Open Access

Microstructure Characterization of Welds in X5CrNiCuNb16-4 Steel in Overaged Condition


Cite

1. Bilmes P. D., Solari M., Llorente C.L.: Characteristics and effects of austenite resulting from tempering of 13Cr-NiMo martensitic steel weld metals. Materials Characterization 46 (2001) 285–296.Search in Google Scholar

2. Antony K.C.: Aging Reactions in Precipitation Hardenable Stainless Steel. Metall. J. 15 (1963) 1595-1605.Search in Google Scholar

3. Murayama M., Katayama Y., Hono K.: Microstructural evolution in a 17-4 PH stainless steel after aging at 400 °C. Metallurgical and Material Transations A 30/2 (1999) 345–353.Search in Google Scholar

4. http://www.aksteel.com/pdf/markets_products/stainless/precipitation/17-4_ph_data_sheet.pdf, 11.06.2015.Search in Google Scholar

5. Ziewiec A., Zielińska–Lipiec A., Tasak E.: Microstructure of welded joints of X5CrNiCuNb16-4 (17-4 PH) martensitic stainless steel after heat treatment. Archives of Metallurgy and Materials 59/3 (2014) 965–970.Search in Google Scholar

6. Song Y., Li X., Rong L. and Li Y.: Anomalous phase transformation from martensite to austenite in Fe-13%Cr-4%Ni-Mo martensitic stainless steel. Journal of Materials Science and Technology 26/9 (2010) 823-826.Search in Google Scholar

7. Schönbauer B. M., Yanase K., Endo M.: The influence of various types of small defects on the fatigue limit of precipitation-hardened 17-4PH stainless steel. Theoretical and Applied Fracture Mechanics 87 (2017) 35-49.Search in Google Scholar

8. Tavares S. S. M., Machado C. L. C., Oliveira I. G., Martins, T. R. B. Masoumi M.: Damage associated with the interaction between hydrogen and microstructure in a high sulfur 17-4PH steel for studs. Engineering Failure Analysis, 82 (2017) 642-647.Search in Google Scholar

9. Daoxin D. L., Xiaohua L., Chengsong Z., Ao L. N.: Surface nanocrystallization of 17-4 precipitation-hardening stainless steel subjected to ultrasonic surface rolling process. Materials Science and Engineering A 726 (2018) 69-81.Search in Google Scholar

10. Bhadeshia H. K. D. H. and Edmonds D. V.: The Distribution of retained austenite in martensite and the influence of inter-lath crystallography, Proc. 3rd Int. Conf. On Martensitic Transformation, Cambridge, Massachusetts, U.S.A., 1979, 28-33.Search in Google Scholar

11. Sha W., Cerezo and Smith G. D. W.: Phase chemistry and precipitation reactions in maraging steels: Part I. Introduction and study of Co-containing C-300 steel, Metallurgical and Material Transations A 24 (1993) 1221-1232.Search in Google Scholar

12. Leem D.S., Lee Y.D., Jun J.H. and Choi C. S.: Amount of retained austenite at room temperature after reverse transformation of martensite to austenite in an Fe–13% Cr–7% Ni–3% Si martensitic stainless steel. Scripta Materialia 45 (2001) 772.Search in Google Scholar

13. Rao V.N. and Thomas G.: Proc. 3rd Int. Conf. On Martensitic Transformation, Cambridge, Massachusetts, U.S.A., 1979, 12-13.Search in Google Scholar

14. Kowalska J., Ratuszek W., Witkowska M., Zielińska–Lipiec A., Development of microstructure and texture in Fe-26Mn-3Si-3Al alloy during cold-rolling and annealing. Journal of Alloys and Compounds 615 (2014) 583–586.Search in Google Scholar

15. Kowalska J., Ratuszek W., Chruściel K.: Crystallographic relations between deformation and annealing texture in austenitic steels. Archives of Metallurgy and Materials 53/1 (2008) 131–137.Search in Google Scholar

16. Witkowska M., Zielińska-Lipiec A., Kowalska J., W. Ratuszek, Microstructural Changes in a High-Manganese Austenitic Fe-Mn-Al-C Steel, Archives of Metallurgy and Materials 59 (2014) 971–975.10.2478/amm-2014-0163Search in Google Scholar

17. Das C. R. et al: Weldability of 17-4PH stainless steel in overaged heat treated condition. Science and Technology of Welding and Joining 11 (2006) 502-508.Search in Google Scholar

18. Tuz L.: Evaluation of Microstructure and Selected Mechanical Properties of Laser Beam Welded S690QL High-Strength Steel. Advances in Materials Science, 3/18 (2018) 34-42, https://doi.org/10.1515/adms-2017-0039.10.1515/adms-2017-0039Search in Google Scholar

19. Pańcikiewicz K.: Structure and Properties of Welded Joints of 7CrMoVTiB10-10 (T24) Steel. Advances in Materials Science, 1/18 (2018) 37-47, https://doi.org/10.1515/adms-2017-0026.10.1515/adms-2017-0026Search in Google Scholar

20. Tavakoli Shoushtari M. R., Moayed M. H. and Davoodi A.: Post-weld heat treatment influence on galvanic corrosion of GTAW of 17-4PH stainless steel in 3·5%NaCl Corrosion Engineering Science Technology 46 (2011) 415-424.Search in Google Scholar

21. Sun Y., Hebert R. J., Aindow M.: Effect of heat treatments on microstructural evolution of additively manufactured and wrought 17-4PH stainless steel, Materials and Design, 156 (2018) 429-440.Search in Google Scholar

22. Mudali Kamachi U., Bhaduri A. K., Gnanamoorthy J. B.: Localised corrosion behaviour of 17–4 PH stainless steel. Materials Science and Technology 6 (1990) 475-481.Search in Google Scholar

23. Jui-Hung W., Chih-Kuang L.: Effect of strain rate on high-temperature low-cycle fatigue of 17-4 PH stainless steels Materials Science and Engineering A 390 (2005) 291–298.Search in Google Scholar

24. Viswanathan U. K., Banerjee S., Krishnan R.: Effects of aging on the microstructure of 17-4 PH stainless steel. Materials Science and Engineering A 104 (1988) 181-189.Search in Google Scholar

25. Chung C.-Y., Tzeng Y. C.: Effects of aging treatment on the precipitation behavior of ε-Cu phase and mechanical properties of metal injection molding 17-4PH stainless steel. Materials Letters 237 (2019), 228-231.Search in Google Scholar

26. Matlack K. H., Bradley H. A., Thiele S., Kim J. Y., Wall J. J., Hee Joon Jung, Jianmin Qu, Laurence J. Jacobs. Nonlinear ultrasonic characterization of precipitation in 17-4PH stainless steel. NDT&E International 71, April (2015), 8-15.10.1016/j.ndteint.2014.11.001Search in Google Scholar

27. Yeli G., Auger M. A., Wilford K., Smith G. D.W., Bagot P. A.J., Moody M. P., Sequential nucleation of phases in a 17-4PH steel: Microstructural characterization and mechanical properties. Acta Materialia 125 (2017) 38-49.Search in Google Scholar

28. McWilliams B., Pramanik B., Kudzal A., Taggart-Scarff J., High strain rate compressive deformation behavior of an additively manufactured stainless steel, Additive Manufacturing 24 (2018) 432-439.10.1016/j.addma.2018.09.016Search in Google Scholar

29. Ziewiec A., Tasak E., Czech J.: Cracking of welded joints of the 17-4PH stainless martensitic steel precipitation hardened with copper, Archives of Metallurgy and Materials 50 (2012) 1055-1061.Search in Google Scholar

30. Trzepieciński T., Pieja T., Malinowski T., Smusz R., Motyka M.: Investigation of 17-4PH steel microstructure and conditions of elevated temperature forming of turbine engine strut. Journal of Materials Processing Technology 252 (2018) 191-200.Search in Google Scholar

31. Hu Z., Zhu H., Zhang H., Zeng X.: Experimental investigation on selective laser melting of 17-4PH stainless steel. Optics and Laser Technology, 87 (2017) 17-25Search in Google Scholar

32. Lo C. H., Shek K. H., Lai J. K. L: Recent developments in stainless steels. Materials Science and Engineering R 65 (2009) 39–104.Search in Google Scholar

33. Ridley N., Stuart H., Zwell L.: Lattice parameter of Fe–C austenites at room temperature. Transactions of the Metallurgical Society of AIME, 245 (1969) 1834–1836.Search in Google Scholar

34. Ruhl R., Cohen M.: Splat quenching of iron–carbon alloys. Transactions of the Metallurgical Society of AIME 245 (1969) 241–251.Search in Google Scholar

eISSN:
2083-4799
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, Functional and Smart Materials