Open Access

Synthesis, Characterization and Biological Properties of Intercalated Kaolinite Nanoclays: Intercalation and Biocompatibility


Cite

1. Nazir, M.S., Mohamad-Kassim, M.H., Mohapatra, L., Gilani, M.A., Raza, M.R., Majeed, K. (2016) Secondary characteristic properties of nanoclays and characterization of nanoparticulates and nanocomposites. In: (Jawaid, M., Qaiss, A.e.K., Bouhfid, R.) Nanoclay reinforced polymer composites, Springer Singapore, 35-55.10.1007/978-981-10-1953-1_2Search in Google Scholar

2. Maisanaba, S., Pichardo, S., Puerto, M., Gutiérrez-Praena, D., Cameán, A., Jos, A. (2015) Toxicological evaluation of clay minerals and derived nanocomposites: A review. Environmental Research, 138, 233-254.10.1016/j.envres.2014.12.02425732897Search in Google Scholar

3. Koosha, M., Mirzadeh, H., Shokrgozar, M.A., Farokhi, M. (2015) Nanoclay-reinforced electrospun chitosan/PVA nanocomposite nanofibers for biomedical applications. RSC Advances,5, 10479-10487.10.1039/C4RA13972KSearch in Google Scholar

4. Awada, M, López-Galindo, A., Setti, M., El-Rahmany, M., Iborra C.V. (2017) Kaolinite in pharmaceutics and biomedicine. International Journal of Pharmaceutics, 533, 34-48.10.1016/j.ijpharm.2017.09.05628943206Search in Google Scholar

5. Hun-Kim, M., Choi, G., Elzatahry, A., Vinu, A., Bin Choy, Y., Choy, J.-H. (2016) Review of clay-drug hybrid materials for biomedical applications: Administration routes. Clays and Clay Minerals,64, 115-130.10.1346/CCMN.2016.0640204709164132218609Search in Google Scholar

6. Karaog~lu, M.H., Dog~an, M., Alkan, M. (2010) Removal of reactive blue 221 by kaolinite from aqueous solutions. Industrial & Engineering Chemistry Research,49, 1534-1540.10.1021/ie9017258Search in Google Scholar

7. Ganguly, S., Dana, K., Mukhopadhyay, T.K., Parya, T.K., Ghatak, S. (2011) Organophilic nano clay: A comprehensive review. Transactions of the Indian Ceramic Society,70, 189-206.10.1080/0371750X.2011.10600169Search in Google Scholar

8. Zhang, S., Liu, Q., Cheng, H., Zeng, F. (2015) Combined experimental and theoretical investigation of interactions between kaolinite inner surface and intercalated dimethyl sulfoxide. Applied Surface Science,331, 234-240.10.1016/j.apsusc.2015.01.019Search in Google Scholar

9. Benlikaya, R., Bütün, V., Alkan, M. (2016) Modified kaolinites-polyalkyl methacrylate nanocomposites: Exploring relations between solubility parameters and thermal properties for in situ solution polymerization. Polymer Composites,37, 2333-2341.10.1002/pc.23412Search in Google Scholar

10. Lordan, S., Kennedy, J.E., Higginbotham, C.L. (2011) Cytotoxic effects induced by unmodified and organically modified nanoclays in the human hepatic HepG2 cell line. Journal of Applied Toxicology,31, 27-35.10.1002/jat.156420677180Search in Google Scholar

11. Maisanaba, S., Pichardo, S., Puerto, M., Gutiérrez-Praena, D., Cameán, A. M., Jos, A. (2015) Toxicological evaluation of clay minerals and derived nanocomposites: A review. Environmental Research,138, 233-254.10.1016/j.envres.2014.12.02425732897Search in Google Scholar

12. Rajiv, S., Jerobin, J., Saranya, V., Nainawat, M., Sharma, A., Makwana, P., Gayathri, C., Bharath, L., Singh, M., Kumar, M., Mukherjee, A., Chandrasekaran, N. (2015) Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro. Human and Experimental Toxicology, 35, 170-183.10.1177/096032711557920825829403Search in Google Scholar

13. Assadian, E., Zarei M., Gilani, A., Mehrzad, F., Farshin, Degampanah, H., Pourahmad, J. (2018) Toxicity of Copper Oxide (CuO) Nanoparticles on Human Blood Lymphocytes. Biological Trace Element Research,184, 350-357.10.1007/s12011-017-1170-429064010Search in Google Scholar

14. Turhan, Y., Dogan, M., Alkan, M. (2010) Poly (vinyl chloride)/kaolinite nanocomposites: Characterization and thermal and optical properties. Industrial & Engineering Chemistry Research,49, 1503-1513.10.1021/ie901384xSearch in Google Scholar

15. Ota, Y., Ishihara, S., Otani, K., Yasuda, K., Nishikawa, T., Tanaka, T., Tanaka, J., Kiyomatsu, T., Kawai, K., Hata, K., Nozawa, H., Kazama, S., Yamaguchi, H., Sunami, E., Kitayama, J., Watanabe, T. (2016) Effect of nutrient starvation on proliferation and cytokine secretion of peripheral blood lymphocytes. Molecular Clinical Oncology,4, 607-610.10.3892/mco.2016.763481215027073674Search in Google Scholar

16. Yilmaz, B., Dogan, S., Celikler Kasimogullari, S. (2018) Hemocompatibility, cytotoxicity, and genotoxicity of poly(methylmethacrylate)/nanohydroxyapatite nanocomposites synthesized by melt blending method. International Journal of Polymeric Materials and Polymeric Biomaterials,67, 1-10.10.1080/00914037.2017.1331349Search in Google Scholar

17. Maisanaba, S., Gutiérrez-Praena, D., Pichardo, S., Moreno, F. J., Jordá, M., Cameán, A. M., Aucejo, S., Jos, Á. (2014) Toxic effects of a modified montmorillonite clay on the human intestinal cell line Caco-2. Journal of Applied Toxicology,34, 714-725.10.1002/jat.294524122917Search in Google Scholar

18. Promega, Celltiter 96® aqueous one solution cell proliferation assay, http://Www.Promega.Com/Protocols/, Promega Corporation, Madison, WI 53711 USA, 2012.Search in Google Scholar

19. Ahamed, M., Akhtar, M., Alhadlaq, H., Khan, M., Alrokayan, S. (2015) Comparative cytotoxic response of nickel ferrite nanoparticles in human liver HepG2 and breast MFC-7 cancer cells. Chemosphere,135, 278-288.10.1016/j.chemosphere.2015.03.07925966046Search in Google Scholar

20. Attik, G., Villat, C., Hallay, F., Pradelle~Plasse, N., Bonnet, H., Moreau, K., Colon, P., Grosgogeat, B. (2014) In vitro biocompatibility of a dentine substitute cement on human MG63 osteoblasts cells: Biodentine™ versus MTA®. International Endodontic Journal,47, 1133-1141.10.1111/iej.1226124517569Search in Google Scholar

21. Motlagh, D., Allen, J., Hoshi, R., Yang, J., Lui, K., & Ameer, G. (2007). Hemocompatibility evaluation of poly(diol citrate) in vitro for vascular tissue engineering. J Biomed Mater Res A, 82(4), 907-916. doi:10.1002/jbm.a.3121110.1002/jbm.a.3121117335023Search in Google Scholar

22. Zhang, S., Liu, Q., Cheng, H., Gao, F., Liu, C., Teppen, B. J. (2018) Mechanism responsible for intercalation of dimethyl sulfoxide in kaolinite: Molecular dynamics simulations. Applied Clay Science, 151, 46-53.10.1016/j.clay.2017.10.022Search in Google Scholar

23. Mehdi, K., Bendenia, S., Lecomte-Nana, G. L., Batonneau-Gener, I., Rossignol, F., Marouf-Khelifa, K., Khelifa, A. (2018) A new approach about the intercalation of hexadecyltrimethylammonium into halloysite: preparation, characterization, and mechanism. Chemical Papers, 73, 131-139.10.1007/s11696-018-0558-8Search in Google Scholar

24. Elbokl, T.A., Detellier, C. (2008). Intercalation of cyclic imides in kaolinite. Journal of Colloid and Interface Science. 323, 338-348.10.1016/j.jcis.2008.04.003Search in Google Scholar

25. Lakshmi, M.S., Narmadha, B., Reddy, B.S.R. (2008) Enhanced thermal stability and structural characteristics of different MMT-Clay/epoxy-nanocomposite materials. Polymer Degradation and Stability,93, 201-213.10.1016/j.polymdegradstab.2007.10.005Search in Google Scholar

26. Bowman, P.D., Wang, X., Meledeo, M.A., Dubick, M.A., Kheirabadi, B.S. (2011) Toxicity of aluminum silicates used in hemostatic dressings toward human umbilical veins endothelial cells, HeLa cells, and RAW267.4 mouse macrophages. Journal of Trauma,71, 727-732.10.1097/TA.0b013e3182033579Search in Google Scholar

27. Imerys. Kaolin China Clay, 2012. Available from: http://www.imerysperfmins.com/kaolin/eu/kaolin.htmSearch in Google Scholar

28. Michel, C., Herzog, S., de Capitani, C., Burkhardt-Holm, P., Pietsch, C. (2014) Natural mineral particles are cytotoxic to rainbow trout gill epithelial cells in vitro. PLoS One,9 e100856.10.1371/journal.pone.0100856Search in Google Scholar

29. Murphy, E.J., Roberts, E., Horrocks, L.A. (1993) Aluminum silicate toxicity in cell cultures. Neuroscience,55, 597-605.10.1016/0306-4522(93)90527-MSearch in Google Scholar

30. Bessa, M.J., Costa, C., Reinosa, J., Pereira, C., Fraga, S., Fernández, J., Bañares, M.A., Teixeira, J.P. (2017) Moving into advanced nanomaterials. Toxicity of rutile TiO2 nanoparticles immobilized in nanokaolin nanocomposites on HepG2 cell line. Toxicology and Applied Pharmacology,316, 114-122.10.1016/j.taap.2016.12.018Search in Google Scholar

31. Rawtani, D., Agrawal, Y.K. (2012) Multifarious applications of halloysite nanotubes: A review. Reviews on Advanced Materials Science,30, 282-295.Search in Google Scholar

32. Ahmed, F. R., Shoaib, M.H., Azhar, M., Um, S.H., Yousuf, R.I., Hashmi, S., Dar, A. (2015) Invitro assessment of cytotoxicity of halloysite nanotubes against HepG2, HCT116 and human peripheral blood lymphocytes. Colloids Surf B Biointerfaces,135, 50-55.10.1016/j.colsurfb.2015.07.02126241916Search in Google Scholar

33. Mousa, M., Evans, N. D., Oreffo, R. O. C, Dawson, J. I. (2018) Clay nanoparticles for regenerative medicine and biomaterial design: a review of clay bioactivity. Biomaterials,159, 204-214.10.1016/j.biomaterials.2017.12.02429331807Search in Google Scholar

34. Geh, S., Yücel, R., Duffin, R., Albrecht, C., Borm, P. J.A., Armbruster, L., Raulf-Heimsoth, M., Brüning, T., Hoffmann, E., Rettenmeier, A.W., Dopp, E. (2005) Cellular uptake and cytotoxic potential of respirable bentonite particles with different quartz contents and chemical modifications in human lung fibroblasts. Archives of Toxicology,80, 98-106.10.1007/s00204-005-0013-9Search in Google Scholar

35. Tiburu, E.K., Fleischer, H.N., Aidoo, E.O., Salifu, A., Asimeng, B.O., Zhou, H. (2016) Crystallization of linde type a nanomaterials at two temperatures exhibit differential inhibition of hela cervical cancer cells in vitro. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 28, 66-77.10.4028/www.scientific.net/JBBBE.28.66Search in Google Scholar

36. Maisanaba, S., Ortuño, N., Jordá-Beneyto, M., Aucejo, S., Jos, Á. (2017) Development, characterization and cytotoxicity of novel silane-modified clay minerals and nanocomposites intended for food packaging. Applied Clay Science,138, 40-47.10.1016/j.clay.2016.12.042Search in Google Scholar

37. Milosevic, N.P., Kojic, V., Curcic, J., Jakimov, D., Milic, N., Banjac, N., Uscumlic, G., Kaliszan, R. (2017) Evaluation of in silico pharmacokinetic properties and in vitro cytotoxic activity of selected newly synthesized n-succinimide derivatives. Journal of Pharmaceutical and Biomedical Analysis, 137, 252-257.10.1016/j.jpba.2017.01.04228167418Search in Google Scholar

38. Chen, Y.P., Wu, S.H., Chen, I.C., Chen, C.T. (2017) Impacts of cross-linkers on biological effects of mesoporous silica nanoparticles. ACS Applied Materials and Interfaces,9,10254-10265.10.1021/acsami.7b0024028229590Search in Google Scholar

39. Vega-Chacón, J., Arbeláez, M.I.A., Jorge, H.J., Marques, R.F.C., Jafelicci Jr, M. (2017) pH-responsive poly(aspartic acid) hydrogel-coatedmagnetite nanoparticles for biomedical applications. Materials Science and Engineering C,77, 366-373.10.1016/j.msec.2017.03.24428532042Search in Google Scholar

40. Shanthini, G.M., Martin, C.A., Sakthivel, N., Veerla, S.C., Elayaraja, K., Lakshmi, B. S., Asokan, K., Kanjilal, D., Kalkura, S. N. (2015) Physical and biological properties of the ion beam irradiated PMMA-based composite films. Applied Surface Science,329, 116-126.10.1016/j.apsusc.2014.12.129Search in Google Scholar

41. Liu, H.-Y., Du, L., Zhao, Y.-T., Tian, W.-Q. (2015) In vitro hemocompatibility and cytotoxicity evaluation of halloysite nanotubes for biomedical application. Journal of Nanomaterials, 2015, 1-9.10.1155/2015/685323Search in Google Scholar

eISSN:
2083-4799
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, Functional and Smart Materials