Open Access

The Influence of Laser Alloying of Ti13Nb13Zr on Surface Topography and Properties


Cite

1. Suchanek K., Bartkowiak A., Gdowik A., Perzanowski M., Kąc S., Szaraniec B., Suchanek M., Marszałek M.: Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates. Materials Science and Engineering C 51 (2015) 57-63.Search in Google Scholar

2. Park J.B., Kim Y.K.: Metallic biomaterials. [In] Biomaterials: Principles and Applications, Park J.B. [ed.], CRC Press, Boca Raton, (2003) 1-21.Search in Google Scholar

3. Oldani C., Dominguez A.: Titanium as a biomaterial for implants. Recent Advances in Arthroplasty (2012) 149-162.Search in Google Scholar

4. El-Rahman S.S.A.: Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment). Pharmacological Research 47 3 (2003) 189-194.Search in Google Scholar

5. Bartmański M., Berk A., Wójcik A.: The Determinants of Morphology and Properties of the Nanohydroxyapatite Coating Deposited on the Ti13Nb13Zr Alloy by Electrophoretic Technique. Advances in Materials Science 16 3 (2016) 56-66Search in Google Scholar

6. Jin M., Yao S., Wang L.-N., Qiao Y., Volinsky A.A.: Enhanced bond strength and bioactivity of interconnected 3D TiO2 nanoporous layer on titanium implants. Surface & Coatings Technology 304 (2016) 459-467.Search in Google Scholar

7. İzmir M., Ercan B.: Anodization of titanium alloys for orthopedic applications. Frontiers of Chemical Science and Engineering (2019), 1-18.10.1007/s11705-018-1759-ySearch in Google Scholar

8. Vlcak P., Fojt J., Weiss Z., Kopeček J., Perina V.: The effect of nitrogen saturation on the corrosion behaviour of Ti-35Nb-7Zr-5Ta beta titanium alloy nitrided by ion implantation. Surface & Coatings Technology 358 (2019) 144-152.Search in Google Scholar

9. Kashkarov E.B., Nikitenkov N.N., Sutygina A.N., Syrtanov M.S., Vilkhivskaya O.V., Pryamushko T.S., Kudiiarov V.N., Volesky L.: Effect of titanium ion implantation and deposition on hydrogenation behavior of Zr-1Nb alloy. Surface & Coatings Technology 308 (2016) 2-9.Search in Google Scholar

10. Simka W. Mosiałek M., Nawrat G., Nowak P., Żak J., Szade J., Winiarski A., Maciej A., Szyk-Warszyńska L.: Electrochemical polishing of Ti–13Nb–13Zr alloy. Surface & Coatings Technology 213 (2012) 239–246.10.1016/j.surfcoat.2012.10.055Search in Google Scholar

11. Vasylyev M.A., Chenakin S.P., Yatsenko L.F.: Nitridation of TiA6AlA4V alloy under ultrasonic impact treatment in liquid nitrogen. Acta Materialia 60 (2012), 6223–6233.Search in Google Scholar

12. Dumas V., Guignandon A., Vico L., Mauclair C., Zapata X., Linossier M.T., Bouleftour W., Granier J., Peyroche S., Dumas J.-C., Zahouani H., Rattner A.: Femtosecond laser nano/micro patterning of titanium influences mesenchymal stem cell adhesion and commitment. Biomedical Materials 10 (2015), 55002.10.1088/1748-6041/10/5/05500226334374Search in Google Scholar

13. Mitura S.: Novel Synthesis nanocrystalline Diamond Films. Innovative Processing of Films and Nanocrystalline Powders. IC Press (2002), 107-146.10.1142/9781860949623_0004Search in Google Scholar

14. Drevet R., Ben Jaber N., Fauréa J., Taraa A., Ben Cheikh Larbib A., Benhayounea H.: Electrophoretic deposition (EPD) of nano-hydroxyapatite coatings with improved mechanical properties on prosthetic Ti6Al4V sustrates. Surface & Coatings Technology 301 (2016), 94-99.Search in Google Scholar

15. Bartmański M, Cieslik B., Glodowska J., Kalka P., Pawlowski L., Piepera M., Zielinski A.: Electrophoretic deposition (EPD) of nanohydroxyapatite - nanosilver coatings on Ti13Zr13Nb alloy. Ceramics International 43 15 (2017), 11820-11829.Search in Google Scholar

16. Łatka L., Pawłowski L., Chicot D., Pierlot C., Petit F.: Mechanical properties of suspension plasma sprayed hydroxyapatite coatings submitted to simulated body fluid. Surface and Coatings Technology, 205 (2010), 954-960.Search in Google Scholar

17. Jazdzewska M., Majkowska-Marzec B.: Hydroxyapatite deposition on the laser modified Ti13Nb13Zr alloy. Advances in Materials Science 17(4) (2017), 5-13.10.1515/adms-2017-0017Search in Google Scholar

18. Landowski M.: Influence of parameters of laser beam welding on structure of 2205 duplex stainless steel, Advances in Materials Science 19 (1) (2019), 21-31.10.2478/adms-2019-0002Search in Google Scholar

19. Kusinski J., Kac S., Kopia A., Radziszewska A., Rozmus-Górnikowska M., Major B., Major L., Marczak J., Lisiecki A.: Laser modification of the materials surface layer – a review paper. Bulletin of the Polish Academy of Sciences Technical Sciences. Technical Sciences 60 4 (2012) 711-728.10.2478/v10175-012-0083-9Search in Google Scholar

20. Adesina O., Popoola P., Fatoba O.: Laser Surface Modification — A Focus on the Wear Degradation of Titanium Alloy. [In] Fiber Laser, Paul M. [ed.], Intech Open, 2016, 367-381.10.5772/61737Search in Google Scholar

21. Diao Y., Zhang K.: Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB2 powders. Applied Surface Science 352 (2015) 163-168.Search in Google Scholar

22. Milovanović D. S., Petrović S. M., Shulepov M. A., Tarasenko V. F., Radak B. B., Miljanić Š. S., Trtica M. S.: Titanium alloy surface modification by excimer laser irradiation. Optics & Laser Technology 54 (2013), 419-427.Search in Google Scholar

23. Ashan M.S., Lee M.S.: Formation mechanism of self-organized nanogratings on a titanium surface using femtosecond laser pulses. Optik - International Journal for Light and Electron Optics 126 (2012), 5979-5983.Search in Google Scholar

24. Kiran Kumar K., Samuel G.L., Shunmugam M.S.: Theoretical and experimental investigations of ultra-short pulse laser interaction on Ti6Al4V alloy. Journal of Materials Processing Technology 263 (2019), 266–275.Search in Google Scholar

25. Mohazzab B.F., Jaleh B., Kakuee O., Fattah-alhosseini A.: Formation of titanium carbide on the titanium surface using laser ablation in n-heptane and investigating its corrosion resistance. Applied Surface Science 478 (2019), 623-635.Search in Google Scholar

26. Kuczyńska-Zemła D., Kwaśniak P., Sotniczuk A., Spychalski M., Wieciński P., Zdunek J., Ostrowski R., Garbacz H.: Microstructure and mechanical properties of titanium subjected to direct laser interference lithography. Surface and Coatings Technology 364 (2019), 422-429.Search in Google Scholar

27. Sun D., Gu D., Lin K., Ma J., Chen W., Huang J., Sun X., Chu M.: Selective laser melting of titanium parts: Influence of laser process parameters on macro- and microstructures and tensile property. Powder Technology 342 (2019), 371-379.Search in Google Scholar

28. Sun J., Zhu X., Qiu L., Wang F., Yang Y., Guo L.: The microstructure transformation of selective laser melted Ti-6Al-4V alloy. Materials Today Communications 19 (2019), 277-285.Search in Google Scholar

29. Fan Z., Feng H.: Study on selective laser melting and heat treatment of Ti-6Al-4V alloy. Results in Physics 10 (2018), 660-664.Search in Google Scholar

30. Tong Y., Yang N., Han K., Yuan S., Zhou J., Chen X., Shi L., Li W., Xudong R.: Surface morphology of titanium alloy with monolayer microparticles under different single pulse laser Energy. Optik 174 (2018), 766-775.Search in Google Scholar

31. Pou P., Riveiro A., del Val J., Comesaña R., Penide J., Arias-González F., Soto R., Lusquiños F., Pou J.: Laser surface texturing of Titanium for bioengineering applications. Procedia Manufacturing 13 (2017), 694-701.Search in Google Scholar

32. Gursel A.: Crack risk in Nd: YAG laser welding of Ti-6Al-4V alloy. Materials Letters 197 (2017), 233-235.10.1016/j.matlet.2016.12.112Search in Google Scholar

33. Zhou L., Yuan T., Li R., Tang J., Wang G., Guo K., Yuan J.: Densification, microstructure evolution and fatigue behavior of Ti-13Nb-13Zr alloy processed by selective laser melting. Powder Technology 342 (2019), 11-23.Search in Google Scholar

34. Łatka L., Cattini A., Chicot D., Pawłowski L., Kozerski S., Petit F., Denoirjean A.: Mechanical properties of yttria- and ceria-stabilized zirconia coatings obtained by suspension plasma spraying. Journal of Thermal Spray Technology 22 (2013), 125-130.Search in Google Scholar

35. Pharr G. M., Oliver W. C.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research 19 1 (2004), 3-20.Search in Google Scholar

36. Rogala-Wielgus D., Majkowska-Marzec B., Bartmański M.: Wpływ stopowania laserowego z użyciem nanorurek węglowych stopu Ti13Nb13Zr do zastosowań biomedycznych na jego wybrane własności mechaniczne. Przegląd Spawalnictwa 90 7 (2018), 18-23.Search in Google Scholar

37. Heise S., Höhlinger M., Torres Y., José J., Palacio P., Antonio J., Ortiz R., Wagener V., Virtanen S., Boccaccini A.R.: Electrophoretic deposition and characterization of chitosan / bioactive glass composite coatings on Mg alloy substrates, Electrochimica Acta 232 (2017), 456–464.10.1016/j.electacta.2017.02.081Search in Google Scholar

eISSN:
2083-4799
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, Functional and Smart Materials