Cite

Albers, B., Savidis, S.A., Tas¸an, E., von Estorff, O. and Gehlken, M. (2012). BEM and FEM results of displacements in a poroelastic column, International Journal of Applied Mathematics and Computer Science 22(4): 883-896, DOI: 10.2478/v10006-012-0065-y.10.2478/v10006-012-0065-ySearch in Google Scholar

Barboteu, M., Bartosz, K. and Kalita, P. (2013). An analytical and numerical approach to a bilateral contact problem with nonmonotone friction, International Journal of Applied Mathematics and Computer Science 23(2): 263-276, DOI: 10.2478/amcs-2013-0020.10.2478/amcs-2013-0020Search in Google Scholar

Csuhaj-Varjú, E. (2004). Grammar systems: A short survey, Proceedings of Grammar Systems Week 2004, Budapest, Hungary, pp. 141-157.Search in Google Scholar

Csuhaj-Varjú, E., Dassow, J., Kelemen, J. and Paun, G. (1994). Grammar Systems. A Grammatical Approach to Distribution and Cooperation, Topics in Computer Mathematics 8, Gordon and Breach Science Publishers, Yverdon.Search in Google Scholar

Csuhaj-Varjú, E., Dassow, J. and Paun, G. (1993). Dynamically controlled cooperating/distributed grammar systems, Information Sciences 69(1-2): 1-25.10.1016/0020-0255(93)90037-MSearch in Google Scholar

Demkowicz, L. (2006). Computing with hp-Adaptive Finite Elements, Vol. I: One and Two Dimensional Elliptic and Maxwell Problems, Chapman and Hall/CRC Applied Mathematics and Nonlinear Science, Taylor & Franics Group, Boca Raton, FL/London/New York, NY.10.1201/9781420011685Search in Google Scholar

Druskin, V., Knizhnerman, A. and Lee, P. (1999). New spectral Lanczos decomposition method for induction modeling in arbitrary 3-d geometry, Geophysics 64(3): 701-706.10.1190/1.1444579Search in Google Scholar

Flasiński, M. and Schaefer, R. (1996). Quasi context sensitive graph grammars as a formal model of FE mesh generation, Computer-Assisted Mechanics and Engineering Science 3: 191-203.Search in Google Scholar

Grabska, E. (1993). Theoretical concepts of graphical modeling, Part two: cp-graph grammars and languages, Machine Graphics and Vision 2(2): 149-178.Search in Google Scholar

Grabska, E. and Strug, B. (2005). Applying cooperating distributed graph grammars in computer aided design, in R.Wyrzykowski, J. Dongarra, N.Meyer and J.Wa´sniewski (Eds.), Parallel Processing and Applied Mathematics, Lecture Notes in Computer Science, Vol. 3911, Springer, Berlin/Heidelberg, pp. 567-574.Search in Google Scholar

Hild, P. (2011). A sign preserving mixed finite element approximation for contact problems, International Journal of Applied Mathematics and Computer Science 21(3): 487-498, DOI: 10.2478/v10006-011-0037-7.10.2478/v10006-011-0037-7Search in Google Scholar

Kelemen, J. (1991). Syntactical models of cooperating/distributed problem solving, Journal of Experimental and Theoretical AI 3(1): 1-10.10.1080/09528139108915277Search in Google Scholar

Kukluk, J., Holder, L. and Cook, D. (2008). Inferring graph grammars by detecting overlap in frequent subgraphs, International Journal of Applied Mathematics and Computer Science 18(2): 241-250, DOI: 10.2478/v10006-008-0022-y.10.2478/v10006-008-0022-ySearch in Google Scholar

Martín-Vide, C. and Mitrana, V. (1998). Cooperation in contextual grammars, Proceedings of the MFCS’98 Satellite Workshop on Grammar Systems, Brno, Czech Republic, pp. 289-302.Search in Google Scholar

Newman, G. and Alumbaugh, D. (2002). Three-dimensional induction logging problems, Part 2: A finite-difference solution, Geophysics 67(2): 484-491.10.1190/1.1468608Search in Google Scholar

Pardo, D., Demkowicz, L., Torres-Verd´ın, C. and Paszynski, M. (2006). Two-dimensional high-accuracy simulation of resistivity logging-while-drilling (LWD) measurements using a self-adaptive goal-oriented hp finite element method, SIAM Journal on Applied Mathematics 66(6): 2085-2106.10.1137/050631732Search in Google Scholar

Pardo, D., Demkowicz, L., Torres-Verd´ın, C. and Paszynski, M. (2007). A self-adaptive goal-oriented hp-finite element method with electromagnetic applications, Part II: Electrodynamics, Computer Methods in Applied Mechanics and Engineering 196(37): 3585-3597.10.1016/j.cma.2006.10.016Search in Google Scholar

Pardo, D., Torres-Verd´ın, C. and Paszynski, M. (2008). Simulations of 3d DC borehole resistivity measurements with a goal-oriented hp finite-element method, Part II: Through-casing resistivity instruments, Computational Geosciences 12(1): 83-89.10.1007/s10596-007-9061-ySearch in Google Scholar

Paszynska, A., Grabska, E. and Paszynski, M. (2012a). A graph grammar model of the hp adaptive three dimensional finite element method, Part I, Fundamenta Informaticae 114(2): 149-182.10.3233/FI-2012-622Search in Google Scholar

Paszynska, A., Grabska, E. and Paszynski, M. (2012b). A graph grammar model of the hp adaptive three dimensional finite element method, Part II, Fundamenta Informaticae 114(2): 183-201.10.3233/FI-2012-623Search in Google Scholar

Paszynska, A., Paszynski, M. and Grabska, A. (2008). Graph transformations for modeling hp-adaptive finite element method with triangular elements, in M. Bubak, G.D. Albada, J. Dongarra and P.M.A. Sloot (Eds.), ICCS 2008, Lecture Notes in Computer Science, Vol. 5103, Springer, Berlin/Heidelberg, pp. 604-613.10.1007/978-3-540-69389-5_68Search in Google Scholar

Paszynska, A., Paszynski, M. and Grabska, E. (2009). Graph transformations for modeling hp-adaptive finite element method with mixed triangular and rectangular elements, in G. Allen, J. Nabrzyski, E. Seidel, G.D. Albada, J. Dongarra and P.M.A. Sloot (Eds.), ICCS 2009, Lecture Notes in Computer Science, Vol. 5545, Springer, Berlin/Heidelberg, pp. 875-884.10.1007/978-3-642-01973-9_97Search in Google Scholar

Paszynski, M. (2009a). On the parallelization of self-adaptive hp-finite element methods, Part I: Composite programmable graph grammar model, Fundamenta Informaticae 93(4): 411-434.10.3233/FI-2009-111Search in Google Scholar

Paszynski, M. (2009b). On the parallelization of self-adaptive hp-finite element methods, Part II: Partitioning communication agglomeration mapping (PCAM) analysis, Fundamenta Informaticae 93(4): 435-457.10.3233/FI-2009-112Search in Google Scholar

Paszynski, M., Pardo, D. and Calo, V. (2013). A direct solver with reutilization of LU factorizations for h-adaptive finite element grids with point singularities, Computers & Mathematics with Applications 65(8): 1140-1151.10.1016/j.camwa.2013.02.006Search in Google Scholar

Paszynski, M., Pardo, D. and Paszynska, A. (2011). Out-of-core multi-frontal solver for multi-physics hp adaptive problems, Procedia Computer Science 4: 1788-1797.10.1016/j.procs.2011.04.194Search in Google Scholar

Paszynski, M. and Schaefer, R. (2010). Graph grammar-driven parallel partial differential equation solver, Computer- Assisted Mechanics and Engineering Science 22(9): 1063-1097.Search in Google Scholar

Spicher, A., Michel, O. and Giavitto, J. (2010). Declarative mesh subdivision using topological rewriting in MGS, Graph Transformations: 5th International Conference, ICGT 2010, Enschede, The Netherlands, pp. 298-313.Search in Google Scholar

Szymczak, A., Paszynska, A. and Paszynski, M. (2011). Anisotropic 2d mesh adaptation in hp-adaptive FEM, Procedia Computer Science 4: 1818-1827.10.1016/j.procs.2011.04.197Search in Google Scholar

Wang, T. and Fang, S. (2001). 3-d electromagnetic anisotropy modeling using finite differences, Geophysics 66(5): 13861398.10.1190/1.1486779Search in Google Scholar

Zhang, R., Mackie, L. and Madden, T. (1995). 3-d resistivity forward modeling and inversion using conjugate gradients, Geophysics 60: 1312-1325. 10.1190/1.1443868Search in Google Scholar

ISSN:
1641-876X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Mathematics, Applied Mathematics