, C. (2010). A spatio-temporal model to describe the spread of Salmonella within a laying flock, Journal of Theoretical Biology 267(4): 595-604, DOI: 10.1016/j.jtbi.2010.09.030.10.1016/j.jtbi.2010.09.03020883702Open DOISearch in Google Scholar

eISSN:
2083-8492
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Mathematics, Applied Mathematics