Open Access

Effects of Biochar and its Reapplication on Soil pH and Sorption Properties of Silt Loam Haplic Luvisol


Cite

AHMAD, M. – RAJAPAKSHA, A. U. – LIM, J. E. – ZHANG, M. – BOLAN, N. – MOHAN, D. – VITHANAGE, M. – LEE, S. S. – OK, Y. S. 2014. Biochar as a sorbent for contaminant management in soil and water: A review. In Chemosphere, vol. 99, 2014, pp. 19–33. DOI: 10.1016/j.chemosphere.2013.10.07110.1016/j.chemosphere.2013.10.07124289982Open DOISearch in Google Scholar

CASTALDI, S. – RIONDINO, M. – BARANTI, S. – ESPOSITO, F. R. – MARZAIOLI, R. – RUTIGLIANO, F. A. – VACCARI, F. R. – MIGIETTA, F. 2011. Impact of biochar application to a Mediterranean wheat crop on soil microbial acidity and greenhouse gas fluxes. In Chemosphere, vol. 85, 2011, pp. 1461–1471. DOI: 101.1016/j.chemosphere.011.08.03110.1016/j.chemosphere.2011.08.03121944041Search in Google Scholar

CHINTALA, R. – MOLLINDE, J. – SCHUMACHER, T. E. – PAPIERNIK, S. K. – MALO, D. D. – KUMAR, S. – GULBRSDSON, D. W. 2013. Nitrate sorption and desorption in biochars from fast pyrolysis. In Microporous and Mesoporous Materials, vol. 179, 2013, pp. 250–257. DOI: 10.1016/j.micromeso.2013.05.02310.1016/j.micromeso.2013.05.023Open DOISearch in Google Scholar

CHINTALA, R. – SCHUMMACHER, T. E. – KUMAR, S. – MALO, D. D. – RICE, J. A. – BLEAKLEM, B. – CHILOM, G. – CLAY, D. E. – JULSOIN, J. L. – PAPIERNIK, S. K. – GU, Z. R. 2014. Molecular characterization of biochars and their influence on microbiological properties of soil. In Journal of Hazardous Materials, vol. 279, 2014, pp. 244–256. DOI: 10.1016/j.jhhazmat.2014.06.07410.1016/j.jhhazmat.2014.06.074Open DOISearch in Google Scholar

CORNELISSEN, G. – NURIDA, N. L. – HALE, S. E. – MARTINSEN, V. – SILVANI, L. – MULDER, J. 2018. Fading positive effect of biochar on crop yield and soil acidity during five growth seasons in an Indonesian Ultisol. In Science of The Total Environment, vol. 634, 2018, pp. 561–568. DOI: j.scietotenv.2018.03.38010.1016/j.scitotenv.2018.03.38029635198Search in Google Scholar

DAI, Z. – ZHANG, X. – TANG, C. – MUHAMMAD, N. – WU, J. – BROOKES, P. C. – XU, J. 2017. Potential role of biochars in decreasing soil acidification. In Science of The Total Environmental, vol. 581–582, 2017, pp. 601–611. DOI: 10.1016/scietotenv.2016.12.16910.1016/scietotenv.2016.12.169Open DOISearch in Google Scholar

ESSINGTON, M. E. 2004. Competetive sorption behavior of arsenic, sellenium, coper and lead by soil and biosolid nano and macro colloid particles. In Open Journal of Soil Science, vol. 4, 2004, pp. 293–304. DOI: 10.4236/ojss.2014.4903110.4236/ojss.2014.49031Open DOISearch in Google Scholar

FIALA, K. – KOBZA, J. – MATÚŠKOVÁ, Ľ. – BREČKOVÁ, V. – MAKOVNÍKOVÁ, J. – BARANČÍKOVÁ, G. – BÚRIK, V. – LITAVEC, T. – HOUŠKOVÁ, B. – CHROMANIČOVÁ, A. – VÁRADIOVÁ, D. – PECHOVÁ, B. 1999. Záväzné metódy rozborov pôd. Čiastkový monitorovací systém – PÔDA. 1. vyd. Bratislava : VUPOP, 1999, 142 s. ISBN 80-85361-55-8.Search in Google Scholar

FIDEL, R. B. – LAIRD, D. A. – THOMPSON, M. L. – LAWRENKO, M. 2017. Characterization and quantification of biochar alkalinity. In Chemosphere, vol. 167, 2017, pp. 367–373. DOI: 10.1016/j.chemosphere.2016.09.15110.1016/j.chemosphere.2016.09.15127743533Open DOISearch in Google Scholar

GUO, J. H. – LIU, X. J. – ZHANG, Y. – SHEN, J. L. – HAN, W. X. – CHRISTIE, P. – GOULDING, K. W. T. – VITOSEK, P. M. 2010. Singificant acidification in major Chinese croplands. In College of Ressources and Evironmental Science, vol. 19, 2010, pp. 1008–1010. DOI: 10.1126/science.118257010.1126/.1182570Open DOISearch in Google Scholar

HANSEN, V. – STÓVER, D. M. – MUKHOLM, L. J. – PELTRE, C. – HAGGAARD-NIELSEN, H. – JENSEN, L. S. 2016. The effect of straw and wood gasification biochar on carbon sequestration, selected soil fertility indicators and functional groups in soil: An incubation study. In Geoderma, vol. 269, 2016, pp. 99–107. DOI: j.geoderma.2016.01.03310.1016/j.geoderma.2016.01.033Search in Google Scholar

HORÁK, J. – KONDRLOVÁ, E. – IGAZ, D. – ŠIMANSKÝ, V. – FELBER, R. – LUKAC, M. – BALASHOV, E. V. – BUCHKINA, N. P. – RIZHIYA, E. Y. – JANKOWSKI, M. 2017. Biochar and biocharwith N fertilizeraffectsoil N2O emission in HaplicLuvisol. In Biologia, vol. 72, 2017, pp. 995–1001. DOI: 10.1515/biolog-2017-010910.1515/biolog-2017-0109Open DOISearch in Google Scholar

JURIGA, M. – ŠIMANSKÝ, V. – HORÁK, J. – KONDRLOVÁ, E. – IGAZ, D. – POLLÁKOVÁ, N. – BUCHKINA, N. P. – BALASHOV, E. 2018. The effect of different rates of biochar and biochar in combination with N fertilizer on the parameters of soil organic matter and soil structure. In Journal of Ecological Engineering, vol. 19, 2018, pp. 153–161. DOI: 10.129/22998993/9289410.12911/22998993/92894Search in Google Scholar

JURIGA, M. – ŠIMANSKÝ, V. 2018. Effect of biochar on soil structure-review. In Acta fytotechnica et zootechnica, vol. 19, 2018, pp. 11–19. DOI: 10.15414/afz.2018.21.01.11-1910.15414/afz.2018.21.01.11-19Search in Google Scholar

KEILUWEIT, M. – NICO, P. S. – KLEBER, M. 2010. Dynamic molecular structure of plant biomaso-derived black carbon (biochar). In Environmental Science and Technol., vol. 44, 2010, pp. 1247–1253. DOI: 10.1021/es903141910.1021/es9031419Open DOISearch in Google Scholar

KOCHIAN, L. V. – PIŇEREROS, M. A. – LIU, J. – MAGALHAES, I. V. 2015. Plant adaptation to acid soils: The molecular basis of crop aluminium resistance. In Annual Review of Plant Biology, vol. 66, 2015, pp. 571–598. DOI: 10.1146/annurev-arplant-04301410.1146/annurev-arplant-043014Open DOISearch in Google Scholar

LEHMANN, J. – RILLING, M. C. – THIES, J. – MASIELLO, C. A. – HOCKADAY, W. C. – CROWLEY, D. 2011. Biochar affect on soil biota – A review. In Soil Biology and Biochemistry, vol. 43, 2011, pp. 1812–1836. DOI: 10.1016/j.soilbio.2011.04.02210.1016/j.soilbio.2011.04.022Open DOISearch in Google Scholar

LIANG, B. – LEHMANN, J. – SOLOMON, D. – KINYANG, J. – GROSSMAN, J. – O’NEILL, B. – SKIEMSTAD, J. O. – LUZAO, T. J. – PETERSEN, J. – NEVES, E. G. 2006. Black carbon increases cation exchange capacity in soil. In Soil Sciency Society of American Journal, vol. 70, 2006, pp. 35–44.Search in Google Scholar

LORENZ, K. – LAL, R. 2014. Biochar application to soil for climate change mitigation by soil organic carbon sequestration. In Journal of Plant Nutrition and Soil Science, vol. 177, 2014, pp. 651–670. DOI: 10.1002/jpnl.20140005810.1002/jpnl.201400058Open DOISearch in Google Scholar

MARTIN, S. M. – KOOKANA, R. S. – ZWEITEN, L. V. – KRULL, E. 2012. Marked changes in herbicide sorption desorption upon ageing of biochars in soils. In Journal of Hazardous Materials, vol. 231–232, 2012, pp. 70–78. DOI: 10.1016/j.jhazmat.2012.06.04010.1016/j.jhazmat.2012.06.040Open DOISearch in Google Scholar

MASUD, M. M. – LI, J. Y. – XU, R. K. 2014. Use of alkaline slag and crop residue biochars to promote base saturation and reduce acidity of an acidic Ultisoil. In Pedosphere, vol. 21, 2014, pp. 791–798. DOI: 10.1016/S1002-0160(14)60066-710.1016/S1002-0160(14)60066-7Open DOISearch in Google Scholar

NOVAK, J. M. – LIMA, I. – XING, B. – GSKIN, J. W. – STEINER, CH. – DAS, K. C. – AHMEDNA, M. – REHRAH, D. – WATTS, D. W. – BUSSCHER, W. J. – SCHOMBERG, H. 2009. Characterization of designer biochar produced at different temperatures and their effect on a Loamy sand. In Annals of Environmental Science, vol. 3, 2009, pp. 195–206. ISSN 1939-2621.Search in Google Scholar

OBIA, A. – CORNELISSEN, G. – MOLDE, J. – DÖRSH, P. 2015. Effect of soil pH increase by biochar on NO, H2O and N2 production during denitrification in acid soils. In Research Article, vol. 10, 2015. DOI: 10.1371/journal.pone.01387Search in Google Scholar

REN, X. YUAN, X. – SUN, W. 2018. Dynamic changes in atrazine and phenauthrene sorption behaviors during the aging of biochar in soils. In Environmental Science and Pollution Research, vol. 25, 2018, pp. 81–90. DOI: 10.1007/s1135610.1007/s11356Open DOISearch in Google Scholar

RENGEL, Z. 2002. Handbook of planth growth, pH as the master variable. New York : Marcel Dekter, 2002, 446 p. ISBN 978082470761310.1201/9780203910344Search in Google Scholar

ŠIMANSKÝ, V. – HORÁK, J. – IGAZ, D. – BALASHOV, E. – JONCZAK, J. 2018. Biochar and biochar with N fertilizer as a potential tool for improving soil sorption of nutrients. In Journal of Soils and Sediments, vol. 18, 2018, pp. 1432–1440. DOI: 10.1007/s11368-017-1886-y10.1007/s11368-017-1886-yOpen DOISearch in Google Scholar

ŠIMANSKÝ, V. – HORÁK, J. – IGAZ, D. – JONCZAK, J. – MARKIEWICZ, M. – FELBER, R. – RIZHIYA, E. Y. – LUKAC, M. 2016. How dose of biochar and biochar with nitrogen can improve the parameters of soil organic matter and soil structure? In Biologia, vol. 71, 2016, no. 9, pp. 989–995. DOI: 10.1515/biolog-2016-012210.1515/biolog-2016-0122Open DOISearch in Google Scholar

ŠIMANSKÝ, V. – IGAZ, D. – HORÁK, J. – ŠURDA, P. – KOLENČÍK, M. – BUCHKINA, N. P. – UZAROWICZ, Ł. – JURIGA, M. – ŠRANK, D. – PAUKOVÁ, Ž. 2018a. Response of soil organic carbon and water-stable aggregates to different biochar treatments including nitrogen fertilizer. In Journal Hydrology and Hydromechanics, vol. 66, 2018, pp. 429–436. DOI: 10.2478/john-2018-003310.2478/john-2018-0033Open DOISearch in Google Scholar

TEUTSCHEROVA, N. – VAZGUEZ, E. – SANTANA, D. – NAVAS, M. – MASAGUER, M. B. 2017. In fluence of pruning waste compost maturity and biochars on carbon dynamics in acid soil: Incubation study. In European Journal of Soil Biology, vol. 78, 2017, pp. 66–74. DOI: 10.1016/j.ejsobi.2016.12.00110.1016/j.ejsobi.2016.12.001Open DOISearch in Google Scholar

THOMPSON, R. C. – BAKIR, A. – STEVEN, J. – RICHARD, C. 2012. Competetive ofpersistant organic pollutants into microplastic in the marine environment. In Marine Pollution Bulletin, vol. 64, 2012, pp. 2782–2789. DOI: 10.1016/j.marpollbul.2012.09.01010.1016/j.marpollbul.2012.09.010Open DOISearch in Google Scholar

WANG, B. – LI, C. – LIANG, H. 2013. Bioleaching of heavy metal from woody biochar aging Acidithio bacillusferrooxidans and activation for adsorption. In Bioresource Technology, vol. 146, 2013, pp. 803–806. DOI: 10.1016/j.biotech.2013.08.02010.1016/j.biotech.2013.08.020Open DOISearch in Google Scholar

YANG, X. – YING, G. G. – KOOKANA, R. S. 2009. Reduced plant uptake of pesticides with biochar additions to soil. In Chemosphere, vol. 76, 2009, pp. 665–667. DOI: 10.1016/j.chemosphere.2009.04.00110.1016/j.chemosphere.2009.04.00119419749Open DOISearch in Google Scholar

YU, L. – LU, X. – YU, M. – XU, J. 2017. Combined application of biochar and nitrogen fertilizer benefits nitrogen retention in the rhizosphere of soybean by increasing microbial biomass but not altering microbial community structure. In Science of the Total Environment, vol. 187, 2017, pp. 640–641. DOI: 10.1016/j.scitoenv.2018.06.01810.1016/j.scitoenv.2018.06.018Open DOISearch in Google Scholar

YUAN, J. H. – XU, R. K. – ZHANG, H. 2011. The forms of alkalis in the biochars produced from crop residues at different temperatures. In Bioresource Technology, vol. 102, 2011, pp. 3488–3497. DOI: j.biotech.2010.11.01810.1016/j.biortech.2010.11.01821112777Search in Google Scholar

ZHANG, S. – ZHANG, B. – LI, X. 2002. Evolution of soil fertility and fertilizer benefits under different soil types and cropping systems. In Plant Nutrition Fertilization Science, vol. 8, 2002, pp. 9–15.Search in Google Scholar

ZHANG, Y. – YANG, S. – FU, M. M. – CAI, J. P. – ZHANG, Y. Y. – WANG, R. Z. – XU, Z. W. – BAI, Y. T. – JIANG, Y. 2015. Sheep manure application increases soil exchangeable base cations in a semi-arid steppe of Inner Mongolia. In Journal of Arid Land, vol. 7, 2015, pp. 361–369. DOI: 10.1007/s40333015-0004-510.1007/s40333015-0004-5Open DOISearch in Google Scholar

ZONG, Y. – WANG, Y. – SHENG, Y. – WU, C. – LU, S. 2018. Ameliorating soil acidity and physical properties of two contrasting texture Ultisols with wastewater sludge biochar. In Environmental Science and Pollutant Research, vol. 25, 2018, pp. 25726–25733. DOI: 10.1007/s11356-017-9509-010.1007/s11356-017-9509-028634801Open DOISearch in Google Scholar

eISSN:
1338-5259
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Industrial Chemistry, Green and Sustainable Technology