Cite

AL MURAD, M. ‒ KHAN, A.L. ‒ MUNEER, S. 2020. Silicon in horticultural crops: Cross-talk, signalling, and tolerance mechanism under salinity stress. In Plants, vol. 9, no. 4, 460. DOI: 10.3390/plants9040460.10.3390/plants9040460Search in Google Scholar

ALIABADI, T. ‒ AFSHAR, A.S. ‒ NEMATPOUR, F.S. 2016. The effects of nano TiO2 and Nano aluminium on the growth and some physiological parameters of the wheat (Triticum aestivum). In Iranian Journal of Plant Physiology, vol. 6, no. 2, pp. 1627 ‒ 1635. DOI: 10.22034/ijpp.2016.539828.Search in Google Scholar

ANDERSEN, C. ‒ KING, G. ‒ PLOCHER, M. ‒ STORM, M. ‒ POKHREL, L. ‒ JOHNSON, M. ‒ RYGIEWICZ, P. 2016. Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles. In Environmental Toxicology and Chemistry, vol. 35, no. 9, pp. 2223 ‒ 9. DOI: 10.1002/etc.3374.10.1002/etc.3374Search in Google Scholar

ASHKAVAND, P. ‒ ZARAFSHAR, M. ‒ TABARI, M. ‒ MIRZAIE, J. ‒ NIKPOUR, A. ‒ BORDBAR, S.K. ‒ STRUVE, D. ‒ GABRIEL, S.G. 2018. Application of SiO2 nanoparticles as pretreatment alleviates the impact of drought on the physiological performance of Prunus mahaleb (rosaceae). In Boletin De La Sociedad Argentina De Botanica, vol. 53, no. 2, pp. 207 ‒ 219. DOI: 10.31055/1851.2372.v53.n2.20578.10.31055/1851.2372.v53.n2.20578Search in Google Scholar

BAKER, N. ‒ ROSENQVIST, E. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. In Journal of Experimental Botany, vol. 55, no. 403, pp. 1607 – 1621. DOI: 10.1093/jxb/erh196.10.1093/jxb/erh196Search in Google Scholar

BARAZZOUK, S. ‒ BEKALÉ, L. ‒ HOTCHANDANI, S. 2012. Enhanced photostability of chlorophyll-a using gold nanoparticlesas an efficient photoprotector. In Journal of Material Chemistry, no. 22, pp. 25316 ‒ 25324. DOI: 10.1039/C2JM33681B.10.1039/c2jm33681bSearch in Google Scholar

BASTOS, V. ‒ DE OLIVEIRA, J.F. ‒ BROWN, D. ‒ JONHSTON, H. ‒ MALHEIRO, E. ‒ DANIEL-DA-SILVA, A.L. ‒ DUARTE, I.F. ‒ SANTOS, C. ‒ OLIVEIRA, H. 2016. The influence of Citrate or PEG coating on silver nanoparticle toxicity to a human keratinocyte cell line. In Toxicology Letters, vol. 249, pp. 29 ‒ 41. DOI: 10.1016/j.toxlet.2016.03.005.10.1016/j.toxlet.2016.03.005Search in Google Scholar

BEHBOUDI, F. ‒ SARVESTANI, Z.T. ‒ KASSAEE, M.Z. ‒ MODARES, S.A.M. 2018. Improving growth and yield of wheat under drought stress via application of SiO2 nanoparticles. In Journal of Agricultural Science and Technology, vol. 20, no. 7, pp. 1479 ‒ 1492.Search in Google Scholar

BUSSOTTI, F. − DESOTGIU, R. − CASCIO, C. − POLLASTRINI, M. − GRAVANO, E. − GEROSA, G. − MARZOULI, R. − NALI, C. − LORENZINI, G. − SALVATORI, E. − MANES, F. − SCHAUB, M. − STRASSER, R.J. 2011. Ozone stress in woody plants assessed with chlorophyll a fluorescence. A critical reassessment of existing data. In Environmental and Experimental Botany, vol. 73, pp. 19 − 30.Search in Google Scholar

BOUGUERRA, S. ‒ GAVINA, A. ‒ KSIBI, M. ‒ RASTEIRO, M.D.A.G. ‒ ROCHA-SANTOS, T. ‒ PEREIRA, R. 2016. Ecotoxicity of titanium silicon oxide (TiSiO4) nanomaterial for terrestrial plants and soil invertebrate species. In Ecotoxicology and Environmental Safety, vol. 129, pp. 291 ‒ 301. DOI: 10.1016/j.ecoenv.2016.03.038.10.1016/j.ecoenv.2016.03.038Search in Google Scholar

COSTA, B.N.S. ‒ COSTA, I.D.J.S. ‒ DIAS, G.D.M.G. ‒ ASSIS, F.A.D. ‒ PIO, L.A.S. ‒ SOARES, J.D.R. ‒ PASQUAL, M. 2018. Morpho-anatomical and physiological alterations of passion fruit fertilized with silicone. In Pesquisa Agropecuária Brasileira, vol. 53, no. 2, pp. 163 ‒ 171. DOI: 10.1590/s0100-204x2018000200004.10.1590/s0100-204x2018000200004Search in Google Scholar

COX, A. ‒ VENKATACHALAM, P. ‒ SAHI, S. ‒ SHARMA, N. 2016. Silver and titanium dioxide nanoparticle toxicity in plants: A review of current research. In Plant Physiology and Biochemistry, vol. 107, pp. 147 ‒ 163. DOI: 10.1016/j.plaphy.2016.05.022.10.1016/j.plaphy.2016.05.022Search in Google Scholar

CUI, H. ‒ ZHANG, P. ‒ GU, W. ‒ JIANG, J. 2009. Application of anatasa TiO2 sol derived from peroxotitannic acid in crop diseases control and growth regulation. In NSTI-Nanotech, vol. 2, pp. 286 ‒ 289.Search in Google Scholar

DA COSTA, M.V.J. ‒ SHARMA, P.K. 2015. Influence of Titanium dioxide nanoparticles on photosynthetic and biochemical processes in Oryza sativa. In International Journal of Recent Scientific Research, vol. 6, no. 1, pp. 2445 ‒ 2451.Search in Google Scholar

DA-YONG, L. ‒ ZHI-AN, Z. ‒ DIAN-JUN, Z. ‒ LI-YAN, J. ‒ YUAN-LI, W. 2012. Comparison of net photosynthetic rate in leaves of soybean with different yield levels. In Journal of Northeast Agricultural University (English Edition), vol. 19, no. 3, pp. 14 ‒ 19. DOI: 10.1016/S1006-8104(13)60017-3.10.1016/S1006-8104(13)60017-3Search in Google Scholar

DIAS, M.C. ‒ SANTOS, C. ‒ PINTO, G. ‒ SILVA, A.M.S. ‒ SILVA, S. 2019. Titanium dioxide nanoparticles impaired both photochemical and non-photochemical phases of photosynthesis in wheat. In Protoplasma, vol. 256, pp. 69 ‒ 78. DOI: 10.1007/s00709-018-1281-6.10.1007/s00709-018-1281-629961120Search in Google Scholar

DUHAN, J. ‒ KUMAR, R. ‒ KUMAR, N. ‒ KAAUR, P. ‒ NEHRA, K. ‒ DUHAN, S. 2017. Nanotechnology: The new perspective in precision agriculture. In Biotechnology Reports, vol. 15, pp. 11 − 23. DOI: 10.1016/j.btre.2017.03.002.10.1016/j.btre.2017.03.002545408628603692Search in Google Scholar

EL-RAMADY, H. ‒ ABDALLA, N. ‒ ALSHAAL, T. ‒ EL-HENAWY, A. ‒ ELMAHROUK, M. ‒ BAYOUMI, Y. ‒ SHALABY, T. ‒ AMER, M. ‒ SHEHATA, S. − FÁRI, M. ‒ DOMOKOS-SZABOLCSY, É. 2018. Plant nano-nutrition: perspectives and challenges. In GOTHANDAM, K.M. et al. (Eds.), Nanotechnology, Food Security and Water Treatment. Springer International Publishing AG, Cham. pp. 129 ‒ 161. DOI: 10.1007/978-3-319-70166-0.10.1007/978-3-319-70166-0Search in Google Scholar

ETESAMI, H. ‒ JEONG, B.R. 2018. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. In Ecotoxicology and Environmental Safety, vol. 147, pp. 881 ‒ 896. DOI: 10.1016/j.ecoenv.2017.09.063.10.1016/j.ecoenv.2017.09.06328968941Search in Google Scholar

FRAZIER, T. ‒ BURKLEW, C. ‒ ZHANG, B. 2014. Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum). In Functional & Integrative Genomic, vol. 14, no. 1, pp. 75 ‒ 83. DOI: 10.1007/s10142-013-0341-4.10.1007/s10142-013-0341-424132512Search in Google Scholar

GHOSH, M. ‒ GHOSH, I. ‒ GODDERIS, L. ‒ HOET, P. ‒ MUKHERJEE, A. 2019. Genotoxicity of engineered nanoparticles in higher plants. In Mutation Research/Genetic Toxicology and Environmental mutagenesis, vol. 842, pp. 132 − 145. DOI: 10.1016/j.mrgentox.2019.01.002.10.1016/j.mrgentox.2019.01.00231255221Search in Google Scholar

GOHARI, G. ‒ MOHAMMADI, A. ‒ AKBARI, A. ‒ PANAHIRAD, S. ‒ DADPOUR, M.R. ‒ FOTOPOULOS, V. ‒ KIMURA, S. 2020. Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. In Scientific Reports, vol. 10, no. 1, pp. 1 ‒ 14. DOI: 10.1038/s41598-020-57794-1.10.1038/s41598-020-57794-1697658631969653Search in Google Scholar

GUERRIERO, G. ‒ HAUSMAN, J.F. ‒ LEGAY, S. 2016. Silicon and the plant extracellular matrix. In Frontiers in Plant Science, vol. 7, pp. 463. DOI: 10.3389/fpls.2016.00463.10.3389/fpls.2016.00463482843327148294Search in Google Scholar

GRACIA, L. ‒ BELTRÁN, A. ‒ ERRANDONEA, D. 2009. Characterization of the TiSiO4 structure and its pressure-induced phase transformations: Density functional theory study. In Physical Review B, vol. 80, no. 9, 094105. DOI: 10.1103/PhysRevB.80.094105.10.1103/PhysRevB.80.094105Search in Google Scholar

IRIGOYEN, J.J. ‒ EMERICH, D.W. ‒ SÁNCHEZ-DÍAZ, M. 1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. In Physiologia Plantarum, vol. 84, no. 1, pp. 55 ‒ 60. DOI: 10.1111/j.1399-3054.1992.tb08764.x.10.1111/j.1399-3054.1992.tb08764.xSearch in Google Scholar

JABERZADEH, A. ‒ MOAVENI, P. ‒ MOGHADAM, H.R.T. ‒ ZAHEDI, H. 2013. Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. In Notulae Botanicae Horti Agrobotanici Cluj-Napoca, vol. 41, no. 1, pp. 201 – 207. DOI: org/10.15835/nbha4119093.Search in Google Scholar

JAMPÍLEK, J. ‒ KRÁĽOVÁ K. 2017. Nanomaterials for delivery of nutrients and growth-promoting compounds to plants. In PRASAD, R. ‒ KUMAR M. ‒ KUMAR V. (Eds.), Nanotechnology. Springer, Singapore. DOI: 10.1007/978-981-10-4573-8_9.10.1007/978-981-10-4573-8_9Search in Google Scholar

JI, Y. ‒ ZHOU, Y. ‒ MA, C. ‒ FENG, Y. ‒ HAO, Y. ‒ RUI, Y. ‒ WU, W. ‒ GUI, X. ‒ LE, V. ‒ HAN, Y. ‒ WANG, Y. ‒ XING, B. ‒ LIU, L. ‒ CAO, W. ‒ 2017. Jointed toxicity of TiO2 NPs and Cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake. In Plant Physiology and Biochemistry, vol. 110, pp. 82 ‒ 93. DOI: 10.1016/j.plaphy.2016.05.010.10.1016/j.plaphy.2016.05.010Search in Google Scholar

KOVÁČIK, P. − HAVRLENTOVÁ, M. − ŠIMANSKÝ, V. 2014. Growth and yield stimulation of winter oilseed rape (Brasssica napus L.) by Mg-Titanit fertiliser. In Agriculture (Pol’nohospodárstvo), vol. 60, no. 4, pp.132 − 141. DOI: 10.1515/agri-2015-0002.10.1515/agri-2015-0002Search in Google Scholar

KARUNAKARAN, G. ‒ SURIYAPRABHA, R. ‒ RAJENDRAN, V. ‒ KANNAN, N. 2017. Influence of ZrO2, SiO2, Al2O3 and TiO2 nanoparticles on maize seed germination under different growth conditions. In IET Nanobiotechnology, vol. 10, no. 4, pp. 171 ‒ 177. DOI: 10.1049/ietnbt.2015.0007.Search in Google Scholar

KHEYRKHAH, M. ‒ JANMOHAMMADI, M. ‒ ABBASI, A. ‒ SABAGHNIA, N. 2018. The effects of micronutrients (Fe And Zn) and beneficial nano-scaled elements (Si And Ti) on some morphophysiological characteristics of oilseed rape hybrids. In Agriculture (Pol’nohospodárstvo), vol. 64, no. 3, pp. 116 ‒ 127. DOI: 10.2478/agri-2018-0012.10.2478/agri-2018-0012Search in Google Scholar

LEI, Z. ‒ MINGYU, S. ‒ CHAO, L. ‒ LIANG, C. ‒ HAO, H. ‒ XIAO, W. ‒ XIAOQING, L. ‒ FAN, Y. ‒ FENGQING, G. ‒ FASHUI, H. 2007. Effects of Nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination. In Biological Trace Element Research, vol. 119, no. 1, pp. 68 ‒ 76. DOI: 10.1007/s12011-007-0047-3.10.1007/s12011-007-0047-3Search in Google Scholar

LI, D. ‒ TIAN, M. ‒ CAI, J. ‒ JIANG, D. ‒ CAO, W. ‒ DAI, T. 2013. Effects of low nitrogen supply on relationships between photosynthesis and nitrogen status at different leaf position in wheat seedlings. In Plant Growth Regulation, vol. 70, no. 3, pp. 257 ‒ 263. DOI: 10.1007/s10725-013-9797-4.10.1007/s10725-013-9797-4Search in Google Scholar

LI, Z. ‒ SONG, Z. ‒ YAN, Z. ‒ HAO, Q. ‒ SONG, A. ‒ LIU, L. ‒ YANG, X. ‒ XIA, S. ‒ LIANG, Y. 2018. Silicon enhancement of estimated plant biomass carbon accumulation under abiotic and biotic stresses. A meta-analysis. In Agronomy for Sustainable Development, vol. 38, no. 3, article 26. DOI: 10.1007/s13593-018-0496-4.10.1007/s13593-018-0496-4Search in Google Scholar

LIMA, A. ‒ DAMATTA, F. ‒ PINHEIRO, H. ‒ TOTOLA, M. ‒ LOUREIRO, M. 2002. Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions. In Environmental and Experimental Botany, vol. 47, no. 3, pp. 239 ‒ 247. DOI: 10.1016/S0098-8472(01)00130-7.10.1016/S0098-8472(01)00130-7Search in Google Scholar

LIU, H. ‒ LIU, Z.T. ‒ REN, J. ‒ LIU, Q.J. 2017. Structural, electronic, mechanical, dielectric and optical properties of TiSiO4: First-principles study. In Solid State Communication, vol. 251, pp. 43 ‒ 49. DOI: 10.1016/j.ssc.2016.12.013.10.1016/j.ssc.2016.12.013Search in Google Scholar

LUYCKX, M. ‒ HAUSMAN, J.F. ‒ LUTTS, S. ‒ GUERRIERO, G. 2017. Silicon and plants: current knowledge and technological perspectives. In Frontier in Plant Science, vol. 8, 411. DOI: 10.3389/fpls.2017.00411.10.3389/fpls.2017.00411536259828386269Search in Google Scholar

LYU, S. ‒ WEI, X. ‒ CHEN, J. ‒ WANG, C. ‒ WANG, X. ‒ PAN, D. 2017. Titanium as a beneficial element for crop production. In Frontier in Plant Science, vol. 8, 597. DOI: 10.3389/fpls.2017.00597.10.3389/fpls.2017.00597540450428487709Search in Google Scholar

MAITY, A. ‒ NATARAJAN, N. ‒ VIJAY, D. ‒ SRINIVASAN, R. ‒ PASTOR, M. ‒ MALAVIYA, D.R. 2018. Influence of metal nanoparticles (NPs) on germination and yield of oat (Avena sativa) and berseem (Trifolium alexandrinum). In Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, vol. 88, pp. 595 ‒ 607. DOI: 10.1007/s40011-016-0796-x.10.1007/s40011-016-0796-xSearch in Google Scholar

MAITY, A. ‒ NATARAJAN, N. ‒ PASTOR, M. ‒ VIJAY, D. ‒ GUPTA, C.K. ‒ WASNIK, V.K. 2018. Nanoparticles influence seed germination traits and seed pathogen infection rate in forage sorghum (Sorghum bicolour) and cowpea (Vigna unguiculata). In Indian Journal of Experimental Biology, vol. 56, pp. 363 ‒ 372.Search in Google Scholar

MAXWELL, K. ‒ JOHNSON, G. 2000. Chlorophyll fluorescence ‒ a practical guide. In Journal of Experimental Botany, vol. 51, no. 345, pp. 659 – 668. DOI: 10.1093/jexbot/51.345.659.10.1093/jexbot/51.345.659Search in Google Scholar

MEENA, R. ‒ RUCHITA, P. ‒ NARAYAN, S. ‒ MADHU, R. ‒ PAULRAJ, R. 2012. Comparative study of TiO2 and Ti- SiO4 nanoparticles induced oxidative stress and apoptosis of HEK-293 cells. In Advanced Materials Letters, vol. 3, no. 6, pp. 459 ‒ 465. DOI: 10.5185/amlett.2012.icnano.157.10.5185/amlett.2012.icnano.157Search in Google Scholar

MIDDEPOGU, A. − HOU, J. − GAO, X. − LIN, D. 2018. Effect and mechanism of TiO2 nanoparticles on the photosynthesis of Chlorella pyrenoidosa. In Ecotoxicology and Environmental safety, vol. 161, pp. 497 − 506.Search in Google Scholar

OSAKI, M. ‒ SHINANO, T. ‒ TADANO, T. 1991. Redistribution of carbon and nitrogen-compounds from the shoot to the harvesting organs during maturation in field crops. In Soil Science and Plant Nutrition, vol. 37, no. 1, pp. 117 ‒ 128. DOI: 10.1080/00380768.1991.10415017.10.1080/00380768.1991.10415017Search in Google Scholar

PARISI, C. ‒ VIGANI, M. ‒ RODRÍGUEZ-CEREZO, E. 2015. Agricultural nanotechnologies: What are the current possibilities? In Nanotoday, vol. 10, no. 2, pp. 124 ‒ 127. DOI: 10.1016/j.nantod.2014.09.009.10.1016/j.nantod.2014.09.009Search in Google Scholar

PEREIRA, R. ‒ ROCHA-SANTOS, T.A.P. ‒ ANTUNES, F.E. ‒ RASTEIRO, M.G. ‒ RIBEIRO, R. ‒ GONÇALVES, F. ‒ SOARES, A.M.V.M. ‒ LOPES, I. 2011. Screening evaluation of the ecotoxicity and genotoxicity of soils contaminated with organic and inorganic nanoparticles: the role of ageing. In Journal of Hazardous Material, vol. 194, pp. 345 ‒ 354. DOI: 10.1016/j.jhazmat.2011.07.112.10.1016/j.jhazmat.2011.07.11221871729Search in Google Scholar

QI, M. ‒ LIU, Y. ‒ LI, T. 2013. Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. In Biological Trace Element Research, vol. 156, no. 1 ‒ 3, pp. 323 ‒ 328. DOI: 10.1007/s12011-013-9833-2.10.1007/s12011-013-9833-224214855Search in Google Scholar

RODRIGUEZ, E. ‒ SANTOS, C. ‒ AZEVEDO, R. ‒ CORREIA, C. ‒ MOUTINHO-PEREIRA, J. ‒ FERREIRA DE OLIVEIRA, J.M. ‒ DIAS, M.C. 2015. Photosynthesis light-independent reactions are sensitive biomarkers to monitor lead phytotoxicity in a Pb-tolerant Pisum sativum cultivar. In Environmental Science and Pollution Research, vol. 22, no. 1, pp. 574 ‒ 585. DOI: 10.1007/s11356-014-3375-9.10.1007/s11356-014-3375-925091165Search in Google Scholar

RODRÍGUEZ-GONZÁLEZ, V. ‒ TERASHIMA, C. ‒ FUJISHIMA, A. 2019. Applications of photocatalytic titanium dioxide-based nanomaterials in sustainable agriculture. In Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 40, pp. 49 ‒ 67. DOI: 10.1016/j.jphotochemrev.2019.06.001.10.1016/j.jphotochemrev.2019.06.001Search in Google Scholar

SANCHEZ-ZABALA, J. ‒ GONZÁLEZ-MURUA, C. ‒ MARINO, D. 2015. Mild ammonium stress increases chlorophyll content in Arabidopsis thaliana. In Plant Signaling & Behaviour, vol. 10, no. 3, e991596. DOI: 10.4161/15592324.2014.991596.10.4161/15592324.2014.991596Search in Google Scholar

SARMA, R.S. ‒ SHANKHDHAR, D. ‒ SRIVASTAVA, P. ‒ SHANKHDHAR, S.C. 2018. Influence of silicon solubilizers on Silicon content, chlorophyll content (mg.g-1) and photosynthetic efficiency in leaves at three different growth stages in rice genotypes. In Journal of Pharmacognosy and Phytochemistry, vol. 7, no. 2, pp. 2552 ‒ 2558.Search in Google Scholar

SERVIN, A.D. ‒ MORALES, M.I. ‒ CASTILLO-MICHEL, H. ‒ HERNANDEZ-VIEZCAS, J.A. ‒ MUNOZ, B. ‒ ZHAO, L. ‒ NUNEZ, J.E. ‒ PERALTA-VIDEA, J.R. ‒ GARDEA- TORRESDEY, J.L. 2013. Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. In Environmental Science & Technology, vol. 47, no. 20, pp. 11592 ‒ 11598. DOI: 10.1021/es403368j.10.1021/es403368jSearch in Google Scholar

SEKHON, B.S. 2014. Nanotechnology in agri-food production: an overview. In Nanotechnology, Science and Application, vol. 7, pp. 31 – 53. DOI: 10.2147/NSA.S39406.10.2147/NSA.S39406Search in Google Scholar

SHABBIR, A. ‒ KHAN, M.M.A. ‒ AHMAD, B. ‒ SADIQ, Y. ‒ JALEEL, H. ‒ UDDIN, M. 2019. Efficacy of TiO2 nanoparticles in enhancing the photosynthesis, essential oil and khusimol biosynthesis in Vetiveria zizanioides L. Nash. In Photosynthetica, vol. 57, no. 2, pp. 599 ‒ 606. DOI: 10.32615/ps.2019.071.10.32615/ps.2019.071Search in Google Scholar

SHATILOV, M.V. − RAZIN, A.F. − IVANOVA, M.I. 2019. Analysis of the world lettuce market. In IOP Conference Series: Earth and Environmental Science, vol. 395, no. 1, p. 012053. IOP Publishing. doi : 10.1088/1755-1315/395/1/012053.Search in Google Scholar

SIDDIQUI, M.H. ‒ AL-WHAIBI, M.H. ‒ FIROZ, M. ‒ AL-KHAISHANY, M. 2015. Role of nanoparticles in plants. In SIDDIQUI, M.H. et al. (Eds.), Nanotechnology and Plant Sciences, Chapter 2, pp. 19 ‒ 35. DOI: 10.1007/978-3-319-14502-0_2.10.1007/978-3-319-14502-0_2Search in Google Scholar

SILVA, S. ‒ OLIVEIRA, H. ‒ CRAVEIRO, S.C. ‒ CALADO, A.J. ‒ SANTOS, C. 2016. Pure anatase and rutile + anatase nanoparticles differently affect wheat seedlings. In Chemosphere, vol. 151, pp. 68 ‒ 75. DOI: 10.1016/j.chemosphere.2016.02.047.10.1016/j.chemosphere.2016.02.047Search in Google Scholar

SILVA, S. ‒ CRAVEIRO, C. ‒ OLIVEIRA, H. ‒ SILVA, A.M.S. ‒ SANTOS, C. 2017a. Wheat chronic exposure to TiO2-nanoparticles: Cyto- and genotoxic approach. In Plant Physiology and Biochemistry, vol. 121, pp. 89 ‒ 98. DOI: 10.1016/j.plaphy.2017.10.013.10.1016/j.plaphy.2017.10.013Search in Google Scholar

SILVA, S. ‒ OLIVEIRA, H. ‒ SILVA, A.M.S. ‒ SANTOS, C. 2017b. The cytotoxic targets of anatase or rutile + anatase nanoparticles depend on the plant species. In Biologia Plantarum, vol. 61, no. 4, pp. 717 ‒ 725. DOI: 10.1007/s10535-017-0733-8.10.1007/s10535-017-0733-8Search in Google Scholar

SILVA, S. ‒ DE OLIVEIRA, J.M.P.F. ‒ DIAS, M.C. ‒ SILVA, A.M. ‒ SANTOS, C. 2019. Antioxidant mechanisms to counteract TiO2-nanoparticles toxicity in wheat leaves and roots are organ dependent. In Journal of Hazardous Materials, vol. 380, 120889. DOI: 10.1016/j.jhazmat.2019.120889.10.1016/j.jhazmat.2019.120889Search in Google Scholar

SIMS, D.A. ‒ GAMON, J.A. 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. In Remote Sensing of Environment, vol. 81, no. 1 ‒ 2, pp. 337 ‒ 354. DOI: 10.1016/S0034-4257(02)00010-X.10.1016/S0034-4257(02)00010-XSearch in Google Scholar

SONI, N. ‒ PRAKASH, S. 2012. Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. In Parasitology Research, vol. 110, no. 1, pp. 175 – 184. DOI: 10.1007/s00436-011-2467-4.10.1007/s00436-011-2467-421647674Search in Google Scholar

SRIVASTAVA, V. ‒ GUSAIN, D. ‒ SHARMA, Y. 2015. Critical review on the toxicity of some widely used engineered nanoparticles. In Industrial & Engineering Chemistry Research, vol. 54, no. 24, pp. 6209 ‒ 6233. DOI: 10.1021/acs.iecr.5b01610.10.1021/acs.iecr.5b01610Search in Google Scholar

TAHERI, R. ‒ KOSASIH, B. ‒ ZHU, H. ‒ TIEU, A.K. 2018. Dual effects of TiSiO4 composite nanoparticles on dispersion stability and lubrication performance of vegetable oilin- water emulsions. In Lubrication Science, vol. 31, no.1 ‒ 2, DOI: 10.1002/ls.1443.10.1002/ls.1443Search in Google Scholar

TAN, W. ‒ DU, W. ‒ DARROUZET-NARDI, A.J. ‒ HERNANDEZ- VIEZCAS, J.A. ‒ YE, Y. ‒ PERALTA-VIDEA, J.R. ‒ GARDEA-TORRESDEY, J.L. 2018. Effects of the exposure of TiO2 nanoparticles on basil (Ocimum basilicum) for two generations. In Science of Total Environment, vol. 636, pp. 240 ‒ 248. DOI: 10.1016/j.scitotenv.2018.04.263.10.1016/j.scitotenv.2018.04.26329705436Search in Google Scholar

THALMANN, M. ‒ SANTELIA, D. 2017. Starch as a determinant of plant fitness under abiotic stress. In New Phytologist, vol. 214, no. 3, pp. 943 ‒ 951. DOI: 10.1111/nph.14491.10.1111/nph.1449128277621Search in Google Scholar

TIGHE-NEIRA, R. ‒ REYES-DÍAZ, M. ‒ NUNES-NESI, A. ‒ RECIO, G. ‒ CARMONA, E. ‒ CORGNE, A. ‒ RENGELJ, Z. ‒ INOSTROZA-BLANCHETEAU, C. 2020. Titanium di-oxide nanoparticles provoke transient increase in photosynthetic performance and differential response in antioxidant system in Raphanus sativus L. In Scientia Horticulturae, vol. 269, 109418. DOI: 10.1016/j.scienta.2020.109418.10.1016/j.scienta.2020.109418Search in Google Scholar

ZIDAR, P. ‒ KOS, M. ‒ ILIC, E. ‒ MAROLT, G. ‒ DROBNE, D. ‒ JEMEC KOKALJ, A. 2019 Avoidance behaviour of isopods (Porcellio scaber) exposed to food or soil contaminated with Ag- and CeO2 − nanoparticles. In Applied Soil Ecology, vol. 141, pp. 69 – 78.Search in Google Scholar

VARGHESE, J. ‒ JOSEPH, T. ‒ SEBASTIAN, M.T. 2011. Solgel derived TiSiO4 ceramics for high-k gate dielectric applications. In AIP Conference Proceedings, vol. 1372, no. 1, pp. 193 ‒ 197. DOI: 10.1063/1.3644442.10.1063/1.3644442Search in Google Scholar

WANG, Y. ‒ PENG, C. ‒ FANG, H. ‒ SUN, L. ‒ ZHANG, H. ‒ FENG, J. ‒ DUAN, D. ‒ LIU, T. ‒ SHI, J. 2015. Mitigation of Cu(II) phytotoxicity to rice (Oryza sativa L) in the presence of TiO2 and CeO2 nanoparticles combined with humic acid. In Environmental Toxicology and Chemistry, vol. 34, no. 7, pp. 1588 ‒ 1596. DOI: 10.1002/etc.2953.10.1002/etc.295325771918Search in Google Scholar

WANG, X.P. ‒ YANG, X.Y. ‒ CHEN, S.Y. ‒ LI, Q.Q. ‒ WANG, W. ‒ HOU, C.J. ‒ GAO, X. ‒ WANG, L. ‒ WANG, S.C. 2016. Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. In Frontier in Plant Science, vol. 7, no. 6, 1243. DOI: 10.3389/fpls.2015.01243.10.3389/fpls.2015.01243470944526793220Search in Google Scholar

YANG, Z. ‒ CHEN, J. ‒ DOU, R. ‒ GAO, X. ‒ MAO, C. ‒ WANG, L. 2015. Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.). In International Journal of Environmental Research and Public Health, vol. 12, no. 12, 15100-9. DOI: 10.3390/ijerph121214963.10.3390/ijerph121214963469089926633437Search in Google Scholar

YANG, F. ‒ HONG, F.S. ‒ YOU, W.J. ‒ LIU, C. ‒ GAO, F.Q. ‒ WU, C. ‒ YANG, P. 2006. Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. In Biological Trace Element Research, vol. 110, no. 2, pp. 179 ‒ 190. DOI: org/10.1385/BTER:110:2:179.Search in Google Scholar

YAO, K.S. – WANG, D.Y. – HO, W.Y. – YAN, J.J. – TZENG, K.C. 2007. Photocatalytic bactericidal effect of TiO2 thin film on plant pathogens. In Surface and Coatings Technology, vol. 201, no. 15, pp. 6886 ‒ 6888. DOI: 10.1016/j.surfcoat.2006.09.068.10.1016/j.surfcoat.2006.09.068Search in Google Scholar

ZAHRA, Z. – ARSHAD, M. – RAFIQUE, R. – MAHMOOD, A. – HABIB, A. – QAZI, I.A. – KHAN, S.A. 2015. Metallic nanoparticle (TiO2 and Fe3O4) application modifies rhizosphere phosphorus availability and uptake by Lactuca sativa. In Journal of Agricultural and Food Chemistry, vol. 63, no. 31, pp. 6876 − 6882. DOI: 10.1021/acs.jafc.5b01611.10.1021/acs.jafc.5b0161126194089Search in Google Scholar

eISSN:
1338-4376
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Plant Science, Ecology, other