Open Access

Numerical Analysis of Stress Intensity Factor in Specimens with Different Fillet Geometry Subjected to Bending


Cite

1. Balitskii O.I., Kostyuk I.F. (2009), Strength of welded joints of Cr-Mn steels with elevated content of nitrogen in hydrogen-containing media, Materials Science, 45, 97-107.10.1007/s11003-009-9166-7Search in Google Scholar

2. Benachour M., Benguediab M., Hadjoui A., Hadjoui F., Benachour N. (2008), Fatigue crack growth of a double fillet weld, Computational Materials Science, 44, 489–495.10.1016/j.commatsci.2008.04.015Open DOISearch in Google Scholar

3. Carpinteri A., Brighenti R., Huth H.J., Vantadori S. (2005) Fatigue growth of a surface crack in a welded T-joint, Int. J. Fatigue, 27, 59–69.10.1016/j.ijfatigue.2004.05.007Search in Google Scholar

4. Duchaczek A., Mańko Z. (2012), Assessment of direct method of calculating stress intensity factor, Journal of Science of the gen. Tadeusz Kosciuszko Military Academy of Land Forces, 3 (165), 336-346 (in Polish).10.5604/01.3001.0002.3510Search in Google Scholar

5. Faszynka S., Lewandowski J., Rozumek D. (2016), Numerical analysis of stress and strain in specimens with rectangular cross-section subjected to torsion and bending with torsion, Acta Mechanica et Automatica, 10, 5-11.10.1515/ama-2016-0001Open DOISearch in Google Scholar

6. Ferro P., Berto F., James M.N. (2016), Asymptotic residual stresses in butt-welded joints under fatigue loading, Theoretical and Applied Fracture Mechanics, 83, 114-124.10.1016/j.tafmec.2016.02.002Search in Google Scholar

7. Hobbacher A. (2008), Recommendations for fatigue design of welded joints and components, International Institute of Welding, doc. XIII-2151r4-07/XV-1254r4-07,Paris, France.Search in Google Scholar

8. Kocańda S., Szala J., (1985), Basics of fatigue calculations, PWN, Warsaw (in Polish).Search in Google Scholar

9. Lewandowski J., Rozumek D. (2016), Cracks growth in S355 steel under cyclic bending with fillet welded joint, Theoretical and Applied Fracture Mechanics, 86, 342–350.10.1016/j.tafmec.2016.09.003Search in Google Scholar

10. Niklas K. (2014), Calculations of notch stress factor of a thin-walled spreader bracket fillet weld with the use of a local stress approach, Engineering Failure Analysis, 45, 326–338.10.1016/j.engfailanal.2014.06.017Search in Google Scholar

11. Pakandam F., Varvani-Farahani A. (2010), A comparative study on fatigue damage assessment of welded joints under uniaxial loading based on energy methods, Procedia Engineering, 2, 2027–2035.10.1016/j.proeng.2010.03.218Open DOISearch in Google Scholar

12. Poutiainen I., Marquis G.(2006), A fatigue assessment method based on weld stress, International Journal of Fatigue, 28, 1037–1046.10.1016/j.ijfatigue.2005.11.007Open DOISearch in Google Scholar

13. Rozumek D. (2009), Influence of the slot inclination angle in FeP04 steel on fatigue crack growth under tension, Materials & Design, 30 1859-1865.10.1016/j.matdes.2008.09.017Search in Google Scholar

14. Rozumek D., Macha E. (2009), J-integral in the description of fatigue crack growth rate induced by different ratios of torsion to bending loading in AlCu4Mg1, Mat.-wiss. u. Werkstofftech., 40 (10), 743-749.10.1002/mawe.200900501Search in Google Scholar

15. Rozumek D., Marciniak Z. (2012), Fatigue properties of notched specimens made of FeP04 steel, Materials Science, 47, 462-469.10.1007/s11003-012-9417-xSearch in Google Scholar

16. Rusiński E. (2002), Principles of designing load-bearing structures of automobile vehicles, Wrocław University of Science and Technology, Wrocław (in Polish).Search in Google Scholar

17. Shang Y., Shi H., Wang Z., Zhang G. (2015), In-situ SEM study of short fatigue crack propagation behavior in a dissimilar metal welded joint of nuclear power plant, Materials & Design, 88, 598-609.10.1016/j.matdes.2015.08.090Search in Google Scholar

18. Tanaka S., Kawahara T., Okada H. (2014), Study on crack propagation simulation of surface crack in welded joint structure, Marine Structures, 39, 315-334.10.1016/j.marstruc.2014.08.001Search in Google Scholar

19. www.cfg.cornell.edu/software/software.htm.Search in Google Scholar

20. Zhi-Gang X., Tao C., Xiao-Ling Z. (2012), Fatigue strength evaluation of transverse fillet welded joints subjected to bending loads, Int. J. Fatigue, 38, 57–64.10.1016/j.ijfatigue.2011.11.013Search in Google Scholar