Open Access

An unconditionally positive and global stability preserving NSFD scheme for an epidemic model with vaccination

International Journal of Applied Mathematics and Computer Science's Cover Image
International Journal of Applied Mathematics and Computer Science
Modelling and Simulation of High Performance Information Systems (special section, pp. 453-566), Pavel Abaev, Rostislav Razumchik, Joanna Kołodziej (Eds.)

Cite

Alexander, M.E., Summers, A.R. and Moghadas, S.M. (2006). Neimark-Sacker bifurcations in a non-standard numerical scheme for a class of positivity-preserving ODEs, Proceedings of the Royal Society, A: Mathematical, Physical and Engineering Sciences 462(2074): 3167-3184.10.1098/rspa.2006.1724Search in Google Scholar

Anderson, R. and May, R. (1991). Infectious Diseases of Hu- mans: Dynamics and Control, Oxford University Press, Oxford/New York, NY.Search in Google Scholar

Anguelo, V.R. and Lubuma, J. (2003). Nonstandard finite difference method by nonlocal approximation, Mathematics and Computers in Simulation 61(3): 465-475.10.1016/S0378-4754(02)00106-4Search in Google Scholar

Arenas, A., Morao, J. and Cort´es, J. (2008). Non-standard numerical method for a mathematical model of RSV epidemiological transmission, Computers and Mathematics with Applications 56(3): 670-678.10.1016/j.camwa.2008.01.010Search in Google Scholar

Bruggeman, J., Burchard, H., Kooi, B.W. and Sommeijer, B. (2007). A second-order, unconditionally positive, mass-conserving integration scheme for biochemical systems, Applied Numerical Mathematics 57(1): 36-58.10.1016/j.apnum.2005.12.001Search in Google Scholar

Chen, M. and Clemence, D. (2006). Stability properties of a nonstandard finite difference scheme for a hantavirus epidemic model, Journal of Difference Equations and Applications 12(12): 1243-1256.10.1080/10236190600986537Search in Google Scholar

Chinviriyasit, S. and Chinviriyasit, W. (2010). Numerical modelling of an SIR epidemic model with diffusion, Applied Mathematics and Computation 216(2): 395-409. Dimitrov, D.T. and Kojouharov, H. (2005). Nonstandard finite-difference schemes for general two-dimensional autonomous dynamical systems, Applied Mathematics Letters 18(7): 769-774.Search in Google Scholar

Dimitrov, D. and Kojouharov, H. (2007). Stability-preserving finite-difference methods for general multi-dimensional autonomous dynamical systems, International Journal of Numerical Analysis and Modeling 4(2): 280-290.Search in Google Scholar

Dimitrov, D. and Kojouharov, H. (2008). Nonstandard finite difference methods for predator-prey models with general functional response, Mathematics and Computers in Simulation 78(1): 1-11.10.1016/j.matcom.2007.05.001Search in Google Scholar

Ding, D., Ma, Q. and Ding, X. (2013). A non-standard finite difference scheme for an epidemic model with vaccination, Journal of Difference Equations and Applications 19(2): 179-190.10.1080/10236198.2011.614606Search in Google Scholar

Dumont, Y. and Lubuma, J.M.-S. (2005). Non-standard finite-difference methods for vibro-impact problems, Proceedings of the Royal Society, A: Mathematical, Physical and Engineering Sciences 461(2058): 1927-1950. Enatsu, Y., Nakata, Y. and Muroya, Y. (2010). Global stability for a class of discrete SIR epidemic models, Mathematical Biosciences and Engineering 7: 347-361.Search in Google Scholar

Enszer, J.A. and Stadtherr, M.A. (2009). Verified solution method for population epidemiology models with uncertainty, International Journal of Applied Mathematics and Computer Science 19(3): 501-512, DOI: 10.2478/v10006-009-0040-4.10.2478/v10006-009-0040-4Search in Google Scholar

Gumel, A. (2002). A competitive numerical method for a chemotherapy model of two HIV subtypes, Applied Mathematics and Computation 131(2): 329-337.10.1016/S0096-3003(01)00150-3Search in Google Scholar

Hildebrand, F. (1968). Finite Difference Equations and Simulations, Prentice-Hall, Englewood Cliffs, NJ.Search in Google Scholar

Jódar, L., Villanueva, R., Arenas, A. and Gonz´alez, G. (2008). Nonstandard numerical methods for a mathematical model for influenza disease, Mathematics and Computers in Simulation 79(3): 622-633.10.1016/j.matcom.2008.04.008Search in Google Scholar

Jang, S. (2007). On a discrete west Nile epidemic model, Computational and Applied Mathematics 26(3): 397-414.10.1590/S0101-82052007000300005Search in Google Scholar

Jang, S. and Elaydi, S. (2003). Difference equations from discretization of a continuous epidemic model with immigration of infectives, Canadian Applied Mathematics Quarterly 11(1): 93-105. Jansen, H. and Twizell, E. (2002). An unconditionally convergent discretization of the SEIR model, Mathematics and Computers in Simulation 58(2): 147-158.Search in Google Scholar

Kouche, M. and Ainseba, B. (2010). A mathematical model of HIV-1 infection including the saturation effect of healthy cell proliferation, International Journal of Applied Mathematics and Computer Science 20(3): 601-612, DOI: 10.2478/v10006-010-0045-z.10.2478/v10006-010-0045-zSearch in Google Scholar

Lambert, J. (1973). Computational Methods in Ordinary Differential Equations, Wiley, New York, NY.Search in Google Scholar

Ma, Z., Zhou, Y., Wang, W. and Jing, Z. (2004). The Mathematical Modeling and Study of the Dynamics of Infectious Diseases, Science Press, Beijing.Search in Google Scholar

Mickens, R. (1994). Nonstandard Finite Difference Models of Differential Equations, World Scientific, Singapore.10.1142/2081Search in Google Scholar

Mickens, R. (2000). Advances in the Applications of Nonstandard Finite Difference Schemes, World Scientific, Singapore. Mickens, R. (2002). Nonstandard finite difference schemes for differential equations, Journal of Difference Equations and Applications 8(9): 823-847.10.1142/4272Search in Google Scholar

Mickens, R. (2005). Dynamic consistency: A fundamental principle for constructing nonstandard finite difference schemes for differential equations, Journal of Difference Equations and Applications 11(7): 645-653.10.1080/10236190412331334527Search in Google Scholar

Moghadas, S., Alexander, M. and Corbett, B.D.and Gumel, A. (2003). A positivity preserving Mickens-type discretization of an epidemic model, Journal of Difference Equations and Applications 9(11): 1037-1051.10.1080/1023619031000146913Search in Google Scholar

Moghadas, S. and Gumel, A. (2003). A mathematical study of a model for childhood diseases with non-permanent immunity, Journal of Computational and Applied Mathematics 157(2): 347-363.10.1016/S0377-0427(03)00416-3Search in Google Scholar

Muroya, Y., Nakata, Y., Izzo, G. and Vecchio, A. (2011). Permanence and global stability of a class of discrete epidemic models, Nonlinear Analysis: Real World Applications 12(4): 2105-2117. Obaid, H., Ouifki, R. and Patidar, K.C. (2013). An unconditionally stable nonstandard finite difference method applied to a mathematical model of HIV infection, International Journal of Applied Mathematics and Computer Science 23(2): 357-372, DOI: 10.2478/amcs-2013-0027.10.2478/amcs-2013-0027Search in Google Scholar

Oran, E. and Boris, J. (1987). Numerical Simulation of Reactive Flow, Elsevier, New York, NY.Search in Google Scholar

Parra, G.G., Arenas, A. and Charpentier, B.C. (2010). Combination of nonstandard schemes and Richardson’s extrapolation to improve the numerical solution of population models, Mathematical and Computer Modelling 52(7): 1030-1036.10.1016/j.mcm.2010.03.015Search in Google Scholar

Potter, D. (1973). Computational Physics, Wiley-Interscience, New York, NY.Search in Google Scholar

Sekiguchi, M. (2009). Permanence of some discrete epidemic models, International Journal of Biomathematics 2(4): 443-461. Sekiguchi, M. (2010). Permanence of a discrete SIRS epidemic model with time delays, Applied Mathematics Letters 23(10): 1280-1285.Search in Google Scholar

Sekiguchi, M. and Ishiwata, E. (2010). Global dynamics of a discretized SIRS epidemic model with time delay, Journal of Mathematical Analysis and Applications 371(1): 195-202.10.1016/j.jmaa.2010.05.007Search in Google Scholar

Stuart, A. and Humphries, A. (1996). Dynamic System and Numerical Analysis, Cambridge University Press, Cambridge.Search in Google Scholar

Sundarapandian, V. (2003). An invariance principle for discrete-time nonlinear systems, Applied Mathematics Letters 16(1): 85-91. 10.1016/S0893-9659(02)00148-9Search in Google Scholar

eISSN:
2083-8492
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Mathematics, Applied Mathematics