Cite

1. Andrews J.S., Armstrong W. H, (1974), Thrust Chamber Life Prediction, Boeing AeroSspace Company, (NASA-CB-144048).Search in Google Scholar

2. Baldwin E. E., Sokol G. J., Coffin L. E (1957), Cyclic strain fatigue studies on AISI 347 stainless steel, Proceedings, American Society for Testing and Materials, 57, 567-586.Search in Google Scholar

3. Bennett J. A. (1946), A study of the damaging effect of fatigue stressing on X4130 steel, Proceedings, American Society for Testing and Materials, 46, 693-714.10.6028/jres.037.002Search in Google Scholar

4. Bernard-Connolly M., Bui-Quoc T., Biron A. (1983), Multilevel strain controlled fatigue on a type 304 stainless steel, ASME Journal of Engineering Materials and Technology, 105, 188-194.10.1115/1.3225642Search in Google Scholar

5. Biron A., Bui-Quoc T. (1981), Cumulative damage concepts with interaction effect consideration for fatigue or creep; a perspective, In Transactions of the 6th International Conference on Structural Mechanical Reaction Technology, Paris, France, L9/1.1-7.Search in Google Scholar

6. Bizon P. T., Thoma D. J., Halford G. R. (1985), Interaction of high cycle and low cycle fatigue of Haynes 188 at 1400 F, In Structure Integrity and Durability of Reusable Space Propulsion Systems, NASA CP-2381. NASA Lewis Research Center, Cleveland, OH, pp. 129-138.Search in Google Scholar

7. Bluhm J. (1962), A note on fatigue damage, Materials Research and Standards.Search in Google Scholar

8. Bui-Quoc T., Dubuc J., Bazergui A., Biron A. (1971), Cumulative fatigue damage under strain controlled conditions, Journal of Materials, 6, 3, 718-737.Search in Google Scholar

9. Bui-Quoc T. (1981), An interaction effect consideration in cumulative damage on a mild steel under torsion loading, Proceedings of the 5th International Conference on Fracture, Pergamon Press, 5, 2625-2633.Search in Google Scholar

10. Bui-Quoc T. (1982), Cumulative damage with interaction effect due to fatigue under torsion loading, Experimental Mechanics, 22, 180-187.10.1007/BF02327403Search in Google Scholar

11. Bui-Quoc T. (1982), A simplified model for cumulative fatigue damage with interaction effects, In Proceedings of the 1982 Joint Conference on Experimental Mechanics, Society for Experimental Stress Analysis, Brookfield Center, CT, 144-149.Search in Google Scholar

12. Carpenter R. D., Rabin B. H., Drake J.T. (1993), Finite Element Analysis of Thermal residual Stresses at Graded Ceramic-Metal Interface, Part I. Model Description and Geometrical Effects, J. Appl.Phys., Vol. 74, 2, 13010-1320.Search in Google Scholar

13. Chaboche J. L. (1974), A differential law for nonlinear cumulative fatigue damage, In Materials and Building Research, Paris Institut Technique Du Batiment Et Des Travaus Publies, Annales de l'ITBTP, HS No. 39, 117-124.Search in Google Scholar

14. Chaboche J. L., Kaczmarek H. (1981), On the interaction of hardening and fatigue damage in the 316 stainless steel, In Proceedings of the 5th International Conference on Fracture (ICF 5), Cannes, Vol. 3, Pergamon Press, Oxford, 1381-1393.Search in Google Scholar

15. Chaboche J. L. (1982), Lifetime predictions and cumulative damage under high-temperature conditioned, In Low-cycle Fatigue and Life Prediction, ASTM STP 770, eds. C, Amzallag, B. N, Leis and P.Rabbe, American Society for Testing and Materials, Philadelphia, PA, 81-103.Search in Google Scholar

16. Chaboche J. L., Lesne P. M. (1988), A non-linear continuous fatigue damage model, Fatigue and Fracture of Engineering Materials and Structures, 11, 1, 1-7.10.1111/j.1460-2695.1988.tb01216.xSearch in Google Scholar

17. Coffin L. F. (1956), Design aspects of high-temperature fatigue with particular reference to thermal stresses, Transactions of the ASME, 78, 527-532.10.1115/1.4013722Search in Google Scholar

18. Corten H. T., Dolon T. J. (1956), Cumulative fatigue damage.Search in Google Scholar

In Proceedings of the International Conference on Fatigue of Metals, Institution of Mechanical Engineering and American Society of Mechanical Engineers, 235-246.Search in Google Scholar

19. Dubuc J., Bui-Quoc T., Bazergui A., Biron A. (1971), Unified theory of cumulative damage in metal fatigue. W.R. C. Bulletin, 162, 1-20.Search in Google Scholar

20. Dunne F., Petrinic N. (2005), Introduction to Computational Plasticity,Oxford University Press, New YorkSearch in Google Scholar

21. French H. J. (1933), Fatigue and hardening of steels, Transactions, American Society of Steel Treating, 21, 899-946.Search in Google Scholar

22. Freudenthal A. M. (1956), Physical and statistical aspects of cumulative damage, Springer-Verlag, Berlin, 53-62.10.1007/978-3-642-99854-6_6Search in Google Scholar

23. Freudenthal A. M., Heller R. A. (1959), On stress interaction in fatigue and a cumulative damage rule, Journal of the Aerospace Sciences, 26, 7, 431-442.10.2514/8.8131Search in Google Scholar

24. Gatts R. R. (1961), Application of a cumulative damage concept to fatigue, ASME Journal of Basic Engineering,83,529-540.10.1115/1.3662256Search in Google Scholar

25. Gatts R. R. (1962), Cumulative fatigue damage with random loading, ASME Journal of Basic Engineering, 84, 403-409.10.1115/1.3657337Search in Google Scholar

26. Glinka G, Shen G, Plumtree A. (1995), A multiaxial fatigue strain energy density parameter related to the critical plane, Fatigue Fract Eng Mater Struct; 18:37-46.10.1111/j.1460-2695.1995.tb00140.xSearch in Google Scholar

27. Golos K., Ellyin F. (1987), Generalization of cumulative damage criterion to multilevel cyclic loading, Theoretical and Applied Fracture Mechanics, 7, 169-176.10.1016/0167-8442(87)90032-2Search in Google Scholar

28. Golos K., Ellyin F. (1988), A total strain energy density theory for cumulative fatigue damage, ASME Journal of Pressure Vessel Technology, 110, 36-41.10.1115/1.3265565Search in Google Scholar

29. Golos K., Ellyin F. (1989), Total strain energy density as a fatigue damage parameter, In Advances in Fatigue Science and Technology, Proceedings of the NATO Advanced Study Institute, cd. C. M.Branco and L. G. Rosa. Kluwer Academic, 849-859.Search in Google Scholar

30. Grover H. J. (1960), An observation concerning the cycle ratio in cumulative damage, American Society for Testing and Materials, Philadelphia, PA , 120-124.10.1520/STP45928SSearch in Google Scholar

31. Halford G. R. (1966), The energy required for fatigue, Journal of Materials, 1(1), 3-18.Search in Google Scholar

32. Halford G. R., Manson S. S. (1985), Reexamination of cumulative fatigue damage laws, In Structure Integrity and Durability of Reusable Space Propulsion Systems, NASA CP-2381. NASA, 139-145.Search in Google Scholar

33. Henry D. L. (1955), A theory of fatigue damage accumulation in steel, Transactions of the ASME, 77, 913-918.10.1115/1.4014547Search in Google Scholar

34. Hua C. T., Socie D., F. (1984), Fatigue damage in 1045 steel under constant amplitude biaxial loading, Fatigue of Engineering Materials and Structures, 7, 3, 165-179.10.1111/j.1460-2695.1984.tb00187.xSearch in Google Scholar

35. Inglis N. P. (1927), Hysteresis and fatigue of Wohler rotating cantilever specimen, The Metallurgist, 23-27.Search in Google Scholar

36. Kachanov L. M. (1969), Time to the rupture process under creep conditions, Izvestiia AN SSSR, 1984, OTN(8), 26-31.Search in Google Scholar

37. Kommers J. B. (1945), The effect of overstress in fatigue on the endurance life of steel, Proceedings, American Society for Testing and Materials, 45, 532-541.Search in Google Scholar

38. Kujawski D., Ellyin F. (1984), A cumulative damage theory of fatigue crack initiation and propagation, International Journal of Fatigue, 6, 2, 83-88.10.1016/0142-1123(84)90017-3Search in Google Scholar

39. Lagoda T. (2001), Energy models for fatigue life estimation under uniaxial random loading. Part I: The model elaboration. Int. J.Fatigue; 23:467-80.10.1016/S0142-1123(01)00016-0Search in Google Scholar

40. Langer B. F. (1937), Fatigue failure from stress cycles of varying amplitude, ASME Journal of Applied Mechanics, 59, AI60-AI62.Search in Google Scholar

41. Leis B. N. (1988), A nonlinear history-dependent damage model for low cycle fatigue, Low Cycle Fatigue, ASTM STP 942.Search in Google Scholar

42. Leis B. N. (1997), An energy-based fatigue and creep-fatigue damage parameter, Journal of Pressure Vessel and Technology, ASME Transactions, 99(4), 52-+-533.10.1115/1.3454571Search in Google Scholar

43. Lemaitre J., Chaboche J. L. (1978), Aspect phenomenologique de la ruptutre par endommagement, Journal Mecanique Appliquee, 2(3), 317-365.Search in Google Scholar

44. Lemaitre J., Plumtree A. (1979), Application of damage concepts to predict creep-fatigue failures, ASME Journal of Engineering Materials and Technology, 101, 284-292.10.1115/1.3443689Search in Google Scholar

45. Lemaitre J., Chaboche J. L. (1990), Mechanics of Solid Materials, trans. B. Shrivastava, Cambridge University Press, Cambridge, UK.10.1017/CBO9781139167970Search in Google Scholar

46. Li C., Qian Z. and Li G. (1989), The fatigue damage criterion and evolution equation containing material microparameters, Engineering Fracture Mechanics, 34(2), 435-443.10.1016/0013-7944(89)90156-2Search in Google Scholar

47. LLorca J. (2002), Fatigue of particle-and whisker-reinforced metalmatrix composites, Progress in Materials Science, 47, 283-353.10.1016/S0079-6425(00)00006-2Search in Google Scholar

48. Machlin E. S. (1949), Dislocation theory of the fatigue of metals, N.A.C.A. Report 929.Search in Google Scholar

49. Manson S. S. (1966), Interfaces between fatigue, creep, and fracture, International Journal of Fracture Mechanics, 2, 328-363.10.1007/BF00698478Search in Google Scholar

50. Manson S. S., Halford G. R. (1981), Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage, International Journal of Fracture, 17(2), 169-192.10.1007/BF00053519Search in Google Scholar

51. Manson S. S., Halford G. R. (1983), Complexities of hightemperature metal fatigue: some steps toward understanding, Israel Journal of Technology, 21, 29-53.Search in Google Scholar

52. Marco S. M., Starkey W. L. (1954), A concept of fatigue damage, Transactions of the ASME, 76, 627-632.10.1115/1.4014922Search in Google Scholar

53. Miner M. A. (1945), Cumulative damage in fatigue. Journal of Applied Mechanics, 67, AI59-AI64.10.1115/1.4009458Search in Google Scholar

54. Morrow J. D. (1965), Cycle plastic strain energy and fatigue of metals. In Internal Friction, Damping, and Cyclic Plasticity, ASTM STP 378, American Society for Testing and Materials, Philadelphia, PA, 45-84.Search in Google Scholar

55. Niu X. D. (1987), Memory behavior of stress amplitude responses and fatigue damage model of a hot-rolled low carbon steel. In Mechanical Behavior of Materials-V, Proceedings of the Fifth International Conference, Vol. 1, ed. M. G. Yan, S. H. Zhang and Z.10.1016/B978-0-08-034912-1.50093-XSearch in Google Scholar

M. Zheng., Pergamon Press, Oxford, 685-690.Search in Google Scholar

56. Niu X., Li G. X., Lee H. (1987), Hardening law and fatigue damage of a cyclic hardening metal, Engineering Fracture Mechanics, 26(2), 163-170.10.1016/0013-7944(87)90194-9Search in Google Scholar

57. Palmgren A. (1924), Die Lebensdauer von Kugellagern, Veifahrenstechinik, Berlin, 68, 339-341.Search in Google Scholar

58. Plumtree A. and O'Connor B. P. D. (1989), Damage accumulation and fatigue crack propagation in a squeeze-formed aluminum alloy, International Journal of Fatigue, 11, 4, 249-254.10.1016/0142-1123(89)90308-3Search in Google Scholar

59. Rabotnov Y. N. (1969), Creep Problems in Structural Members, North-Holland, Amsterdam.Search in Google Scholar

60. Radhakrishnan V. M. (1978), Cumulative damage in low-cycle fatigue, Experimental Mechanics, 18, 8, 292-296.10.1007/BF02324159Search in Google Scholar

61. Radhakrishnan V. M. (1980), An analysis of low cycle fatigue based on hysteresis energy, Fatigue of Engineering Materials and Structures, 3, 75-84.10.1111/j.1460-2695.1980.tb01105.xSearch in Google Scholar

62. Richart F. E., Newmark N. M. (1948), A hypothesis for the determination of cumulative damage in fatigue, Proceedings, American Society for Testing and Materials, 48, 767-800.Search in Google Scholar

63. Seweryn A, Buczyński A, Szusta J. (2008), Damage accumulation model for low cycle fatigue, Int. J. Fatigue, 1, 30:756-65.10.1016/j.ijfatigue.2007.03.019Search in Google Scholar

64. Shanley F. R. (1952), A theory of fatigue based on unbonding during reversed slip, Report P-350, The Rand Corporation, Santa Monica.Search in Google Scholar

65. Socie D. F., Fash J. W., Leckie F. A. (1983), A continuum damage model for fatigue analysis of cast iron, In Advances in Life Prediction Methods, ed, D. A. Woodford and J, R. Whitehead, The American Society of Mechanical Engineers, New York, 59-64.Search in Google Scholar

66. Sutton Ch. E. (2009), Fatigue damage assessment of particlereinforced metal matrix composite materials under uniaxial and multiaxial loadings conditions, Digital Commons @ Ryerson, Toronto, Ontario.Search in Google Scholar

67. Tamura I., Tomota Y., Ozawa H. (1973), Strength and ductility of Fe-Ni-C alloys composed of austenite and martensite with various strength, Proceedings of the Third International Conference on Strength of Metals and Alloys, Vol. 1. Cambridge: Institute of Metals; 611-5.Search in Google Scholar

68. Valluri S. R. (1961), A unified engineering theory of high stress level fatigue, Aerospace Engineering, 20, 18-19.Search in Google Scholar

69. Valluri S. R. (1961), A theory of cumulative damage in fatigue.Search in Google Scholar

Report No. ARL 182, Aeronautical Research Laboratory, Office of Aerospace Research, United States Air Force.Search in Google Scholar

70. Weinacht D. J., Socie D. F. (1987), Fatigue damage accumulation in grey cast iron, International Journal of Fatigue, 9, 2, 79-86.10.1016/0142-1123(87)90048-XSearch in Google Scholar

71. Wheeler O. E. (1972), Spectrum loading and crack growth, ASME Journal of Basic Engineering, D94(1), 181-186.10.1115/1.3425362Search in Google Scholar

72. Willenborg J., Engle R. M., Wood H. A. (1971), A crack growth retardation model using an effective stress concept, AFFDL TM71-IFBR.10.21236/ADA956517Search in Google Scholar

73. Williamson R. L., Rabin B. H., Drake J. T. (1993), Finite Element Analysis of Thermal residual Stresses at Graded Ceramic-Metal Interface, Part I. Model Description and Geometrical Effects, J. Appl. Phys., Vol. 74, 2, 13010-1320.10.1063/1.354910Search in Google Scholar

74. Zuchowski R. (1989), Specific strain work as both failure criterion and material damage measure, Res Mechanica, 27(4), 309-322. Search in Google Scholar