Cite

ABDEL-GHANI, A.H. 2009. Response of wheat varieties from semi-arid regions of Jordan to salt stress. In Journal of Agronomy and Crop Science, vol. 195, no. 1, pp. 55–65. DOI: 10.1111/j.1439-037X.2008.00319.x10.1111/j.1439-037X.2008.00319.xOpen DOISearch in Google Scholar

ALGUACIL, M.M. – TORRECILLAS, E. – CARAVACA, F. – FERNÁNDEZ, D.A. – AZCÓN, R. – ROLDÁN, A. 2011. The application of an organic amendment modifies the arbuscular mycorrhizal fungal communities colonizing native seedlings grown in a heavy metal-polluted soil. In Soil Biology and Biochemistry, vol. 43, no. 7, pp. 1498–1508. DOI: 10.1016/j.soilbio.2011.03.02610.1016/j.soilbio.2011.03.026Open DOISearch in Google Scholar

AL-KARAKI, G.N. 2006. Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. In Scientia Horticulturae, vol. 109, no. 1, pp. 1–7. DOI: 10.1016/j.scienta.2006.02.01910.1016/j.scienta.2006.02.019Open DOISearch in Google Scholar

ALLEN, M.F. – KLIRONOMOS, J.N. – TRESEDER, K.K. – OECHEL, W.C. 2005. Responses of soil biota to elevated CO2 in a chaparral ecosystem. In Ecological Applications, vol. 15, no. 5, pp. 1701–1711. DOI: 10.1890/03-542510.1890/03-5425Open DOISearch in Google Scholar

ATUL-NAYYAR, A. – HAMEL, C. – HANSON, K. – GERMIDA, J. 2008. The arbuscular mycorrhizal symbiosis links N mineralization to plant demand. In Mycorrhiza, vol. 19, no. 4, pp. 239–246. DOI: 10.1007/s00572-008-0215-010.1007/s00572-008-0215-019101737Open DOISearch in Google Scholar

ANDRADE, S.A.L. SILVEIRA, A.P.D. 2008. Mycorrhiza influence on maize development under Cd stress and P supply. In Brazilian Journal of Plant Physiology, vol. 20, no. 1, pp. 3950. DOI: 10.1590/S1677-0420200800010000510.1590/S1677-04202008000100005Open DOISearch in Google Scholar

ASGHARI, H. – MARSCHNER, P. – SMITH, S. – SMITH, F. 2005. Growth response of Atrilpex nummularia to inoculation with arbuscular mycorrhizal fungi at different salinity levels. In Plant and Soil, vol. 273, no. 1–2, pp. 245–256. DOI: 10.1007/s11104-004-7942-610.1007/s11104-004-7942-6Open DOISearch in Google Scholar

AUGE, R.M. 2001. Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis. In Mycorrhiza, vol. 11, no. 1, pp. 3–42. DOI: 10.1007/s00572010009710.1007/s005720100097Open DOISearch in Google Scholar

AZAIZEH, H.A. – MARSCHNER, H. – RÖMHELD, V. – WITTENMAYER, L. 1995. Effects of a vesicular-arbuscular mycorrhizal fungus and other soil microorganisms on growth, mineral nutrient acquisition and root exudation of soilgrown maize plants. In Mycorrhiza, vol. 5, no. 5, pp. 321–327. DOI: 10.1007/BF0020740410.1007/BF00207404Open DOISearch in Google Scholar

BAGO, B. – PFEFFER, P.E. – SHACHAR-HILL, Y. 2001. Could the urea cycle be translocating nitrogen in arbuscular mycorrhizal fungi? In New Phytologist, vol. 149, no. 1, pp. 4–8. DOI: 10.1046/j.1469-8137.2001.00016.x10.1046/j.1469-8137.2001.00016.x33853236Open DOISearch in Google Scholar

BAGO, B. – VIERHEILIG, H. – PICHÉ, Y. – AZCÓN AGUILAR, C. 1996. Nitrate depletion and pH changes by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus mosseae grown in monoxenic culture. In The New Phytologist, vol. 133, no. 2, pp. 273–280. DOI: 10.1111/j.1469-8137.1996.tb01894.x10.1111/j.1469-8137.1996.tb01894.xOpen DOISearch in Google Scholar

BIRÓ, B. – KÖVES-PÉCHY, K. – VÖRÖS, I. – TAKÁCS, T. – EGGENBERGER, P. – STRASSER, R.J. 2000. Interrelations between Azospirillum and Rhizobium nitrogenfixers and arbuscular mycorrhizal fungi in the rhizosphere of alfalfa at sterile, AMF-free or normal soil conditions. In Applied Soil Ecology, vol. 15, no. 2, pp. 159–168. DOI: 10.1016/S0929-1393(00)00092-510.1016/S0929-1393(00)00092-5Open DOISearch in Google Scholar

BRUNDRETT, M.C. 2008. Ectomycorrhizas. In Mycorrhizal Associations: The Web Resource. Version 2.0. 6 Feb 2019. ‹https://mycorrhizas.info›.Search in Google Scholar

BUCHER, M. 2007. Functional biology of plant phosphate uptake at root and mycorhiza interfaces. In New Phytologist, vol. 173, no. 1, pp. 11–26. DOI: 10.1111/j.1469-8137.2006.01935.x10.1111/j.1469-8137.2006.01935.x17176390Open DOISearch in Google Scholar

BURROWS, R.L. – PFLEGER, F.L. 2002. Arbuscular mycorrhizal fungi respond to increasing plant diversity. In Canadian Journal of Botany, vol. 80, no. 2, pp.120–130. DOI: 10.1139/b01-13810.1139/b01-138Open DOISearch in Google Scholar

CANTRELL, I.C. – LINDERMANN, R.G. 2001. Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. In Plant and Soil, vol. 233, no. 2, pp. 269–281. DOI: 10.1023/A:10105640110.1023/A:101056401Open DOISearch in Google Scholar

CHENG, Y. – ISHIMOTO, K. – KURIYAMA, Y. – OSAKI, M. – EZAWA, T. 2013. Ninety-year-, but not single, application of phosphorus fertilser has a major impact on arbuscular mycorrhizal fungal communities. In Plant and Soil, vol. 365, no. 1–2, pp. 397–407. DOI: 10.1007/s11104-012-1398-x10.1007/s11104-012-1398-xOpen DOISearch in Google Scholar

CHO, K. – TOLER, H. – LEE, J. – OWNLEY, B. – STUTZ, J.C. – MOORE, J.L. – AUGÉ, R.M. 2006. Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses. In Journal of Plant Physiology, vol. 163, no. 5, pp. 517–528. DOI: 10.1016/j.jplph.2005.05.00310.1016/j.jplph.2005.05.00316473656Open DOISearch in Google Scholar

CLARK, R.B. – ZETO, S.K. 2000. Mineral acquisition by arbuscular mycorrhizal plants. In Journal of Plant Nutrition, vol. 23, no. 7, pp. 867–902. DOI: 10.1080/0190416000938206810.1080/01904160009382068Open DOISearch in Google Scholar

COSME, M. – WURST, S. 2013. Interactions between arbuscular mycorrhizal fungi, rhizobacteria, soil phosphorus and plant cytokinin deficiency change the root morphology, yield and quality of tobacco. In Soil Biology and Biochemistry, vol. 57, pp. 436–443. DOI: 10.1016/j.soilbio.2012.09.02410.1016/j.soilbio.2012.09.024Open DOISearch in Google Scholar

DAEI, G. – ARDEKANI, M.R. – REJALI, F. – TEIMURI, S. – MIRANSARI, M. 2009. Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. In Journal of Plant Physiology, vol. 166, no. 6, pp. 617–625. DOI: 10.1016/j.jplph.2008.09.01310.1016/j.jplph.2008.09.01319100656Open DOISearch in Google Scholar

DANNEBERG, G. – LATUS, C. – ZIMMER, W. – HUNDESHAGEN, B. – SCHNEIDER-POETSCH, H.J. – BOTHE, H. 1993. Influence of vesicular arbuscular mycorrhiza on phytohormone balances in maize (Zea mays L.). In Journal of Plant Physiology, vol. 141, no. 1, pp. 33–39. DOI: 10.1016/S0176-1617(11)80848-510.1016/S0176-1617(11)80848-5Open DOISearch in Google Scholar

DE LEÓN, D.G. – CANTERO, J.J. – MOORA, M. – ÖPIK, M. – DAVISON, J. – VASAR, M. – JAIRUS, T. – ZOBEL, M. 2018. Soybean cultivation supports a diverse arbuscular mycorrhizal fungal community in central Argentina. In Applied Soil Ecology, vol. 124, pp. 289–297. DOI: 10.1016/j.apsoil.2017.11.02010.1016/j.apsoil.2017.11.020Open DOISearch in Google Scholar

HASSAN DAR, G.H. – ZARGAR, M.Y. – BEIGH, G.M. 1997. Biocontrol of Fusarium root rot in the common bean (Phaseolus vulgaris L.) by using symbiotic Glomus mosseae and Rhizobium leguminosarum. In Microbial Ecology, vol. 34, no. 1, pp. 74–80. DOI: 10.1007/s00248990003610.1007/s002489900036Open DOISearch in Google Scholar

DEL VAL, C. – BAREA, J.M. – AZCÓN-AGUILAR, C. 1999. Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. In Applied and Environmental Microbiology, vol. 65, no. 2, pp. 718–723.Search in Google Scholar

DOIDY, J. – GRACE, E. – KÜHN, C. – SIMON-PLAS, F. – CASIERI, L. – WIPF, D. 2012. Sugar transporters in plants and in their interactions with fungi. In Trends in Plant Science, vol. 17, no. 7, pp. 413–422. DOI: 10.1016/j.tplants.2012.03.00910.1016/j.tplants.2012.03.009Open DOISearch in Google Scholar

DOUDS, D.D. – MILLNER, P.D. 1999. Biodiversity of arbuscular mycorrhizal fungi in agroecosystems. In Agriculture, Ecosystems and Environment, vol. 74, no. 1–3, pp. 77–93. DOI: 10.1016/S0167-8809(99)00031-610.1016/S0167-8809(99)00031-6Open DOISearch in Google Scholar

DOUDS, D.D. – NAGAHASHI, G. – ABNEY, G.D. 1996. The differential effects of cell wall-associated phenolics, cell walls, and cytosolic phenolics of host and non-host roots on the growth of two species of AM fungi. In The New Phytologist, vol. 133, no. 2, pp. 289–294. DOI: 10.1111/j.1469-8137.1996.tb01896.x.10.1111/j.1469-8137.1996.tb01896.x29681064Open DOISearch in Google Scholar

EGERTON-WARBURTON, L.M. – JOHNSON, N.C. – ALLEN, E.B. 2007. Mycorrhizal community dynamics following nitrogen fertilization: a cross-site test in five grasslands. In Ecological Monographs, vol. 77, no. 4, pp. 527–544. DOI: 10.1890/06-1772.110.1890/06-1772.1Open DOISearch in Google Scholar

EVANS, D.G. – MILLER, M.H. 1990. The role of the external mycelial network in the effect of soil disturbance upon vesicular-arbuscular mycorrhizal colonisation of maize. In The New Phytologist, vol. 114, no. 1, pp. 65–71. DOI: 10.1111/j.1469-8137.1990.tb00374.x10.1111/j.1469-8137.1990.tb00374.x33874297Open DOISearch in Google Scholar

EVELIN, H. – KAPOOR, R. – GIRI, B. 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. In Annals of Botany, vol. 104, no. 7, pp. 1263–1280. DOI: 10.1093/aob/mcp25110.1093/aob/mcp251277839619815570Open DOISearch in Google Scholar

FILION, M. – ST-ARNAUD, M. – FORTIN, J.A. 1999. Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizoshpere microorganisms. In The New Phytologist, vol. 141, no. 3, pp. 525–533. DOI: 10.1046/j.1469-8137.1999.00366.x10.1046/j.1469-8137.1999.00366.xOpen DOISearch in Google Scholar

GAMALERO, E. – TROTTA, A. – MASSA, N. – COPETTA, A. – MARTINOTTI, M.G. – BERTA, G. 2004. Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. In Mycorrhiza, vol. 14, no. 3, pp. 185–192. DOI: 10.1007/s00572-003-0256-310.1007/s00572-003-0256-315197635Open DOISearch in Google Scholar

GARCIA, M.O. – OVASAPYAN, T. – GREAS, M. – TRESEDER, K.K. 2008. Mycorrhizal dynamics under elevated CO2 and nitrogen fertilization in a warm temperate forest. In Plant and Soil, vol. 303, no. 1–2, pp. 301–310. DOI: 10.1007/s11104-007-9509-910.1007/s11104-007-9509-9Open DOISearch in Google Scholar

GEORGE, E. – MARSCHNER, H. – JAKOBSEN, I. 1995. Role of arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. In Critical Review in Biotechnology, vol. 15, no. 3–4, pp. 257–270. DOI: 10.3109/0738855950914741210.3109/07388559509147412Open DOISearch in Google Scholar

GIANINAZZI-PEARSON, V. 1996. Plant cell responses to arbuscular mycorrhizal fungi: getting to the roots of the symbiosis. In The Plant Cell, vol. 8, pp. 1871–1883. DOI: 10.1105/tpc.8.10.187110.1105/tpc.8.10.187116132112239368Search in Google Scholar

GIOVANNETTI, M. – AVIO, L. – SBRANA, C. – CITERNESI, A.S. 1993. Factors affecting appressorium development in the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. In The New Phytologist, vol. 123, no. 1, pp. 114–122.Search in Google Scholar

GIOVANNETTI, M. – SBRANA, C. – LOGI, C. 1994. Early processes involved in host recognition by arbuscular mycorrhizal fungi. In The New Phytologist, vol. 127, no. 4, pp. 703–709. DOI: 10.1111/j.1469-8137.1994.tb02973.x10.1111/j.1469-8137.1994.tb02973.x33874390Open DOISearch in Google Scholar

GIRI, B. – KAPOOR, R. – MUKERJI, K.G. 2003. Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass and mineral nutrition of Acacia auriculiformis. In Biology and Fertility of Soils, vol. 38, no. 3, pp. 170–175. DOI: 10.1007/s00374-003-0636-z10.1007/s00374-003-0636-zOpen DOISearch in Google Scholar

GLENN, M.G. – CHEW, F.S. – WILLIAMS, P.H. 1985. Hyphal penetration of Brassica (Cruciferae) roots by a vesicular-arbuscular mycorrhizal fungus. In The New Phytologist, vol. 99, no. 3, pp. 463–472.Search in Google Scholar

GOMEZ-SAGASTI, M.T. – ALKORTA, I. – BECERRIL, J.M. – EPELDE, L. – ANZA, M. – GARBISU, C. 2012. Microbial monitoring of the recovery of soil quality during heavy metal phytoremediation. In Water, Air, & Soil Pollution, vol. 223, no. 6, pp. 3249–3262. DOI: 10.1007/s11270-012-1106-810.1007/s11270-012-1106-8Open DOISearch in Google Scholar

GONZALEZ-CHÁVEZ, M.C. – CARRILLO-GONZALEZ, R. – WRIGHT, S.F. – NICHOLS, K.A. 2004. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. In Environmental Pollution, vol. 130, no. 3, pp. 317–323. DOI: 10.1016/j.envpol.2004.01.00410.1016/j.envpol.2004.01.00415182965Open DOISearch in Google Scholar

GOVINDARAJULU, M. – PFEFFER, P.E. – JIN, H. – ABUBAKER, J. – DOUDS, D.D. – ALLEN, J.W. – BÜCKING, H. – LAMMERS, P.J. – SHACHAR-HILL, Y. 2005. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. In Nature, vol. 435, pp. 819–823. DOI: 10.1038/nature0361010.1038/03610Open DOISearch in Google Scholar

HAWKINS, H.J. – JOHANSEN, A. – GEORGE, E. 2000. Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. In Plant and Soil, vol. 226, no. 2, pp. 275–285. DOI: 10.1023/A:102650081038510.1023/A:1026500810385Open DOISearch in Google Scholar

HAYMAN, D.S. – TAVARES, M. 1985. Plant-growth responses to vesicular-arbuscular mycorrhiza. XV. Influence of soil-pH on the symbiotic efficiency of different endophytes. In The New Phytologist, vol. 100, pp. 367–377.Search in Google Scholar

HELGASON, T. – DANIELL, T.J. – HUSBAND, R. – FITTER, A.H. – YOUNG, J.P.W. 1998. Ploughing up the wood-wide web? In Nature, vol. 394, p. 431. DOI: 10.1038/2876410.1038/28764Open DOISearch in Google Scholar

HELGASON, T. – FITTER, A. 2005. The ecology and evolution of the arbuscular mycorrhizal fungi. In Mycologist, vol. 19, no. 3, pp. 96–101. DOI: 10.1017/S0269-915X(05)00302-210.1017/S0269-915X(05)00302-2Open DOISearch in Google Scholar

HILDEBRANDT, U. – KALDORF, M. – BOTHE, H. 1999. The zinc violet and its colonization by arbuscular mycorrhizal fungi. In Journal of Plant Physiology, vol. 154, no. 5–6, pp. 709–717. DOI: 10.1016/S0176-1617(99)80249-110.1016/S0176-1617(99)80249-1Open DOISearch in Google Scholar

HUSBAND, R. – HERRE, E.A. – TURNER, S.L. – GALLERY, R. – YOUNG, J.P.W. 2002. Molecular diversity of arbuscular mycorrhizal fungi and patterns of associations over time and space in a tropical forest. In Molecular Ecology, vol. 11, no. 12, pp. 2669–2678. DOI: 10.1046/j.1365-294x.2002.01647.x10.1046/j.1365-294x.2002.01647.xOpen DOISearch in Google Scholar

IBRAHIM, A.H. – ABDEL-FATTAH, G.M. – EMAM, F.M. – ABD EL-AZIZ, M.H. – SHOKR, A.E. 2011. Arbuscular mycorrhizal fungi and spermine alleviate the adverse effects of salinity stress on electrolyte leakage and productivity of wheat plants. In Phyton, vol. 51, no. 2, pp. 261–276.Search in Google Scholar

JACKSON, L.E. – BURGER, M. – CAVAGNARO, T.R. 2008. Roots, nitrogen transformations and ecosystem services. In Annual Review in Plant Biology, vol. 59, pp. 341–363. DOI: 10.1146/annurev.arplant.59.032607.09293210.1146/annurev.arplant.59.032607.092932Open DOISearch in Google Scholar

JANSA, J. – MOZAFAR, A. – ANKEN, T. – RUH, R. – SANDERS, I.R. – FROSSARD, E. 2002. Diversity and structure of AMF communities as affected by tillage in a temperate soil. In Mycorrhiza, vol. 12, no. 5, pp. 225–234. DOI: 10.1007/s00572-002-0163-z10.1007/s00572-002-0163-zOpen DOISearch in Google Scholar

JANSA, J. – MOZAFAR, A. – KUHN, G. – ANKEN, T. – RUH, R. – SANDERS, I.R. – FROSSARD, E. 2003. Soil tillage affects the community structure of mycorrhizal fungi in maize roots. In Ecological Applications, vol. 13, no. 4, pp. 1164–1176. DOI: 10.1890/1051-0761200313[1164:STATCS]2.0.CO;210.1890/1051-0761200313[1164:STATCS]2.0.CO;2Open DOISearch in Google Scholar

JOHANSEN, A. – JAKOBSEN, I. – JENSEN, E.S. 1992. Hyphal transport of 15N labelled nitrogen by a vesicular-arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N. In New Phytologist, vol. 122, no. 2, pp. 281–288. DOI: 10.1111/j.1469-8137.1992.tb04232.x10.1111/j.1469-8137.1992.tb04232.xOpen DOISearch in Google Scholar

JOHANSSON, J. – PAUL, L.R. – FINLAY, R.D. 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. In FEMS Microbiology Ecology, vol. 48, no. 1, pp. 1–13. DOI: 10.1016/j.fem-sec.2003.11.01210.1016/j.fem-sec.2003.11.012Open DOISearch in Google Scholar

JONER, E.J. – BRIONES, R. – LEVYAL, C. 2000. Metal -binding capacity of arbuscular mycorrhizal mycelium. In Plant and Soil, vol. 226, no. 2, pp. 227–234. DOI: 10.1023/A:102656570139110.1023/A:1026565701391Open DOISearch in Google Scholar

JUNIPER, S. – ABBOTT, L. 1993. Vesicular-arbuscular mycorrhizas and soil salinity. In Mycorrhiza, vol. 4, no. 2, pp. 45–57. DOI: 10.1007/BF0020405810.1007/BF00204058Open DOISearch in Google Scholar

JUNIPER, S. – ABBOTT, L.K. 2006. Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. In Mycorrhiza, vol. 16, no. 5, p. 371–379. DOI: 10.1007/s00572-006-0046-910.1007/s00572-006-0046-9Open DOISearch in Google Scholar

KABIR, Z. 2005. Tillage or no-tillage: impact on mycorrhizae. In Canadian Journal of Plant Science, vol. 85, no. 1, pp. 23–29. DOI: 10.4141/P03-16010.4141/P03-160Open DOISearch in Google Scholar

KAHILUOTO, H. – KETOJA, E. – VESTBERG, M. – SAARELA, I. 2001. Promotion of AM utilization through reduced P fertilization 2. Field studies. In Plant and Soil, vol. 231, no. 1, pp. 65–79. DOI: 10.1023/A:101036640000910.1023/A:1010366400009Open DOISearch in Google Scholar

KALDORF, M. – KUHN, A.J. – SCHRÖDER, W.H. – HILDERBRANDT, U. – BOTHE, H. 1999. Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. In Journal of Plant Physiology, vol. 154, no. 5–6, pp. 718–728. DOI: 10.1016/S0176-1617(99)80250-810.1016/S0176-1617(99)80250-8Open DOISearch in Google Scholar

KARAGIANNIDIS, N. – BLETSOS, F. – STAVROPOULOS, N. 2002. Effect of Verticillium wilt (Verticillium dahliae Kleb.) and mycorrhiza (Glomus mosseae) on root colonization, growth and nutrient uptake in tomato and eggplant seedlings. In Scientia Horticulturae, vol. 94, no. 1–2, pp. 145–156. DOI: 10.1016/S0304-4238(01)00336-310.1016/S0304-4238(01)00336-3Open DOISearch in Google Scholar

KARASAWA, T. – HODGE, A. – FITTER, A.H. 2012. Growth, respiration and nutrient acquisition by the arbuscular mycorrhizal fungus Glomus mosseae and its host plant Plantago lanceolata in cooled soil. In Plant Cell & Environment, vol. 35, no. 4, pp. 819–828. DOI: 10.1111/j.1365-3040.2011.02455.x10.1111/j.1365-3040.2011.02455.x22070553Open DOISearch in Google Scholar

KAUR, H. – GARG, N. 2017. Recent perspectives on cross talk between cadmium, zinc, and arbuscular mycorrhizal fungi in plants. In Journal of Plant Growth Regulation, vol. 37, no. 2, pp. 680–693. DOI: 10.1007/s00344-017-9750-210.1007/s00344-017-9750-2Open DOISearch in Google Scholar

KHALVATI, M.A. – HU, Y. – MOZAFAR, A. – SCHMIDHALTER, U. 2005. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. In Plant Biology (Stuttgart, Germany), vol. 7, no. 6, pp. 706–712. DOI: 10.1055/s-2005-87289310.1055/s-2005-87289316388474Open DOISearch in Google Scholar

KHAN, M.S. – ZAIDI, A. – WANI, P.A. 2007. Role of phosphate solubilizing microorganisms in sustainable agriculture – a review. In Agronomy for Sustainable Development, vol. 27, no. 1, pp. 29–43. DOI: 10.1051/agro:200601110.1051/agro:2006011Open DOISearch in Google Scholar

FREY-KLETT, P. – GARBAYE, J. – TARKKA, M. 2007. The mycorrhiza helper bacteria revisited. In The New Phytologist, vol. 176, no. 1, pp. 22–36. DOI: 10.1111/j.1469-8137.2007.02191.x10.1111/j.1469-8137.2007.02191.x17803639Open DOISearch in Google Scholar

KLIRONOMOS, J. 2000. Host-specificity and functional diversity among arbuscular mycorrhizal fungi. In Microbial Bio-systems: New Frontiers. Proceedings of the 8th International Symposium on Microbial Ecology. Atlantic Canada Society for Microbial Ecology. Halifax, Canada, pp. 845–851.Search in Google Scholar

KLIRONOMOS, J.N. – HART, M.M. 2002. Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. In Mycorrhiza, vol. 12, no. 4, pp. 181–184. DOI: 10.1007/s00572-002-0169-610.1007/s00572-002-0169-612189472Open DOISearch in Google Scholar

KÖHL, L. – OEHL, F. – VAN DER HEIJDEN, M.G.A. 2014. Agricultural practices indirectly influence plant productivity and ecosystem services through effects on soil biota. In Ecological Applications, vol. 24, no. 7, pp. 1842–1853. DOI: 10.1890/13-1821.110.1890/13-1821.129210242Open DOISearch in Google Scholar

KUMAR, A. – SHARMA, S. – MISHRA, S. 2010. Influence of arbuscular mycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation and mycorrhizal dependency of Jatropha curcas L. In Journal of Plant Growth Regulation, vol. 29, no. 3, pp. 297–306. DOI: 10.1007/s00344-009-9136-110.1007/s00344-009-9136-1Open DOISearch in Google Scholar

LEIGH, J. – HODGE, A. – FITTER, A.H. 2009. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. In The New Phytologist, vol. 181, no. 1, pp. 199–207. DOI: 10.1111/j.1469-8137.2008.02630.x10.1111/j.1469-8137.2008.02630.x18811615Open DOISearch in Google Scholar

LI, X.L. – GEORGE, E. – MARSCHNER, H. 1991. Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. In Plant and Soil, vol. 136, no. 1, pp. 41–48. DOI: 10.1007/BF0246521810.1007/BF02465218Open DOISearch in Google Scholar

LINDERMAN, R.G. 1988. Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. In Phytopathology, vol. 78, pp. 366–371. DOI: 10.1007/978-94-011-3336-4_7310.1007/978-94-011-3336-4_73Open DOISearch in Google Scholar

MARGESIN, R. – PŁAZA, G.A. – KASENBACHER, S. 2011. Characterization of bacterial communities at heavy-metal-contaminated sites. In Chemosphere, vol. 82, no. 11, pp. 1583–1588. DOI: 10.1016/j.chemosphere.2010.11.05610.1016/j.chemosphere.2010.11.05621159361Open DOISearch in Google Scholar

MARSCHNER, H. 1995. Mineral nutrition of higher plants. London : Academic Press, 889 p. ISBN 978-0-12-473542-2Search in Google Scholar

MARULANDA, A. – AZCÓN, R. – RUIZ-LOZANO, J.M. 2003. Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. In Physiologia Plantarum, vol. 119, no. 4, pp. 526–533. DOI: 10.1046/j.1399-3054.2003.00196.x10.1046/j.1399-3054.2003.00196.xOpen DOISearch in Google Scholar

MAURER, C. – RÜDY, M. – CHERVET, A. – STURNY, W.G. – FLISCH, R. – OEHL, F. 2014. Diversity of arbuscular mycorrhizal fungi in field crops using no-till and conventional tillage practices. In Agrarforschung Schweiz, vol. 5, no. 10, pp. 398–405.Search in Google Scholar

MISHRA, V. – ELLOUZE. W. – HOWARD. R.J. 2018. Utility of Arbuscular Mycorrhizal Fungi for Improved Production and Disease Mitigation in Organic and Hydroponic Greenhouse Crops. In Journal of Horticulture, vol. 5, no. 3, pp. 110. DOI: 10.4172/2376-0354.100023710.4172/2376-0354.1000237Open DOISearch in Google Scholar

MOHAMMAD, M.J. – MALKAWI, H.I. – SHIBLI, R. 2003. Effects of mycorrhizal fungi and phosphorus fertilization on growth and nutrient uptake of barley grown on soils with different levels of salts. In Journal of Plant Nutrition, vol. 26, no. 1, pp. 125137. DOI: 10.1081/PLN-12001650010.1081/PLN-120016500Open DOISearch in Google Scholar

MOHAMMADI, K. – KHALESRO, S. – SOHRABI, Y. – HEIDARI, G. 2011. A review: Beneficial effects of the mycorrhizal fungi for plant growth. In Journal of Applied Environmental and Biological Science, vol. 1, no. 9, pp. 310–319.Search in Google Scholar

MOHAN, J.E. – COWDEN, C.C. – BAAS, P. – DAWADI, A. – FRANKSON, P.T. – HELMICK, K. – HUGHES, E. – KHAN, S. – LANG, A. – MACHMULLER, M. – TAYLOR, M. – WITT, C.A. 2014. Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change: mini-review. In Fungal Ecology, vol. 10, pp. 3–19. DOI: 10.1016/j.funeco.2014.01.00510.1016/j.funeco.2014.01.005Search in Google Scholar

OLSRUD, M. – CARLSSON, B.A. – SVENSSON, B.M. – MICHELSEN, A. – MELILLO, J.M. 2010. Responses of fungal root colonization, plant cover and leaf nutrients to long-term exposure to elevated atmospheric CO2 and warming in a subarctic birch forest understory. In Global Change Biology, vol. 16, no. 6, pp. 1820–1829. DOI: 10.1111/j.1365-2486.2009.02079.x10.1111/j.1365-2486.2009.02079.xOpen DOISearch in Google Scholar

PATTINSON, G.S. – WARTON, D.I. – MISMAN, R. – MCGEE, P.A. 1997. The fungicides Terrazole and Terraclor and the nematicide Fenamiphos have little effect on root colonisation by Glomus mosseae and growth of cotton seedlings. In Mycorrhiza, vol. 7, no. 3, pp. 155–159. DOI: 10.1007/s00572005017510.1007/s005720050175Open DOISearch in Google Scholar

PFEFFER, P.E. – DOUDS, D.D. – BÉCARD, G. – SHACHARHILL, Y. 1999. Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. In Plant Physiology, vol. 120, pp. 587–598. DOI: 10.1104/pp.120.2.587 PORTER, W.M. – ROBSON, A.D. – ABBOTT, L.K. 1987.10.1104/pp.120.2.587......1987Open DOISearch in Google Scholar

Field survey of the distribution of vesicular–arbuscular mycorrhizal fungi in relation to soil pH. In Journal of Applied Ecology, vol. 24, no. 2, pp. 659–662.10.2307/2403900Search in Google Scholar

POZO, M.J. – CORDIER, C. – DUMAS-GAUDOT, E. – GIANINAZZI, S. – BAREA, J.M. – AZCÓN-AGUILAR, C. 2002. Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. In Journal of Experimental Botany, vol. 53, no. 368, pp. 525–534. DOI: 10.1093/jexbot/53.368.52510.1093/jexbot/53.368.52511847251Open DOISearch in Google Scholar

PUMPLIN, N. – HARRISON, M.J. 2009. Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. In Plant Physiology, vol. 151, no. 2, pp. 809–819. DOI: 10.1104/pp.109.14187910.1104/pp.109.141879275461819692536Open DOISearch in Google Scholar

RABIE, G.H. – ALMADINI, A.M. 2005. Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. In African Journal of Biotechnology, vol. 4, no. 3, pp. 210–222.Search in Google Scholar

REDECKER, D. – KODNER, R. – GRAHAM, L.E. 2000. Glomalean fungi from the Ordovician. In Science, vol. 289, no. 5486, pp. 1920–1921.Search in Google Scholar

REDECKER, D. – SHÜSSLER, A. – STOCKINGER, H. – STÜRMER, S.L. – MORTON, J.B. – WALKER, C. 2013. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). In Mycorrhiza, vol. 23, no. 7, pp. 515–531. DOI: 10.1007/s00572-013-0486-y10.1007/s00572-013-0486-y23558516Open DOISearch in Google Scholar

REQUENA, N. – BREUNINGER, M. 2004. The old arbuscular mycorrhizal symbiosis in the light of the molecular era. In ESSER, K. – LÜTTGE, U. – BEYSCHLAG, W. – MURATA, J. (Eds.) Progress in Botany. Springer, Berlin, Heidelberg, ISBN 978-3-642-18819-0, pp. 323–356.Search in Google Scholar

REQUENA, N. – SERRANO, E. – OCÓN, A. – BREUNINGER, M. 2007. Plant signals and fungal perception during arbuscular mycorrhizal stablishment. In Phytochemistry, vol. 68, no. 1, pp. 33–40. DOI: 10.1016/j.phytochem.2006.09.03610.1016/j.phytochem.2006.09.03617095025Open DOISearch in Google Scholar

RILLIG, M.C. – FIELD, C.B. – ALLEN, M.F. 1999. Soil biota responses to long-term atmospheric CO2 enrichment in two California annual grasslands. In Oecologia, vol. 119, no. 4, pp. 572–577. DOI: 10.1007/s00442005082110.1007/s004420050821Open DOISearch in Google Scholar

RUIZ-LOZANO, J.M. – AZCÓN, R. – GOMEZ M. 1995. Effects of arbuscularmycorrhizal Glomus species on drought tolerance: physiological and nutritional responses. In Applied and Environmental Microbiology, vol. 61, no. 2, pp. 456–460.Search in Google Scholar

RUIZ-LOZANO, M. – AZCON, R. 2000. Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. In Mycorrhiza, vol. 10, no. 3, pp. 137–143. DOI: 10.1007/s00572000007510.1007/s005720000075Search in Google Scholar

RYAN, M.H. – ANGUS, J.F. 2003. Arbuscular mycorrhizae in wheat and field pea crops on a low P soil: increased Zn-uptake but no increase in P-uptake or yield. In Plant and Soil, vol. 250, no. 2, pp. 225–239. DOI: 10.1023/A:102283993013410.1023/A:1022839930134Open DOISearch in Google Scholar

RYAN, M.H. – CHILVERS, G.A. – DUMARESQ, D.C. 1994. Colonisation of wheat by VA-mycorrhizal fungi was found to be higher on a farm managed in an organic manner than on a conventional neighbour. In Plant and Soil, vol. 160, no. 1, pp. 33–40. DOI: 10.1007/BF0015034310.1007/BF00150343Open DOISearch in Google Scholar

SÄLE, V. – AGUILERA, P. – LACZKO, E. – MÄDER, P. – BERNER, A. – ZIHLMANN, U. – VAN DER HEIJDEN, M.G.A. – OEHL, F. 2015. Impact of conservation tillage and organic farming on the diversityof arbuscular mycorrhizal fungi. In Soil Biology and Biochemistry, vol. 84, pp. 38–52. DOI: 10.1016/j.soilbio.2015.02.00510.1016/j.soilbio.2015.02.005Open DOISearch in Google Scholar

SANNAZZARO, A.I. – RUIZ, O.A. – ALBERTO, E.O. – MENÉNDEZ, A.B. 2006. Alleviation of salt stress in Lotus glaber by Glomus intraradices. In Plant and Soil, vol. 285, no. 1–2, pp. 279–287. DOI: 10.1007/s11104-006-9015-510.1007/s11104-006-9015-5Open DOISearch in Google Scholar

SBRANA, C. – GIOVANNETTI, M. 2005. Chemotropism in the arbuscular mycorrhizal fungus Glomus mosseae. In Mycorrhiza, vol. 15, no. 7, pp. 539–545. DOI: 10.1007/s00572-005-0362-510.1007/s00572-005-0362-5Open DOISearch in Google Scholar

SCHÜßLER, A. – SCHWARZOTT, D. – WALKER, C. 2001. A new fungal phylum, the Glomeromycota: phylogeny and evolution. In Mycological Research, vol. 105, no. 12, pp. 1413–1421. DOI: 10.1017/S095375620100519610.1017/S0953756201005196Open DOISearch in Google Scholar

SCHÜßLER, A. – WALKER, C. 2010. The Glomeromycota: a species list with new families and new genera. Edinburgh and Kew : The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University, 58 p. ISBN 1466388048Search in Google Scholar

SCHWEIGER, P.F. – JAKOBSEN, I. 1998. Dose-response relationships between four pesticides and phosphorus uptake by hyphae of arbuscular mycorrhizas. In Soil Biology and Biochemistry, vol. 30, no. 10–11, pp. 1415–1422. DOI: 10.1016/S0038-0717(97)00259-910.1016/S0038-0717(97)00259-9Open DOISearch in Google Scholar

SELVARAJ, T. – CHELLAPPAN, P. 2006. Arbuscular mycorrhizae: a diverse personality. In Journal of Central European Agriculture, vol. 7, no. 2, pp. 349–358.Search in Google Scholar

SHARMA, D. – KAPOOR, R. – BHATNAGAR, A.K. 2009. Differential growth response of Curculigo orchioides to native arbuscular mycorrhizal fungal (AMF) communities varying in number and fungal components. In European Journal of Soil Biology, vol. 45, no. 4, pp. 328–333. DOI: 10.1016/j.ejsobi.2009.04.00510.1016/j.ejsobi.2009.04.005Open DOISearch in Google Scholar

SLEZACK, S. – DUMAS-GAUDOT, E. – ROSENDAHL, S. – KJOLLER, R. – PAYNOT, M. – NEGREL, J. – GIANINAZZI, S. 1999. Endoproteolytic activities in pea roots inoculated with the arbuscular mycorrhizal fungus Glomus mosseae and/or Aphanomyces euteiches in relation to bioprotection. In The New Phytologist, vol 142, no. 3, pp. 517–529. DOI: 10.1046/j.1469-8137.1999.00421.x10.1046/j.1469-8137.1999.00421.xOpen DOISearch in Google Scholar

SMITH, S.E. – READ, D. 1997. Mycorrhizal symbiosis. San Diego, CA, USA : Academic Press, 605 p. ISBN: 9780080537191Search in Google Scholar

SMITH, F.A. – SMITH, S.E. 2011. What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants? In Plant and Soil, vol. 348, p. 63. DOI: 10.1007/s11104-011-0865-010.1007/s11104-011-0865-0Open DOISearch in Google Scholar

SMITH, S.E. – SMITH, F.A. – JAKOBSEN, I. 2003. Mycorrizal fungi can dominate phosphate supply to plants irrespective of growth responses. In Plant Physiology, vol. 133, pp. 16–20. DOI: 10.1104/pp.103.02438010.1104/pp.103.024380154033112970469Open DOISearch in Google Scholar

SMITH, S.E. – FACELLI, E. – POPE, S. – SMITH, F.A. 2010. Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. In Plant and Soil, vol. 326, no. 1–2, pp. 3–20. DOI: 10.1007/s11104-009-9981-510.1007/s11104-009-9981-5Open DOISearch in Google Scholar

TOMMERUP, I.C. 1988. The vesicular–arbuscular mycorrhizas. In Advances in Plant Pathology, vol. 6, pp. 81–91. DOI: 10.1016/B978-0-12-033706-4.50008-610.1016/B978-0-12-033706-4.50008-6Open DOISearch in Google Scholar

TRESEDER, K.K. 2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. In The New Phytologist, vol. 164, no. 2, pp. 347–355. DOI: 10.1111/j.1469-8137.2004.01159.x10.1111/j.1469-8137.2004.01159.x33873547Open DOISearch in Google Scholar

VIGO, C. – NORMAN, J.R. – HOOKER, J.E. 2000. Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. In Plant Pathology, vol. 49, no. 4, pp. 509–514. DOI: 10.1046/j.1365-3059.2000.00473.x10.1046/j.1365-3059.2000.00473.xOpen DOISearch in Google Scholar

VIVAS, A. – BAREA, J.M. – AZCÓN, R. 2005. Interactive effect of Brevibacillus brevis and Glomus mosseae both isolated from Cd contaminated soil, on plant growth, physiological mycorrhizal fungal characteristics and soil enzymatic activities in Cd polluted soils. In Environmental Pollution, vol. 134, no. 2, pp. 257–266. DOI: 10.1016/j.envpol.2004.07.02910.1016/j.envpol.2004.07.02915589653Open DOISearch in Google Scholar

WANG, B. – QIU, Y.L. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. In Mycorrhiza, vol. 16, no. 5, pp. 299–363. DOI: 10.1007/s00572-005-0033-610.1007/s00572-005-0033-616845554Open DOISearch in Google Scholar

WANG, B. – FUNAKOSHI, D. – DALPE, Y. – HAMEL, C. 2002. Phosphorus-32 absorption and translocation to host plants by arbuscular mycorrhizal fungi at low root zone temperature. In Mycorrhiza, vol. 12, no. 2, pp. 93–96. DOI: 10.1007/s00572-001-0150-910.1007/s00572-001-0150-912035733Open DOISearch in Google Scholar

WETZEL, K. – SILVA, G. – MATCZINSKI, U. – OEHL, F. – FESTER, T. 2014. Superior differentiation of arbuscular mycorrhizal fungal communities from till and no-till plots by morphological spore identification when compared to T-RFLP. In Soil Biology & Biochemistry, vol. 72, pp. 88–96. DOI: 10.1016/j.soilbio.2014.01.03310.1016/j.soilbio.2014.01.033Open DOISearch in Google Scholar

WHIPPS, J.M. 2004 Prospects and limitations for mycorrhizas in biocontrol of root pathogens. In Canadian Journal of Botany, vol. 82, no. 8, pp. 1198–1227. DOI: 10.1139/b04-08210.1139/b04-082Open DOISearch in Google Scholar

WU, Q.S. – ZOU, Y.N. – LIU, W. – YE, X.F. – ZAI, H.F. – ZHAO, L.J. 2010. Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defense systems. In Plant Soil and Environment, vol. 56, no. 10, pp. 470–475. DOI: 10.17221/54/2010-PSE10.17221/54/2010-PSESearch in Google Scholar

YANO-MELO, A.M. – SAGGIN, O.J. – MAIA, L.C. 2003. Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress. In Agriculture, Ecosystems and Environment, vol. 95, no. 1, p. 343–348. DOI: 10.1016/S0167-8809(02)00044-010.1016/S0167-8809(02)00044-0Open DOISearch in Google Scholar

ZHANG, F. – HAMEL, C. – KIANMEHR, H. – SMITH, D.L. 1995. Root-zone temperature and soybean [Glycine max (L.) merr.] vesicular-arbuscular mycorrhizae: development and interactions with the nitrogen fixing symbiosis. In Environmental and Experimental Botany, vol. 35, no. 3, pp. 287–298. DOI: 10.1016/0098-8472(95)00023-210.1016/0098-8472(95)00023-2Open DOISearch in Google Scholar

ZOU, X. – BINKLEY, D. – DOXTADER, K.G. 1992. New methods for estimating gross P mineralization and mobilization rates in soils. In Plant and Soil, vol. 147, no. 2, pp. 243–250. DOI: 10.1007/BF0002907610.1007/BF00029076Open DOISearch in Google Scholar

eISSN:
1338-4376
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Plant Science, Ecology, other