Open Access

Nuclei segmentation for computer-aided diagnosis of breast cancer

International Journal of Applied Mathematics and Computer Science's Cover Image
International Journal of Applied Mathematics and Computer Science
Selected Problems of Biomedical Engineering (special section, pp. 7 - 63), Marek Kowal and Józef Korbicz (Eds.)

Cite

Al-Kofahi, Y., Lassoued, W., Lee, W. and Roysam, B. (2010). Improved automatic detection and segmentation of cell nuclei in histopathology images, IEEE Transactions on Biomedcial Engineering 57(4): 841-852.10.1109/TBME.2009.203510219884070Search in Google Scholar

Alvarez Menendez, L., de Cos Juez, F., Sanchez Lasheras, F. and Alvarez Riesgo, J. (2010). Artificial neural networks applied to cancer detection in a breast screening programme, Mathematical and Computer Modelling 52(7-8): 983-991.10.1016/j.mcm.2010.03.019Search in Google Scholar

Bandyopadhyay, S.K., Maitra, I.K. and Banerjee, S. (2010). Digital imaging in pathology towards detection and analysis of human breast cancer, 2nd International Conference on Computational Intelligence, Communication Systems and Networks, Liverpool, UK, pp. 295-300.Search in Google Scholar

Basavanhally, A., Ganesan, S., Feldman, M., Shih, N., Mies, C., Tomaszewski, J. and Madabhushi, A. (2013). Multifield- of-view framework for distinguishing tumor grade in ER+ breast cancer from entire histopathology slides, IEEE Transactions on Biomedical Engineering 60(8): 2089-2099.10.1109/TBME.2013.2245129577845123392336Search in Google Scholar

Birdwell, R.L., Bandodkar, P. and Ikeda, D.M. (2005). Computer-aided detection with screening mammography in a university hospital setting, Radiology 236(2): 451-457.10.1148/radiol.236204086416040901Search in Google Scholar

Bishop, C. (2006). Pattern Recognition and Machine Learning, Springer, New York, NY.Search in Google Scholar

Boryczka, U. (2009). Finding groups in data: Cluster analysis with ants, Applied Soft Computing 9(1): 61-70.10.1016/j.asoc.2008.03.002Search in Google Scholar

Boryczka, U. and Kozak, J. (2010). Ant colony decision trees-a new method for constructing decision trees based on ant colony optimization, in J-S. Pan, S-M. Chen and N.T. Nguyen (Eds.), Computational Collective Intelligence. Technologies and Applications, Lecture Notes in Computer Science, Vol. 6421, Springer-Verlag, Berlin/ Heidelberg, pp. 373-382.10.1007/978-3-642-16693-8_39Search in Google Scholar

Bray, F., Ren, J., Masuyer, E. and Ferlay, J. (2012). Estimates of global cancer prevalence for 27 sites in the adult population in 2008, International Journal of Cancer, DOI: 10.1002/ijc.27711.10.1002/ijc.2771122752881Search in Google Scholar

Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984). Classification and Regression Trees, Wadsworth & Brooks/ Cole Advanced Books & Software, Monterey, CA.Search in Google Scholar

Butler, S.A., Gabbay, R.J., Kass, D.A., Siedler, D.E., O’Shaughnessy, K.F. and Castellino, R.A. (2004). Computer-aided detection in diagnostic mammography: Detection of clinically unsuspected cancers, American Journal of Roentgenology 183(5): 1511-1515.10.2214/ajr.183.5.183151115505329Search in Google Scholar

Cheng, H.D., Shan, J., Ju, W., Guo, Y. and Zhang, L. (2010). Automated breast cancer detection and classification using ultrasound images: A survey, Pattern Recognition 43(1): 299-317.10.1016/j.patcog.2009.05.012Search in Google Scholar

Christel, D., Rojob, M.G., Klossac, J., Mead, V.D., Bookere, D., Beckwithf, B.A. and Schraderg, T. (2011). Standardizing the use of whole slide images in digital pathology, Computerized Medical Imaging and Graphics 35(7-8): 496-505.10.1016/j.compmedimag.2010.12.00421242058Search in Google Scholar

Clocksin, W. F. (2003). Automatic segmentation of overlapping nuclei with high background variation using robust estimation and flexible contour models, 12th International Conference Image Analysis and Processing, ICIAP’03, Mantova, Italy, pp. 682-687.Search in Google Scholar

Cloppet, F. and Boucher, A. (2008). Segmentation of overlapping/ aggregating nuclei cells in biological images, 19th International Conference on Pattern Recognition, ICPR 2008, Tampa, FL, USA, pp. 1-4.Search in Google Scholar

Cortes, C. and Vapnik, V. (1995). Support-vector networks, Machine Learning 20(3): 273-297.10.1007/BF00994018Search in Google Scholar

Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification, IEEE Transactions on Information Theory 13(1): 21-27.10.1109/TIT.1967.1053964Search in Google Scholar

Cruz-Ramirez, N., Acosta-Mesa, H.-G., Carrillo-Calvet, H. and Barrientos-Martinez, R.-E. (2009). Discovering interobserver variability in the cytodiagnosis of breast cancer using decision trees and Bayesian networks, Applied Soft Computing 9(4): 1331-1342.10.1016/j.asoc.2009.05.004Search in Google Scholar

Cupples, T.E., Cunningham, J.E. and Reynolds, J.C. (2004). Impact of computer-aided detection in a regional screening mammography program, American Journal of Roentgenology 185(4): 944-950.10.2214/AJR.04.130016177413Search in Google Scholar

Dean, J.C. and Ilvento, C.C. (2006). Improved cancer detection using computer-aided detection with diagnostic and screening mammography: Prospective study of 104 cancers, American Journal of Roentgenology 187(1): 20-28.10.2214/AJR.05.011116794150Search in Google Scholar

Destounis, S.V.,DiNitto, P., Logan-Young,W., Bonaccio, E., Zuley, M.L. and Willison, K. M. (2004). Can computer-aided detection with double reading of screening mammograms help decrease the false-negative rate? Initial experience, Radiology 232(2): 578-584.10.1148/radiol.232203003415229350Search in Google Scholar

Devijver, P. and Kittler, J. (1982). Pattern Recognition: A Statistical Approach, Prentice-Hall, London.Search in Google Scholar

Doi, K. (2005). Current status and future potential of computeraided diagnosis in medical imaging, British Journal of Radiology 78(1): s3-s19.10.1259/bjr/8293334315917443Search in Google Scholar

Duda, R., Hart, P. and Stork, D. (2001). Pattern Classification, 2nd Edn, Wiley-Interscience, New York, NY.Search in Google Scholar

Eadie, L.H., Taylor, P. and Gibson, A.P. (2012). A systematic review of computer-assisted diagnosis in diagnostic cancer imaging, European Journal of Radiology 81(1): e70-e76.10.1016/j.ejrad.2011.01.09821345631Search in Google Scholar

Fabregue, M., Bringay, S., Poncelet, P., Teisseire, M. and Orsetti, B. (2011). Mining microarray data to predict the histological grade of a breast cancer, Journal of Biomedical Informatics 44(Supp. 1): S12-S16.Search in Google Scholar

Fatakdawala, H., Xu, J., Basavanhally, A., Bhanot, G., Ganesan, S., Feldman, M., Tomaszewski, J.E. and Madabhushi, A. (2010). Expectation maximization-driven geodesic active contour with overlap resolution (EMaGACOR): Application to lymphocyte segmentation on breast cancer histopathology, IEEE Transactions on Biomedical Engineering 57(7): 1676-1689.10.1109/TBME.2010.204123220172780Search in Google Scholar

Ferlay, J., Shin, H., Bray, F., Forman, D., Mathers, C. and Parkin, D. (2010). Globocan 2008 v2.0, Cancer incidence and mortality worldwide: IARC cancerbase no. 10, http://globocan.iarc.fr. Search in Google Scholar

Filipczuk, P., Kowal, M. and Obuchowicz, A. (2011a). Automatic breast cancer diagnostics based on k-means clustering and adaptive thresholding hybrid segmentation, in R.S. Chora´s (Ed.), Image Processing and Communications Challenges 3, Advances in Intelligent and Soft Computing, Vol. 102, Springer-Verlag, Berlin/Heidelberg, pp. 295-303.10.1007/978-3-642-23154-4_33Search in Google Scholar

Filipczuk, P., Kowal, M. and Obuchowicz, A. (2011b). Fuzzy clustering and adaptive thresholding based segmentation method for breast cancer diagnosis, in R. Burduk, M. Kurzy ´nski, M. Wo´zniak and A. ˙Zołnierek (Eds.), Computer Recognition Systems 4, Advances in Intelligent and Soft Computing, Vol. 95, Springer-Verlag, Berlin/Heidelberg, pp. 613-622.10.1007/978-3-642-20320-6_64Search in Google Scholar

Fuchsa, T.J. and Buhmanna, J.M. (2011). Computational pathology: Challenges and promises for tissue analysis, Computerized Medical Imaging and Graphics 35(7): 515-530.10.1016/j.compmedimag.2011.02.00621481567Search in Google Scholar

Ganesan, K., Acharya, U.R., Chua, C.K., Min, L.C., Abraham, K.T. and Ng, K. (2013). Computer-aided breast cancer detection using mammograms: A review, IEEE Reviews in Biomedical Engineering 6(8): 77-98.10.1109/RBME.2012.223228923247864Search in Google Scholar

Giansanti, D., Grigioni,M., D’Avenio, G.,Morelli, S.,Maccioni, G., Bondi, A. and Giovagnoli, M.R. (2010). Virtual microscopy and digital cytology: State of the art, Ann Ist Super Sanita 46(2): 115-122.Search in Google Scholar

Giger, M.L. (2004). Computerized analysis of images in the detection and diagnosis of breast cancer, Seminars in Ultrasound, CT, and MRI 25(4): 411-418.10.1053/j.sult.2004.07.00315559124Search in Google Scholar

Gocławski, J., Sekulska-Nalewajko, J. and Ku´zniak, E. (2012). Neural network segmentation of images from stained cucurbits leaves with colour symptoms of biotic and abiotic stresses, International Journal of AppliedMathematics and Computer Science 22(3): 669-684, DOI: 10.2478/v10006-012-0050-5.10.2478/v10006-012-0050-5Search in Google Scholar

Grzegorczyk, T.M., Meaney, P.M., Kaufman, P.A., di Florio- Alexander, R.M. and Paulsen, K.D. (2012). Fast 3-D tomographic microwave imaging for breast cancer detection, IEEE Transactions on Medical Imaging 31(8): 1584-1592.10.1109/TMI.2012.2197218376637122562726Search in Google Scholar

Gurcan, M.N., Boucheron, L.E., Can, A., Madabhushi, A., Rajpoot, N.M. and Yener, B. (2009). Histopathological image analysis: A review, IEEE Reviews in Biomedical Engineering 2: 147-171.10.1109/RBME.2009.2034865291093220671804Search in Google Scholar

Haralick, R., Shanmugam, K. and Dinstein, I. (1973). Textural features for image classification, IEEE Transactions on Systems, Man, and Cybernetics 3(6): 610-621.10.1109/TSMC.1973.4309314Search in Google Scholar

Hartigan, J.A. and Wong, M.A. (2001). Algorithm as 136: A k-means clustering algorithm, Journal of the Royal Statistical Society, Series C (Applied Statistics) 28(1): 100-108.10.2307/2346830Search in Google Scholar

Hassan, M.R., Hossain, M.M., Begg, R.K., Ramamohanarao, K. and Morsi, Y. (2010). Breast-cancer identification using HMM-fuzzy approach, Computers in Biology and Medicine 40(3): 240-251.10.1016/j.compbiomed.2009.11.00320152962Search in Google Scholar

Jeleń, L., Fevens, T. and Krzy˙zak, A. (2010). Classification of breast cancer malignancy using cytological images of fine needle aspiration biopsies, International Journal of Applied Mathematics and Computer Science 18(1): 75-83, DOI: 10.2478/v10006-008-0007-x. 10.2478/v10006-008-0007-xSearch in Google Scholar

Kirshin, E., Oreshkin, B., Zhu, G. K., Popovic, M. and Coates, M. (2013). Microwave radar and microwave-induced thermoacoustics: Dual-modality approach for breast cancer detection, IEEE Transactions on Biomedical Engineering 60(2): 354-360.10.1109/TBME.2012.222076823193227Search in Google Scholar

Kowal, M., Filipczuk, P. and Korbicz, J. (2011a). Hybrid cytological image segmentation method based on competitive neural network and adaptive thresholding, Pomiary, Automatyka, Kontrola 57(11): 1448-1451.Search in Google Scholar

Kowal, M., Filipczuk, P., Obuchowicz, A. and Korbicz, J. (2011b). Computer-aided diagnosis of breast cancer using Gaussian mixture cytological image segmentation, Journal of Medical Informatics & Technologies 17: 257-262.Search in Google Scholar

Kowal, M. and Korbicz, J. (2010). Segmentation of breast cancer fine needle biopsy cytological images using fuzzy clustering, in J. Kornacki, Z. Ra´s, S.Wierzcho´n and J. Kacprzyk (Eds.), Advances in Machine Learning I, Springer-Verlag, Berlin/Heidelberg, pp. 405-417.10.1007/978-3-642-05177-7_20Search in Google Scholar

Krawczyk, B., Filipczuk, P. and Wo´zniak, M. (2012). Adaptive splitting and selection algorithm for classification of breast cytology images, in N.T. Nguyen, K. Hoang and P. J˛edrzejowicz (Eds.), Computational Collective Intelligence. Technologies and Applications, Lecture Notes in Computer Science, Vol. 7653, Springer-Verlag, Berlin/Heidelberg, pp. 475-484.10.1007/978-3-642-34630-9_49Search in Google Scholar

Li, X.-Z., Williams, S. and Bottema, M.J. (2013). Background intensity independent texture features for assessing breast cancer risk in screening mammograms, Pattern Recognition Letters 34(9): 1053-1062.10.1016/j.patrec.2013.01.031Search in Google Scholar

Lloyd, S.P. (1982). Least squares quantization in PCM, IEEE Transactions on Information Theory 28(2): 129-137.10.1109/TIT.1982.1056489Search in Google Scholar

Lopez, A., Graham, A.R., Barker, G.P., Richter, L.C., Krupinski, E.A., Lian, F., Lauren L. Grasso, L.L.,Miller, A., Kreykes, L.N. and Henderson, J.T. (2009). Virtual slide telepathology enables an innovative telehealth rapid breast care clinic, Human Pathology 40(8): 1082-1091.10.1016/j.humpath.2009.04.00519552938Search in Google Scholar

Malek, J., Sebri, A., Mabrouk, S., Torki, K. and Tourki, R. (2009). Automated breast cancer diagnosis based on GVFSnake segmentation, wavelet features extraction and fuzzy classification, Journal of Signal Processing Systems 55(1-3): 49-66.10.1007/s11265-008-0198-2Search in Google Scholar

Malladi, R. and Sethian, J. (1996). Level set and fast marching methods in image processing and computer vision, Proceedings of the IEEE International Conference on Image Processing, Lausanne, Switzerland, pp. 489-492.Search in Google Scholar

Marciniak, A., Obuchowicz, A., Monczak, A. and Kołodzi´nski, M. (2005). Cytomorphometry of fine needle biopsy material from the breast cancer, in M. Kurzy´nski, E. Puchała and M. Wo´zniak and A. ˙Zołnierek (Eds.), Computer Recognition Systems, Advances in Soft Computing, Vol. 30, Springer-Verlag, Berlin/Heidelberg, pp. 603-609.10.1007/3-540-32390-2_71Search in Google Scholar

Mat-Isa, N.A., Subramaniam, E., Mashor, M.Y. and Othman, N.H. (2007). Fine needle aspiration cytology evaluation for classifying breast cancer using artificial neural network, Signal Processing 4(12): 999-1008. 10.3844/ajassp.2007.999.1008Search in Google Scholar

Moghbel, M. and Mashohor, S. (2013). Automated breast cancer detection and classification using ultrasound images: A survey, Artificial Intelligence Review 39(4): 305-313.10.1007/s10462-011-9274-2Search in Google Scholar

Mohanty, A.K., Senapati, M.R. and Lenka, S.K. (2013). An improved data mining technique for classification and detection of breast cancer from mammograms, Neural Computing and Applications 22(Supp. 1): S303-S310.Search in Google Scholar

Moon, W.K., Shen, Y.W., Huang, C.S. and Chiang, L.R. (2011). Computer-aided diagnosis for the classification of breast masses in automated whole breast ultrasound images, Ultrasound in Medicine & Biology 37(4): 539-548.10.1016/j.ultrasmedbio.2011.01.00621420580Search in Google Scholar

Morton, M.J., Whaley, D.H., Brandt, K.R. and Amrami, K.K. (2006). Screening mammograms: Interpretation with computer-aided detection prospective evaluation, Radiology 239(2): 357-383.10.1148/radiol.239204212116569779Search in Google Scholar

Muniandy, S.V. and Stanslas, J. (2008). Modelling of chromatin morphologies in breast cancer cells undergoing apoptosis using generalized Cauchy field, Computerized Medical Imaging and Graphics 32(7): 631-637.10.1016/j.compmedimag.2008.07.00318707844Search in Google Scholar

National Cancer Registry in Poland (2012). http://85.128.14.124/krn.Search in Google Scholar

Nikolova, N.K. (2011). Microwave imaging for breast cancer, IEEE Microwave Magazine 12(7): 78-94.10.1109/MMM.2011.942702Search in Google Scholar

Niwas, S.I., Palanisamy, P., Sujathan, K. and Bengtsson, E. (2013). Analysis of nuclei textures of fine needle aspirated cytology images for breast cancer diagnosis using complex Daubechies wavelets, Signal Processing 93(10): 2828-2837.10.1016/j.sigpro.2012.06.029Search in Google Scholar

Nixon, M. and Aguado, A. (2012). Feature Extraction & Image Processing for Computer Vision, 3rd Edn., Academic Press, London.Search in Google Scholar

Obuchowicz, A., Hrebie´n, M., Nieczkowski, T. and Marciniak, A. (2008). Computational intelligence techniques in image segmentation for cytopathology, in T.G. Smoli´nski, M.G. Milanova and A.-G. Hassanien (Eds.), Computational Intelligence in Biomedicine and Bioinformatics, Springer- Verlag, Berlin, pp. 169-199.10.1007/978-3-540-70778-3_7Search in Google Scholar

Polat, K. and Gunes, S. (2007). Breast cancer diagnosis using least square support vector machine, Digital Signal Processing 17(4): 694-701.10.1016/j.dsp.2006.10.008Search in Google Scholar

Sethian, J. (1996). A fast marching level set method for monotonically advancing fronts, Proceedings of the National Academy of Sciences of the United States of America 93(4): 1591-1595. 10.1073/pnas.93.4.15913998611607632Search in Google Scholar

Sezgin, M. and Sankur, B. (2003). Survey over image thresholding techniques and quantitative performance evaluation, Journal of Electronic Imaging 13(1): 146--165.10.1117/1.1631315Search in Google Scholar

Sifakis, E. and Tziritas, G. (2001). Moving object localisation using a multi-label fast marching algorithm, Signal Processing: Image Communication 16(10): 963-976. ´Smieta´nski, J., Tadeusiewicz, R. and Łuczy´nska, E. (2010). Texture analysis in perfusion images of prostate cancer- A case study, International Journal of Applied Mathematics and Computer Science 20(1): 149-156, DOI: 10.2478/v10006-010-0011-9.10.2478/v10006-010-0011-9Search in Google Scholar

Steć, P. (2005). Segmentation of Colour Video Sequences Using the Fast Marching Method, University of Zielona Góra Press, Zielona Góra.Search in Google Scholar

Tang, X. (1998). Texture information in run-length matrices, IEEE Transactions on Image Processing 7(11): 1602-1609.10.1109/83.72536718276225Search in Google Scholar

Ubeyli, E.D. (2007). Implementing automated diagnostic systems for breast cancer detection, Expert Systems with Applications 33(4): 1054-1062.10.1016/j.eswa.2006.08.005Search in Google Scholar

Underwood, J.C.E. (1987). Introduction to Biopsy Interpretation and Surgical Pathology, Springer-Verlag, London.10.1007/978-1-4471-1473-4Search in Google Scholar

Verma, B., McLeod, P. and Klevansky, A. (2010). Classification of benign and malignant patterns in digital mammograms for the diagnosis of breast cancer, Expert Systems With Applications 37(4): 3344-3351.10.1016/j.eswa.2009.10.016Search in Google Scholar

Woźniak, M. and Krawczyk, B. (2012). Combined classifier based on feature space partitioning, International Journal of Applied Mathematics and Computer Science 22(4): 855-866, DOI: 10.2478/v10006-012-0063-0.10.2478/v10006-012-0063-0Search in Google Scholar

Xiong, X., Kim, Y., Baek, Y., Rhee, D. W. and Kim, S.-H. (2005). Analysis of breast cancer using data mining & statistical techniques, 6th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing/1st ACIS International Workshop on Self-Assembling Wireless Networks, Towson, MD, USA, pp. 82-87.Search in Google Scholar

Xu, M., Thulasiraman, P. and Noghanian, S. (2012). Microwave tomography for breast cancer detection on cell broadband engine processors, Journal of Parallel and Distributed Computing 72(9): 1106-1116.10.1016/j.jpdc.2011.10.013Search in Google Scholar

Yang, X., Li, H. and Zhou, X. (2006). Nuclei segmentation using marker-controlled watershed, tracking using meanshift, and Kalman filter in time-lapse microscopy, IEEE Transactions on Circuits and Systems I 53(11): 2405-2414.10.1109/TCSI.2006.884469Search in Google Scholar

Yasmeen, M.G., Bassant, M.B., Hala, H.Z. and Mohamed, I.R. (2013). Automated cell nuclei segmentation for breast fine needle aspiration cytology, Signal Processing 93(10): 2804-2816. 10.1016/j.sigpro.2012.07.034Search in Google Scholar

ISSN:
1641-876X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Mathematics, Applied Mathematics