Open Access

An Improvement of the VDSR Network for Single Image Super-Resolution by Truncation and Adjustment of the Learning Rate Parameters

   | Jun 20, 2019

Cite

[1] J. Salvador, Example-Based Super Resolution. Academic Press, 2017, 162 p. https://doi.org/10.1016/C2015-0-06719-310.1016/C2015-0-06719-3Search in Google Scholar

[2] V. Bannore, Iterative-Interpolation Super-Resolution Image Reconstruction. A Computationally Efficient Technique. Springer-Verlag Berlin Heidelberg, 2009, 113 p. https://doi.org/10.1007/978-3-642-00385-110.1007/978-3-642-00385-1Search in Google Scholar

[3] A. Small and S. Stahlheber, “The Role of Image Analysis Algorithms in Super-resolution Localization Microscopy,” in: Fluorescence Microscopy, Cornea A., Conn P. M. (eds.). Academic Press, 2014, pp. 227–242. https://doi.org/10.1016/B978-0-12-409513-7.00016-610.1016/B978-0-12-409513-7.00016-6Search in Google Scholar

[4] M. Amiri, A. Ahmadyfard, and V. Abolghasemi, “A fast video super resolution for facial image,” Signal Processing: Image Communication, vol. 70, 2019, pp. 259–270. https://doi.org/10.1016/j.image.2018.10.00810.1016/j.image.2018.10.008Search in Google Scholar

[5] R. Guo, X. Shi, Y. Zhu, and T. Yu, “Super-resolution reconstruction of astronomical images using time-scale adaptive normalized convolution,” Chinese Journal of Aeronautics, vol. 31, no. 8, pp. 1752–1763, 2018. https://doi.org/10.1016/j.cja.2018.06.00210.1016/j.cja.2018.06.002Search in Google Scholar

[6] I. Haq and A. A. Mudassar, “Geometric super-resolution using negative rect mask,” Optik, vol. 168, pp. 323–341, 2018. https://doi.org/10.1016/j.ijleo.2018.04.03310.1016/j.ijleo.2018.04.033Search in Google Scholar

[7] K. Hayat, “Multimedia super-resolution via deep learning: A survey,” Digital Signal Processing, vol. 81, pp. 198–217, 2018. https://doi.org/10.1016/j.dsp.2018.07.00510.1016/j.dsp.2018.07.005Search in Google Scholar

[8] J. Lu, W. Hu, and Y. Sun, “A deep learning method for image super-resolution based on geometric similarity,” Signal Processing: Image Communication, vol. 70, pp. 210–219, 2019. https://doi.org/10.1016/j.image.2018.10.00310.1016/j.image.2018.10.003Search in Google Scholar

[9] J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution using very deep convolutional networks,” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1646–1654, 2016. https://doi.org/10.1109/CVPR.2016.18210.1109/CVPR.2016.182Search in Google Scholar

[10] W. Xie, Y. Li, and X. Jia, “Deep convolutional networks with residual learning for accurate spectral-spatial denoising,” Neurocomputing, vol. 312, pp. 372–381, 2018. https://doi.org/10.1016/j.neucom.2018.05.11510.1016/j.neucom.2018.05.115Search in Google Scholar

[11] R. Kress, “Interpolation,” in: Numerical Analysis, Kress R. (ed.). Springer, 1998, pp. 151–188. https://doi.org/10.1007/978-1-4612-0599-9_810.1007/978-1-4612-0599-9_8Search in Google Scholar

[12] F. Aràndiga, “A nonlinear algorithm for monotone piecewise bicubic interpolation,” Applied Mathematics and Computation, vol. 272, no. 1, pp. 100–113, 2016. https://doi.org/10.1016/j.amc.2015.08.02710.1016/j.amc.2015.08.027Search in Google Scholar

[13] A. M. Bayen and T. Siauw, “Interpolation,” in: An Introduction to MATLAB® Programming and Numerical Methods for Engineers, Bayen A. M., Siauw T. (eds.). Academic Press, 2015, pp. 211–223. https://doi.org/10.1016/B978-0-12-420228-3.00014-210.1016/B978-0-12-420228-3.00014-2Search in Google Scholar

[14] D. Brunet, J. Vass, E. R. Vrscay, and Z. Wang, “Geodesics of the structural similarity index,” Applied Mathematics Letters, vol. 25, no. 11, pp. 1921–1925, 2012. https://doi.org/10.1016/j.aml.2012.03.00110.1016/j.aml.2012.03.001Search in Google Scholar

[15] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a “completely blind” image quality analyzer,” IEEE Signal Processing Letters, vol. 20, no. 3, pp. 209–212, 2013. https://doi.org/10.1109/LSP.2012.222772610.1109/LSP.2012.2227726Search in Google Scholar

[16] L. Zhou, Z. Wang, S. Wang, and Y. Luo, “Coarse-to-Fine Image Super-Resolution Using Convolutional Neural Networks,” in: MultiMedia Modeling. MMM 2018. Lecture Notes in Computer Science, Schoeffmann K. et al. (eds.). Springer, 2018, pp. 73–81. https://doi.org/10.1007/978-3-319-73600-6_710.1007/978-3-319-73600-6_7Search in Google Scholar

[17] V. V. Romanuke, “Appropriateness of numbers of receptive fields in convolutional neural networks based on classifying CIFAR-10 and EEACL26 datasets,” Electrical, Control and Communication Engineering, vol. 14, no. 2, pp. 157–163, 2018. https://doi.org/10.2478/ecce-2018-001910.2478/ecce-2018-0019Search in Google Scholar

eISSN:
2255-8691
Language:
English