Open Access

Modelling of the Low-Pressure Gas Injector Operation


Cite

1. Bali E., Erzan Topcu E. (2018), Design of on-off type solenoid valve for electropneumatic brake system and investigation of its statistics characteristics, International Journal of Advances on Automotive and Technology, 2(3): 175–184.10.15659/ijaat.18.09.995Search in Google Scholar

2. Bensetti M., Bihan Y.L., Marchand C. (2006), Development of an hybrid 3D FEM for the modeling of micro-coil sensors and actuators, Sensors and Actuators A: Physical, 129(1): 207–211.10.1016/j.sna.2005.11.060Search in Google Scholar

3. Bielaczyc P., Woodburn J. (2018), Trends in automotive emissions legislation: impact on LD engine development, fuels, lubricants, and test methods - a global view, with a focus on WLTP and RDE regulations - Summary of the 6th International Exhaust Emissions Symposium (IEES), Combustion Engines, 174(3): 56–6510.19206/CE-2018-306Search in Google Scholar

4. Borawski A. (2015), Modification of a fourth generation LPG installation improving the power supply to a spark ignition engine, Eksploatacja i Niezawodnosc – Maintenance and Reliability, 17(1): 1–6.10.17531/ein.2015.1.1Search in Google Scholar

5. Borawski A. (2015a), Simulation studies of LPG injector used in 4th generation installations, Combustion Engines, 160(1): 49–55.10.19206/CE-116901Search in Google Scholar

6. Borawski A. (2018). Simulation Study of the Process of Friction in the Working Elements of a Car Braking System at Different Degrees of Wear. Acta Mechanica et Automatica, 12(3): 221–226.10.2478/ama-2018-0034Search in Google Scholar

7. Borawski A. (2019), Common methods in analysing the tribological properties of brake pads and discs - a review, Acta Mechanica et Automatica, 13(3): 189–199.10.2478/ama-2019-0025Search in Google Scholar

8. Brumercik F.; Lukac M.; Caban J. Krzysiak Z.; Glowacz A. (2020), Comparison of selected parameters of a planetary gearbox with involute and convex–concave teeth flank profiles, Applied Science, 10: 1417.10.3390/app10041417Search in Google Scholar

9. Cao Y., Teng W., Zhang H. (2007), Dynamic modeling and hardware-in-the-loop simulation testing for LPG engine, Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, 2093–2098.10.1109/ICMA.2007.4303874Search in Google Scholar

10. Cheng Q., Zhang Z.-D., Guo H., Xie N.-L. (2015), Electro-magnetic-thermal coupling of GDI injector, Journal of Jilin University (Engineering and Technology Edition), 45(3): 806–813Search in Google Scholar

11. Cheng Q., Zhang Z-D., Guo H., Xie N-L. (2014), Simulation and analysis on electro-magnetic-thermal coupling of solenoid GDI injector, International Journal of Applied Electromagnetics and Mechanics, 46(4): 775–792.10.3233/JAE-141973Search in Google Scholar

12. Cheung N.C., Lim K.W., Rahman M. F. (1993), Modelling a linear and limited travel solenoid, Proceedings of IECON ‘93 - 19th Annual Conference of IEEE Industrial Electronics, 3: 1567–1572.Search in Google Scholar

13. Chu L., Hou Y., Liu M., Li J., Gao Y., Ehsani M. (2007), Study on the dynamic characteristics of pneumatic ABS solenoid valve for commercial Vehicle, 2007 IEEE Vehicle Power and Propulsion Conference, 641–644.10.1109/VPPC.2007.4544201Search in Google Scholar

14. Cvetkovic D, Cosic I., Subic A. (2008), Improved performance of the electromagnetic fuel injector solenoid actuator using a modelling approach, International Journal of Applied Electromagnetics and Mechanics, 27: 251–273.10.3233/JAE-2008-939Search in Google Scholar

15. Czarnigowski J. (2012), Teoretyczno-empiryczne studium modelowania impulsowego wtryskiwacza gazu, Wydawnictwo Politechniki Lubelskiej, Lublin.Search in Google Scholar

16. Czarnigowski J., Jaklinski P., Wendeker M., Pietrykowski K., Gabowski Ł. (2009), The analyses of the phenomena inside a CNG flap-valve injector during gas flow. Combustion Engines, 1(136): 10–18.10.19206/CE-117215Search in Google Scholar

17. Czarnigowski J., Wendeker M., Jakliński P., Rola M., Grabowski Ł., Pietrykowski K. (2007), CFD model of fuel rail for LPG systems, JSAE/SAE International Fuels & Lubricants Meeting, 2007-01-2053.10.4271/2007-01-2053Search in Google Scholar

18. Demarchi A., Farçoni L., Pinto A., Lang R., Romero R., Silva I. (2018), Modelling a solenoid’s valve movement, In: Akiyama H., Obst O., Sammut C., Tonidandel F. (eds) RoboCup 2017: Robot World Cup XXI. RoboCup 2017. Lecture Notes in Computer Science, Cham: Springer, 11175.10.1007/978-3-030-00308-1_24Search in Google Scholar

19. Dimitrova Z., Maréchal F. (2015), Gasoline hybrid pneumatic engine for efficient vehicle powertrain hybridization, Applied Energy, 151: 168–177.10.1016/j.apenergy.2015.03.057Search in Google Scholar

20. Dongiovanni C., Coppo M. (2010), Accurate Modelling of an Injector for Common Rail Systems. In book: Siano D. Fuel Injection, London: IntechOpen Limited, 6: 95–119.10.5772/9728Search in Google Scholar

21. Duk M., Czarnigowski J. (2001), The method for indirect identification gas injector opening delay time, Przeglad Elektrotechniczny, 88(10b): 59–63.Search in Google Scholar

22. Grigor’ev M.A., Naumovich N.I., Belousov E.V. (2015), A traction electric drive for electric cars, Russian Electrical Engineering, 86(12): 731–734.10.3103/S1068371215120111Search in Google Scholar

23. Haiping Y., Xianyi Q. (2010), The calculation of main parameters of the gasoline engine fuel injection system, Proceeding of the International Conference on Computer Application and System Modeling (ICCASM), V13–635.10.1109/ICCASM.2010.5622197Search in Google Scholar

24. Hung N.B., Lim O.T. (2019), Improvement of electromagnetic force and dynamic response of a solenoid injector based on the effects of key parameters, International Journal of Automotive Technology, 20: 949-960.10.1007/s12239-019-0089-5Search in Google Scholar

25. Jeuland N., Montagne X., Duret P. (2004), New HCCI/CAI combustion process development: Methodology for determination of relevant fuel parameters, Oil & Gas Science and Technology, 59(6): 571–579.10.2516/ogst:2004041Search in Google Scholar

26. Kamiński Z. (2013), Experimental and numerical studies of mechanical subsystem for simulation of agricultural trailer air braking systems, International Journal of Heavy Vehicle System, 20(4): 289–311.10.1504/IJHVS.2013.056802Search in Google Scholar

27. Kamiński Z. (2014), Mathematical modelling of the trailer brake control valve for simulation of the air brake system of farm tractors equipped with hydraulically actuated brakes, Eksploatacja i Niezawodnosc – Maintenance and Reliability, 16(4): 637–643.Search in Google Scholar

28. Leduc L., Dubar B., Ranini A., Monnier G. (2003), Downsizing of gasoline engine: an efficient way to reduce CO2 emissions. Oil & Gas Science Technology, 58(1): 115–127.10.2516/ogst:2003008Search in Google Scholar

29. Li P.X., Su M., Zhang D.B. (2017), Response characteristic of high-speed on/off valve with double voltage driving circuit, IOP Conference Series: Materials Science and Engineering, 220: 012028.10.1088/1757-899X/220/1/012028Search in Google Scholar

30. Lim K.W., Cheung N.C., Kahman M.F. (1994), Proportional control of a solenoid actuator, Proceedings of IECON’94 - 20th Annual Conference of IEEE Industrial Electronics, 2045–2050.Search in Google Scholar

31. Liu Y.-F., Dai, Z.-K., Xu X.-Y., Tian L. (2011), Multi-domain modeling and simulation of proportional solenoid valve, Journal of Central South University Technology, 18: 1589–1594.10.1007/s11771-011-0876-2Search in Google Scholar

32. Liu Z., Ouyang G. (2009), Numerical analysis of common rail electro-injector for diesel engine, Proceedings of the International 2009 Conference on Mechatronics and Automation (IEEE), 1683–1688.10.1109/ICMA.2009.5246365Search in Google Scholar

33. Lu F., Jensen D. (2003), Potential viability of a fast-acting micro-solenoid valve for pulsed detonation fuel injection, 41st Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, 2003-0888.10.2514/6.2003-888Search in Google Scholar

34. Lunge, S.P., Kurode S.R. (2013), Proportional actuator from on off solenoid valve using sliding modes, Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), 1020–1027.Search in Google Scholar

35. Marčič S., Marčič M., Praunseis Z. (2015), Mathematical Model for the Injector of a Common Rail Fuel-Injection System. Engineering, 7: 307–321.10.4236/eng.2015.76027Search in Google Scholar

36. Marczuk A., Caban J., Aleshkin A.V., Savinykh P.A., Isupov A.Y., Ivanov I.I. (2019), Modeling and simulation of particle motion in the operation area of a centrifugal rotary chopper machine, Sustainability, 11(18): 1–15.10.3390/su11184873Search in Google Scholar

37. Matkowić K., Jelović M., Jurić J., Konyha Z., Gračanin D. (2005), Interactive visual analysis and exploration of injection system simulations, Proceedings of the International Conference on Vizualization (VIS 05. IEEE), 391–398.Search in Google Scholar

38. Mehlfeldt D., Weckenmann H., Stöhr G. (2008), Modeling of piezoelectrically actuated fuel injectors, Mechatronics, 18: 264–272.10.1016/j.mechatronics.2008.03.001Search in Google Scholar

39. Mieczkowski G. (2019), Criterion for crack initiation from notch located at the interface of bi-material structure, Eksploatacja i Niezawodnosc – Maintenance and Reliability, 21 (2): 301–310.10.17531/ein.2019.2.15Search in Google Scholar

40. Mieczkowski G. (2019a), Static electromechanical characteristics of piezoelectric converters with various thickness and length of piezoelectric layers, Acta Mechanica et Automatica, 13(1): 30–36.10.2478/ama-2019-0005Search in Google Scholar

41. Mieczkowski G., Borawski A., Szpica D. (2020), Static electromechanical characteristic of a three-layer circular piezoelectric transducer, Sensors, 20, 222.10.3390/s20010222698278631906057Search in Google Scholar

42. Mieczkowski G., Molski K., Seweryn A. (2007), Finite-element modeling of stresses and displacements near the tips of pointed inclusions, Materials Science, 43(2): 183–194.10.1007/s11003-007-0021-4Search in Google Scholar

43. Mikulski M., Balakrishnan P.R., Doosje E., Bekdemir C. (2018), Variable valve actuation strategies for better efficiency load range and thermal management in an RCCI engine, SAE Technical Papers, 2018-01-0254.10.4271/2018-01-0254Search in Google Scholar

44. Mikulski M., Wierzbicki S., Piętak A. (2015), Numerical studies on controlling gaseous fuel combustion by managing the combustion process of diesel pilot dose in a dual-fuel engine, Chemical and Process Engineering, 36(2): 225–238.10.1515/cpe-2015-0015Search in Google Scholar

45. Li M.H., Jiang F. (2010), Simulation research on fuel injection system of 16V265H Dielsel engine introduced from U.S., Proceedings of the International Conference on E-Product E-Service and E-Entertainment (ICEEE), 4796–4799.10.1109/ICEEE.2010.5660377Search in Google Scholar

46. Morselli R., Corti E., Rizzoni G. (2002), Energy based model of a common rail injector, Proceeding of the International Conference on Control Applications (IEEE), 2: 1195–1200.10.1115/IMECE2002-32101Search in Google Scholar

47. Mustafa K.F., Gitano-Briggs H.W. (2009), Liquefied petroleum gas (LPG) as an alternative fuel in spark ignition engine: Performance and emission characteristics. Proceedings of the International Conference Energy and Environment (ICEE), 189–194.10.1109/ICEENVIRON.2009.5398647Search in Google Scholar

48. Onishi S., Jo S.H., Shoda K., Jo P.D., Kato S. (1979), Active thermo-atmosphere combustion (A.T.A.C.) - A new combustion process for internal combustion engines, SAE Paper, 790501.10.4271/790501Search in Google Scholar

49. Pacurar C., Topa V., Munteanu C., Racasan A., Hebedean C., Oglejan R., Vlad G. (2015), Solenoid actuator parametric analysis and numerical modeling, Acta Electrotehnica, 56(3): 246–251.Search in Google Scholar

50. Passarini L.C., Nakajima P.R. (2003), Development of a high-speed solenoid valve: an investigation of the importance of the armature mass on the dynamic response, Journal of the Brazilian Society of Mechanical Sciences and Engineering, XXV(4): 329–335.10.1590/S1678-58782003000400003Search in Google Scholar

51. Passarini L.C., Pinotti JR, M. (2003), A new model for fast-acting electromagnetic fuel injector analysis and design, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 25(1): 95–106.10.1590/S1678-58782003000100014Search in Google Scholar

52. Plavec E., Ladisic I., Vidovic M. (2019), The impact of coil winding angle on the force of DC solenoid electromagnetic actuator, Advances in Electrical & Electronic Engineering, 17(3): 244–250.10.15598/aeee.v17i3.3338Search in Google Scholar

53. Pogulyaev Y.D., Baitimerov R., Rozhdestvensky Y. (2015), Detailed dynamic modeling of common rail piezo injector, Procedia Engineering, 129: 93–98.10.1016/j.proeng.2015.12.014Search in Google Scholar

54. Pulawski G., Szpica D. (2015), The modelling of operation of the compression ignition engine powered with diesel fuel with LPG admixture, Mechanika, 21(6): 501–506.10.5755/j01.mech.21.6.11147Search in Google Scholar

55. Rahman M. F., Cheung N. C., Lim K. W. (1996a), Converting a switching solenoid to a proportional actuator, IEEJ Transactions on Electrical and Electronic Engineering, I-16(5): 531–537.10.1541/ieejias.116.531Search in Google Scholar

56. Rahman M. F., Cheung N. C., Lim K. W. (1996b), Modeling of a nonlinear solenoid toward the development of a proportional actuator, Procceedings of the 5th International Conferences Modeling and Simulation of Electrical Machines Convertors and Systems ELECTRIMACS’96, 2: 695–670.Search in Google Scholar

57. Raslavičius L., Keršys A., Makaras R. (2017), Management of hybrid powertrain dynamics and energy consumption for 2WD, 4WD, and HMMWV vehicles, Renewable and Sustainable Energy Reviews, 68(1): 380–396.10.1016/j.rser.2016.09.109Search in Google Scholar

58. Raslavičius L., Keršys A., Mockus S., Keršiene N., Starevičius M. (2014), Liquefied petroleum gas (LPG) as a medium-term option in the transition to sustainable fuels and transport, Renewable & Sustainable Energy Reviews, 32: 513–525.10.1016/j.rser.2014.01.052Search in Google Scholar

59. Ristovski Z.D., Jayaratne E.R., Morawska L., Ayoko G.A., Lim M. (2005), Particle and carbon dioxide emissions from passenger vehicles operating on unleaded petrol and LPG fuel, Science of the Total Environment, 345: 93–98.10.1016/j.scitotenv.2004.10.02115919531Search in Google Scholar

60. Shamdani, A.H., Shamekhi, A.H., Basharhagh, M.Z. (2006). Modeling and Simulation of a Diesel Engine Common Rail Injector in Matlab/Simulink, 14th Annual (International) Mechanical Engineering Conference, 7.Search in Google Scholar

61. Simon M. (2017), Pneumatic vehicle, research and design, Procedia Engineering, 181: 200–205.10.1016/j.proeng.2017.02.370Search in Google Scholar

62. Szpica D. (2016), Modeling of current limitation through the PWM signal in LPG injectors, Proceedings of 20th International Scientific Conference Transport Means 2016, 536–539.Search in Google Scholar

63. Szpica D. (2016a), Testing the parameters of LPG injector solenoids as a function of the lift of the working component and the frequency of impulses, Proceedings of 20th International Scientific Conference Transport Means 2016, 551–555.Search in Google Scholar

64. Szpica D. (2017), Comparative analysis of low pressure gas-phase injector’s characteristics, Flow Measurement and Instrumentation, 58: 74–86.10.1016/j.flowmeasinst.2017.09.012Search in Google Scholar

65. Szpica D. (2018), Investigating fuel dosage non-repeatability of low pressure gas-phase injectors, Flow Measurement and Instrumentation, 59: 147–156.10.1016/j.flowmeasinst.2017.12.009Search in Google Scholar

66. Szpica D. (2018a), Research on the influence of LPG/CNG injector outlet nozzle diameter on uneven fuel dosage, Transport, 33(1): 186–196.10.3846/16484142.2016.1149884Search in Google Scholar

67. Szpica D. (2018b), Validation of indirect methods used in the operational assessment of LPG vapor phase pulse injectors, Measurement, 118: 253–261.10.1016/j.measurement.2018.01.045Search in Google Scholar

68. Taghizadeh M, Ghaffari A, Najafi F. (2009), Modeling and identification of a solenoid valve for PWM control applications, Comptes Rendus Mecanique, 337(3): 131–140.10.1016/j.crme.2009.03.009Search in Google Scholar

69. Tian H, Zhao Y. (2018), Coil inductance model based solenoid on/off valve spool displacement sensing via laser calibration. Sensors, 18(12): 4492.10.3390/s18124492630857530567414Search in Google Scholar

70. Valtek Type 30 – technical data. [online] [02.08.2018]. Available at: https://www.valtek.it.Search in Google Scholar

71. Waluś K.J., Warguła Ł., Krawiec P., Adamiec J.M.. (2018), Legal regulations of restrictions of air pollution made by non-road mobile machinery - the case study for Europe: a review, Environmental Science and Pollution Research, 25(4): 3243–3259.10.1007/s11356-017-0847-8581157029238926Search in Google Scholar

72. Warguła Ł., Krawiec P., Waluś K.J., Kukla M. (2020), Fuel consumption test results for a self-adaptive, maintenance-free wood chipper drive control system, Applied Sciences, 10(8): 2727.10.3390/app10082727Search in Google Scholar

73. Wendeker M., Jakliński P., Gabowski Ł., Pietrykowski K., Czarnigowski J., Hunicz J. (2007), Model of CNG flap valve injector for internal combustion engines, Combustion Engines, 4(131): 42–52.10.19206/CE-117317Search in Google Scholar

74. Xiang Z., Liu H., Tao G-L, Man J., Zhong W. (2008), Development of an ε-type actuator for enhancing high-speed electro-pneumatic ejector valve performance, Journal of Zhejiang University - Science A, 9(11): 1552–1559.10.1631/jzus.A0820350Search in Google Scholar

75. Yang L.-J., Fu Q.-F., Qu Y.-Y., Zhang W., Du M.-L., Xu B.-R. (2012), Spray characteristics of gelled propellants in swirl injectors, Fuel, 97: 253–261.10.1016/j.fuel.2012.02.036Search in Google Scholar

76. Yang W.Y., Cao W., Chung T.S., Morris J. (2005), Applied Numerical Methods Using MATLAB; John Wiley & Sons Inc., New Jersey.10.1002/0471705195Search in Google Scholar