Open Access

An Interface Crack with Mixed Electro-Magnetic Conditions at it Faces in a Piezoelectric / Piezomagnetic Bimaterial under Anti-Plane Mechanical and In-Plane Electric Loadings


Cite

1. Beom H. G., Atluri S. N. (2002), Conducting cracks in dissimilar piezoelectric media, International Journal of Fracture, 118, 285–301.10.1023/A:1023381215338Search in Google Scholar

2. Chen H., Wei W., Liu J., Fang D. (2012), Propagation of a mode-III interfacial crack in a piezoelectric-piezomagnetic bi-material, Int. J. Solids Struct., 49, 2547–2558.10.1016/j.ijsolstr.2012.05.013Search in Google Scholar

3. Comninou M. (1977), The interface crack, Trans. ASME. Ser. E, J. Applied Mechanics, 44(4), 631–636.10.1115/1.3424148Search in Google Scholar

4. Fan C., Zhou Y., Wang H., Zhao M. (2009), Singular behaviors of interfacial cracks in 2D magnetoelectroelastic bimaterials, Acta Mech. Solida Sinica, 22, 232-239.10.1016/S0894-9166(09)60270-6Search in Google Scholar

5. Feng W. J., Ma P., Pan E. N., Liu J. X. (2011), A magnetically impermeable and electrically permeable interface crack with a contact zone in a magnetoelectroelastic bimaterial under concentrated magnetoelectromechanical loads on the crack faces, Sci. China Ser. G, 54, 1666-1679.10.1007/s11433-011-4403-0Search in Google Scholar

6. Feng W. J., Ma P., Su R. K. L. (2012), An electrically impermeable and magnetically permeable interface crack with a contact zone in magnetoelectroelastic bimaterials under a thermal flux and magneto-electromechanical loads, Int. J. Solids Structures, 49, 3472-3483.10.1016/j.ijsolstr.2012.07.006Search in Google Scholar

7. Feng W. J., Su R. K. L., Liu J. X., Li Y. S. (2010), Fracture analysis of bounded magnetoelectroelastic layers with interfacial cracks under magnetoelectromechanical loads: plane problem, J. Intell. Mater. Syst. Struct., 21, 581-594.10.1177/1045389X10361630Search in Google Scholar

8. Govorukha V., Kamlah M., Loboda V., Lapusta Y. (2016), Interface cracks in piezoelectric materials, Smart Mater. Struct., 25, 023001 (20pp).10.1088/0964-1726/25/2/023001Search in Google Scholar

9. Herrmann K. P., Loboda V. V. (2003), Fracture mechanical assessment of interface cracks with contact zones in piezoelectric bi-materials under thermoelectromechanical loadings, I. Electrically permeable interface cracks, Int. J. Solids and Structures, 40, 4191-4217.10.1016/S0020-7683(03)00200-2Search in Google Scholar

10. Herrmann K. P., Loboda V. V., Khodanen T. V. (2010), An interface crack with contact zones in a piezoelectric/piezomagnetic bimaterial, Archive of Applied Mechanics, 80(6), 651-670.10.1007/s00419-009-0330-1Search in Google Scholar

11. Hu K., Chen Z. (2010), An interface crack moving between magnetoelectroelastic and functionally graded elastic layers, Appl. Math. Modelling, 38, 910-925.10.1016/j.apm.2013.07.022Search in Google Scholar

12. Kozinov S., Loboda V., Lapusta Y. (2013), Periodic set of limited electrically permeable interface cracks with contact zones, Mech. Res. Communic., 48, 32-41.10.1016/j.mechrescom.2012.12.002Search in Google Scholar

13. Lapusta Y., Onopriienko O., Loboda V. (2017), An interface crack with partially electrically conductive crack faces under antiplane mechanical and in-plane electric loadings, Mech. Res. Commun., 81, 38–43.10.1016/j.mechrescom.2017.02.004Search in Google Scholar

14. Li R., Kardomateas G. A. (2006), The mode III interface crack in piezo-electro-magneto-elastic dissimilar bimaterials, J. Appl. Mech., 73, 220–227.10.1115/1.2073328Search in Google Scholar

15. Li Y. D., Lee K. Y. (2010), Effects of magneto-electric loadings and piezomagnetic/piezoelectric stiffening on multiferroic interface fracture, Eng. Fract. Mech., 77, 856-866.10.1016/j.engfracmech.2010.01.003Search in Google Scholar

16. Loboda V., Sheveleva A., Lapusta Y. (2014), An electrically conducting interface crack with a contact zone in a piezoelectric bimaterial, Int. J. Solids Struct., 51, 63–73.10.1016/j.ijsolstr.2013.09.012Search in Google Scholar

17. Ma P., Feng W. J., Su R. K. L. (2012), An electrically impermeable and magnetically permeable interface crack with a contact zone in a magnetoelectroelastic bimaterial under uniform magnetoelectromechanical loads, Eur. J. Mech. A/Solids, 32, 41-51.10.1016/j.euromechsol.2011.09.010Search in Google Scholar

18. Ma P., Feng W. J., Su R. K. L. (2013), Pre-fracture zone model on electrically impermeable and magnetically permeable interface crack between two dissimilar magnetoelectroelastic materials, Eng. Fract. Mech., 102, 310-323.10.1016/j.engfracmech.2013.03.004Search in Google Scholar

19. Ma P., Feng W., Su R. K. L. (2011), Fracture assessment of an interface crack between two dissimilar magnetoelectroelastic materials under heat flow and magnetoelectromechanical loadings, Acta Mech. Solida Sinica, 24, 429-438.10.1016/S0894-9166(11)60042-6Search in Google Scholar

20. Muskhelishvili N. I. (1977), Some Basic Problems of Mathematical Theory of Elasticity, Noordhoff International Publishing, Leyden.10.1007/978-94-017-3034-1Search in Google Scholar

21. Nahmein E. L., Nuller B. M. (1986), Contact of an elastic half plane and a particularly unbonded stamp [in russian], Prikladnaja matematica i mechanika, 50, 663–673.10.1016/0021-8928(86)90017-1Search in Google Scholar

22. Parton V. Z., Kudryavtsev B. A. (1988), Electromagnetoelasticity, Gordon and Breach Science Publishers, New York.Search in Google Scholar

23. Ru C. Q. (2000), Electrode-ceramic interfacial cracks in piezoelectric multilayer materials, ASME J. Appl. Mech., 67, 255–261.10.1115/1.1303825Search in Google Scholar

24. Shi P. P., Sun S., Li X. (2013), The cyclically symmetric cracks on the arc-shaped interface between a functionally graded magneto-electro-elastic layer and an orthotropic elastic substrate under static anti-plane shear load, Eng. Fract. Mech., 105, 238-249.10.1016/j.engfracmech.2013.04.008Search in Google Scholar

25. Sih G. C., Song Z. F. (2003), Magnetic and electric poling effects associated with crack growth in BaTiO3–CoFe2O4 composite, Theoretical and Applied Fracture Mechanics, 39, 209–227.10.1016/S0167-8442(03)00003-XSearch in Google Scholar

26. Su R. K. L., Feng W. J. (2008), Fracture behavior of a bonded magneto-electro-elastic rectangular plate with an interface crack, Arch. Appl. Mech., 78, 343–362.10.1007/s00419-007-0165-6Search in Google Scholar

27. Sulym H. T., Piskozub L. G., Piskozub Y. Z., Pasternak Ya. M. (2015a), Antiplane deformation of a bimaterial containing an interfacial crack with the account of friction. I. Single loading, Acta Mechanica et Automatica, 9(2), 115-121.10.1515/ama-2015-0020Search in Google Scholar

28. Sulym H. T., Piskozub L. G., Piskozub Y. Z., Pasternak Ya. M. (2015b), Antiplane deformation of a bimaterial containing an interfacial crack with the account of friction. 2. Repeating and cyclic loading, Acta Mechanica et Automatica, 9(3), 178-184.10.1515/ama-2015-0030Search in Google Scholar

29. Wan Y, Yue Y, Zhong Z. (2012a), Multilayered piezomagnetic/piezoelectric composite with periodic interface cracks under magnetic or electric field, Eng. Fract. Mech., 84, 132–145.10.1016/j.engfracmech.2012.02.002Search in Google Scholar

30. Wan Y., Yue Y., Zhong Z. (2012b), A mode III crack crossing the magnetoelectroelastic bimaterial interface under concentrated magnetoelectromechanical loads, Int. J. Solids Structures, 49, 3008-3021.10.1016/j.ijsolstr.2012.06.001Search in Google Scholar

31. Wang B. L., Mai Y. W. (2006), Closed-form solution for an antiplane interface crack between two dissimilar magnetoelectroelastic layers, J. Appl. Mech., 73, 281–290.10.1115/1.2083827Search in Google Scholar

32. Wang B. L., Mai Y. W. (2008), An exact analysis for mode III cracks between two dissimilar magneto-electro-elastic layers, Mech. Compos. Mater., 44, 533–548.10.1007/s11029-009-9056-ySearch in Google Scholar

33. Wang X., Zhong Z. (2002), A conducting arc crack between a circular piezoelectric inclusion and an unbounded matrix, Int. J. Solids Struct., 39, 5895–5911.10.1016/S0020-7683(02)00474-2Search in Google Scholar

34. Wang X., Zhong Z., Wu F. L. (2003), A moving conducting crack at the interface of two dissimilar piezoelectric materials, Int. J. Solids Struct., 40, 2381–2399.10.1016/S0020-7683(03)00060-XSearch in Google Scholar

35. Yue Y., Wan Y. (2014), Multilayered piezomagnetic/piezoelectric composite with periodic interfacial Yoffe-type cracks under magnetic or electric field, Acta Mech., 225, 2133-2150.10.1007/s00707-013-1032-xSearch in Google Scholar

36. Zhou Z. G., Chen Y., Wang B. (2007), The behavior of two parallel interface cracks in magneto-electro-elastic materials under an anti-plane shear stress loading, Compos. Struct., 77, 97–103.10.1016/j.compstruct.2005.11.056Search in Google Scholar

37. Zhou Z. G., Wang B., Sun Y. G. (2004), Two collinear interface cracks in magneto-electro-elastic composites, Int. J. Eng. Science, 42, 1155–1167.10.1016/j.ijengsci.2004.01.005Search in Google Scholar

38. Zhou Z. G., Wang J. Z., Wu L. Z. (2009), The behavior of two parallel non-symmetric interface cracks in a magneto-electro-elastic material strip under an anti-plane shear stress loading, Int. J. Appl. Electromagn. Mech., 29, 163–184.10.3233/JAE-2009-1011Search in Google Scholar

39. Zhou Z. G., Zhang P. W., Wu L. Z. (2007), Solutions to a limited-permeable crack or two limited-permeable collinear cracks in piezoelectric/piezomagnetic materials, Arch. Appl. Mech., 77, 861–882.10.1007/s00419-007-0135-zSearch in Google Scholar