Open Access

An Exploratory Study on the Accuracy of Parts Printed in FDM Processes from Novel Materials


Cite

1. Adamczak S. (2008), Surface geometric measurements – in Polish, WNT, Warszawa.Search in Google Scholar

2. Al-Hariri L. A., Leonhardt B., Nowotarski M., Magi J., Chambliss K., Venzel T., Delekar S. and Acquah S. (2016), Carbon Nanotubes and Graphene as Additives in 3D Printing. Carbon Nanotubes, Current Progress of their Polymer Composites, 221–251, https://scholarworks.umass.edu/chem_faculty_pubs/1448.Search in Google Scholar

3. Alsoufi M. S., Elsayed A. E., (2018), Surface Roughness Quality and Dimensional Accuracy - A Comprehensive Analysis of 100% In-fill Printed Parts Fabricated by a Personal/Desktop Cost-Effective FDM 3D Printer, Materials Sciences and Applications, 9, 11–40.10.4236/msa.2018.91002Search in Google Scholar

4. Bähr F., Westkamper E. (2018) Correlations between Influencing Parameters and Quality Properties of Components Produced by Fused Deposition Modeling, Procedia CIRP, 72, 1214–1219.10.1016/j.procir.2018.03.048Search in Google Scholar

5. Barczewski M., Chmielewska D., Sterzyński T., Andrzejewski J. (2012), The assessment of properties of nucleated isotactic polypropylene modified with silsesquioxanes – in Polish, Przetwórstwo Tworzyw, 5, 409–413.Search in Google Scholar

6. Blok L. G., Longana M. L., Yu H., Woods B. K. S. (2018), An investigation into 3D printing of fibre reinforced thermoplastic, Additive Manufacturing, 22, 176–186.10.1016/j.addma.2018.04.039Search in Google Scholar

7. Calcagnile P., Cacciatore G., Demitri C., Montagna F. and Corcione C. E. (2018), Fused Deposition Modeling 3D PrinterA Feasibility Study of Processing Polydimethylsiloxane–Sodium Carboxymethylcellulose Composites by a Low-Cost Fused Deposition Modeling 3D Printer, Materials, 11, 1578, 1–14.10.3390/ma11091578616370730200428Search in Google Scholar

8. Dikshit V., Nagalingam A., Yap Y. L., Sing S. L., Yeong W. Y. and Wei J. (2017), Investigation of quasi-static indentation response of inkjet printed sandwich structures under various indenter geometries, Materials, 10 (3), 290, 1–18.10.3390/ma10030290550331028772649Search in Google Scholar

9. Dudek P., Zagórski K. (2017), Cost, resources, and energy efficiency of Additive Manufacturing, E3S Web of Conferences, ISSN 2267-1242, 14, 1–8.10.1051/e3sconf/20171401040Search in Google Scholar

10. Duo Dong Goh, Yee Ling Yap, Shweta Agarwala, and Wai Yee Yeong (2019), Recent Progress in Additive Manufacturing of Fiber Reinforced Polymer Composite, Adv. Mater. Technol., 4, WILEYVCH Weinheim, 856–863.10.1002/admt.201800271Search in Google Scholar

11. Gołębiowski J. (2004), Polymer nanocomposites. Structure, synthesis and properties – in Polish. Przemysł Chemiczny, 83, 1, 15–20.Search in Google Scholar

12. Grzesik W. (2016), Prediction of the Functional Performance of Machined Components Based on Surface Topography: State of the Art, 25(10), 4460–4468.10.1007/s11665-016-2293-zSearch in Google Scholar

13. Guillemot G.,Bigerelle M., and Khawaja Z. (2014), 3D Parameter to Quantify the Anisotropy Measurement of Periodic Structures on Rough Surfaces, Scanning, 36, 127–133.10.1002/sca.2110823824916Search in Google Scholar

14. Hashimoto F. (2016), Characteristics and Performance of surface created by various finishing methods, Procedia CIRP, 45, 1–6.10.1016/j.procir.2016.02.052Search in Google Scholar

15. Hofstätter T., Pedersen, Bue D., Tosello G., Nørgaard H. (2019), State-of-the-art of fiber-reinforced polymers in additive manufacturing technologies, Journal of Reinforced Plastics & Composites, 36(15), 1061–1073.10.1177/0731684417695648Search in Google Scholar

16. ISO/ASTM 52900:2015, Additive manufacturing – General principles – Terminology.Search in Google Scholar

17. Kaczyński R., Wilczewska I., A. Sfiridienok (2014), Peculiarities of the wear mechanism of polymers reinforced with unidirectional carbon fibers, Friction and Wear, 35 (6), 449–454.10.3103/S1068366614060178Search in Google Scholar

18. Knoop F., Kloke A., and Schoeppner V. (2018), Quality improvement of FDM parts by parameter optimization, AIP Conference Proceedings, 190001-1–190001-5.10.1063/1.5016790Search in Google Scholar

19. Kumar S., Panneerselvam K. (2016), Two-body Abrasive Wear Behavior of Nylon 6 and Glass Fiber Reinforced (GFR) Nylon 6 Composite, Procedia Technology, 25 (2016) 1129–1136.10.1016/j.protcy.2016.08.228Search in Google Scholar

20. Kwiatkowski D., Kwiatkowska M. (2012), Numerical analysis of volume shrinkage of polyacetal composites with glass fibre – in Polish, Przetwórstwo Tworzyw, 5, 452–455.Search in Google Scholar

21. Ligon S.C., Liska R., Stampfl J., Gurr M. and Mulhaupt R. (2017), Polymers for 3D Printing and Customized Additive Manufacturing, Chemical Review, 117, 10212−10290.10.1021/acs.chemrev.7b00074555310328756658Search in Google Scholar

22. Liua Z., Lei Q., Xinga S. (2019), Mechanical characteristics of wood, ceramic, metal and carbon fiber-based PLA composites fabricated by FDM, Journal of Materials Research and Technology, 8(5), 3741–3751.10.1016/j.jmrt.2019.06.034Search in Google Scholar

23. Loncierz D., Kajzer W. (2016), Influence of 3D printing parameters in the FDM technology on mechanical and utility properties of objects made of PLA – in Polish, Aktualne Problemy Biomechaniki, No. 10, 43–48.Search in Google Scholar

24. Mathiaa T. G., Pawlus P., Wieczorowski M. (2011), Recent trends in surface metrology, Wear, Vol. 271, No. 3–4, 494–508.10.1016/j.wear.2010.06.001Search in Google Scholar

25. Mohan N., Senthil P., Vinodh S. & Jayanth N. (2017), A review on composite materials and process parameters optimisation for the fused deposition modelling process, Virtual and Physical Prototyping, Vol. 12, No. 1, 47–59.10.1080/17452759.2016.1274490Search in Google Scholar

26. Nuñez P. J., Rivas A., García-Plaza E., BeamudE., Sanz-Lobera A. (2015), Dimensional and surface texture characterization in Fused Deposition Modelling (FDM) with ABS plus, The Manufacturing Engineering Society International Conference MESIC 2015, Procedia Engineering,132, 856–863.10.1016/j.proeng.2015.12.570Search in Google Scholar

27. Petropoulos G., Pandazaras C. N., Davim P. (2010), Surface Texture Characterization and Evaluation Related to Machining. Surface Integrity in Machining, Springer, 37–66.10.1007/978-1-84882-874-2_2Search in Google Scholar

28. PN-EN ISO 25178-6 (2011), Geometrical product specifications (GPS) — Surface texture: Areal — Part 6: Classification of methods for measuring surface texture – in Polish.Search in Google Scholar

29. PN-EN ISO 286-1 (2011), Geometrical product specifications (GPS) – ISO code system for tolerances on linear sizes – Part 1: Basis of tolerances, deviations and fits – in Polish.Search in Google Scholar

30. PN-EN ISO 4287:1999/A1 (2010), Geometrical Product Specifications (GPS) - Surface texture: Profile method - Terms, definitions and surface texture parameters – in Polish.Search in Google Scholar

31. PN-EN ISO 4288 (1997), Geometrical Product Specifications (GPS) — Surface texture: Profile method — Rules and procedures for the assessment of surface texture - in Polish.Search in Google Scholar

32. Prusinowski A., Kaczyński R. (2017), Simulation of processes occurring in the extrusion head used in additive manufacturing technology, Acta Mechanica et Automatica, 11 (4), 317–321.10.1515/ama-2017-0049Search in Google Scholar

33. Roberson D.A., Shemelya C. M., MacDonald E., Wicker R. B. (2015), Expanding the Applicability of FDM-type Technologies Through Materials Development, Rapid Prototyping Journal, 21 (2),137–143.10.1108/RPJ-12-2014-0165Search in Google Scholar

34. Singh R., Vatsalya (2015), Evolution of 3D Surface Parameters: A Comprehensive Survey, The International Journal of Engineering and Science, 4 (2), 4–10.Search in Google Scholar

35. Spoerk M., Holzer C., Gonzalez-Gutierrez J. (2019), Material extrusion-based additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage, J. Appl. Polym. SCI, DOI: 10.1002/app.48545, 1–14.10.1002/app.48545Search in Google Scholar

36. Tomiċ D., Fuduriċ A., Mihaliċ T., Simuniċ N. (2017), Dimensional accuracy of prototypes made with FDM technology, Journal of Energy Technology, 2, 51–59.Search in Google Scholar

37. Triantaphyllou A., Giusca C., Macaulay G., Roerig F., Hoebel M., Leach R., Tomita B., Milne K. (2015), Surface texture measurement for additive manufacturing, Surface Topography: Metrology and Properties, 3, 1–8.10.1088/2051-672X/3/2/024002Search in Google Scholar

38. Umaras E.,Tsuzuki M. S. G. (2017), Additive Manufacturing - Considerations on Geometric Accuracy and Factors of Influence, IFAC PapersOnLine, 50 (1), 14940–14945.10.1016/j.ifacol.2017.08.2545Search in Google Scholar

39. Wang T.- M., Xi J.-U., Jin Y. (2007), A model research for prototype warp deformation in the FDM process, The International Journal of Advanced Manufacturing Technology, 33, 1087–1096.10.1007/s00170-006-0556-9Search in Google Scholar

40. Wieczorowski M. (2013), Theoretical basis of spatial analysis of surface asperities – in Polish, Inżynieria Maszyn, 18(3), 7–34. www.formfutura.com (access 07.09.2019).Search in Google Scholar

41. www.markforged.com (access 07.09.2019).Search in Google Scholar

42. www.rp-tech.pl (access 07.09.2019).Search in Google Scholar

43. Zabala A., Blunt L., Wilson W., Aginagalde A., Gomez X. and Mondragon I. L. (2018), The use of areal surface topography characterisation in relation to fatigue performance, MATEC Web of Conferences, 165, 1–6.10.1051/matecconf/201816514013Search in Google Scholar

44. Zawistowski H. (2008), Basics of the theory of shaping the properties of products in the process of injection of thermoplastics – in Polish, Mechanik, 4, 274–280.Search in Google Scholar

45. Żuchowska D. (2000), Constructional polymers – in Polish, WNT, WarszawaSearch in Google Scholar