Open Access

Digital Image Correlation Technique as a Tool for Kinematics Assessment of Structural Components


Cite

1. Baqersada J., Carra J., Lundstroma T., Niezrecki Ch., Avitabilea P., Slattery M., (2012), Dynamic characteristics of a wind turbine blade using 3D digital image correlation, Health Monitoring of Structural and Biological Systems 2012, edited by Tribikram Kundu, Proc. of SPIE, 8348.Search in Google Scholar

2. Berger H., Klein M., Lambert F., Levadoux B., (2010), Optical Vibration Measurement and Frequency Response Analysis on Large Structures under Multiple Excitation Load Conditions, Proceedings of ISMA2010 including USD2010, 1693–1702.Search in Google Scholar

3. Bornert M., Brémand F., Doumalin P., Dupré J.-C., Fazzini M., Grédiac M., Hild F., Mistou S., Molimard J., Orteu J.-J., Robert L., Surrel Y., Vacher P., Wattrisse B., (2009), Assessment of Digital Image Correlation Measurement Errors: Methodology and Results, Experimental Mechanics, 49, 353–370.10.1007/s11340-008-9204-7Search in Google Scholar

4. Brinkmann Ch., Haberland J., Böttinger S., Erne O., Sanow G., (2007), Optical 3D Measuring System for Investigating Tyre Deformations, Tractor Technology, 62(5), 326–327.Search in Google Scholar

5. Chu T.C., Ranson W.F., Sutton M.A., Peters W.H., (1985), Applications of digital-image-correlation techniques to experimental mechanics, Experimental Mechanics, 232–244.10.1007/BF02325092Search in Google Scholar

6. Creager C., Johnson K., Plant M., Moreland S., Skonieczny K., (2015), Push–pull locomotion for vehicle extrication, Journal of Terramechanics, 57, 71–80.10.1016/j.jterra.2014.12.001Search in Google Scholar

7. Gower M.R., Shaw R.M., (2006), Towards a planar cruciform specimen for biaxial characterization of polymer matrix composites, Applied Mechanics and Materials, 24–25, 115–120.10.4028/www.scientific.net/AMM.24-25.115Search in Google Scholar

8. Kamaya M., Kawakubo M., (2011), A procedure for determining the true stress–strain curve over a large range of strains using digital image correlation and finite element analysis, Mechanics of Materials, 43, 243–253.10.1016/j.mechmat.2011.02.007Search in Google Scholar

9. Long X., Fu S., Qi Z., Yang X., Yu Q., (2012), Digital image correlation using stochastic parallel-gradient-descent algorithm, Experimental Mechanics, DOI 10.1007/s11340-012-9667-4.10.1007/s11340-012-9667-4Open DOISearch in Google Scholar

10. Szymczak T., Kowalewski Z.L., Brodecki A., (2016a), Determination of artificial defects in material under monotonic tension by the use of FEM and DIC methods, Materials Today: Proceedings, 3, 1171–1176.10.1016/j.matpr.2016.03.011Search in Google Scholar

11. Szymczak T., Kowalewski Z.L., Brodecki A., (2016b), Digital Image Correlation method for investigations of materials and engineering structures, Technical Suspervision (Dozór Techniczny), 4, 22–3 (in Polish).Search in Google Scholar

12. Toussaint F., Tabourot I., Vacher P., (2008), Experimental study with a Digital Image Correlation (DIC) method and numerical simulation of an anisotropic elastic-plastic commercially pure titanium, Archives of Civil and Mechanical Engineering, VIII, 3, 131–143.10.1016/S1644-9665(12)60168-XSearch in Google Scholar

13. Regulation No 55 of the Economic Commission for Europe of the United Nations (UN/ECE) — Uniform provisions concerning the approval of mechanical coupling components of combinations of vehicles, 28.08.2010.Search in Google Scholar

14. www.gom.comSearch in Google Scholar