Open Access

In silico data mining of large-scale databases for the virtual screening of human interleukin-2 inhibitors


Cite

1. A. C. Church, Clinical advances in therapies targeting the interleukin-2 receptor, QJM: Int. J. Med.96 (2003) 91–102; https://doi.org/10.1093/qjmed/hcg01410.1093/qjmed/hcg01412589007Search in Google Scholar

2. A. L. Moine, M. Goldman and D. Abramowicz, Multiple pathways to allograft rejection, Transplantation73 (2002) 1373–1381; https://doi.org/10.1097/00007890-200205150-0000110.1097/00007890-200205150-0000112023610Search in Google Scholar

3. S. L. Gaffen and K. D. Liu, Overview of interleukin-2 function, production and clinical applications, Cytokine 28 (2004) 109–123; https://doi.org/10.1016/j.cyto.2004.06.01010.1016/j.cyto.2004.06.01015473953Search in Google Scholar

4. M. R. Arkin and J. A. Wells, Small-molecule inhibitors of protein-protein interactions: progressing towards the dream, Nat. Rev. Drug Dis. 3 (2004) 301–317; https://doi.org/10.1038/nrd134310.1038/nrd134315060526Search in Google Scholar

5. T. Dasgupta, P. Chitnumsub, S. Kamchonwongpaisan, C. Maneeruttanarungroj, S. E. Nichols, T. M. Lyons, J. Tirado-Rives, W. L. Jorgensen, Y. Yuthavong and K. S. Anderson, Exploiting structural analysis, in silico screening, and serendipity to identify novel inhibitors of drug-resistant falciparum malaria, ACS Chem. Biol.4 (2009) 29–40; https://doi.org/10.1038/nrd134310.1038/nrd1343Search in Google Scholar

6. C. Mc Innesa, Virtual screening strategies in drug discovery, Curr. Opin. Chem. Biol.11 (2007) 494–502; https://doi.org/10.1016/j.cbpa.2007.08.03310.1016/j.cbpa.2007.08.03317936059Search in Google Scholar

7. S. A. Halim and Z. Ul-Haq, Structure based 3D-QSAR studies of interleukin-2 inhibitors: Comparing the quality and predictivity of 3D-QSAR models obtained from different alignment methods and charge calculations, Chem. Biol. Int. 238 (2015) 9–24; https://doi.org/10.1016/j.cbi.2015.05.01810.1016/j.cbi.2015.05.01826051521Search in Google Scholar

8. S. A. Halim, O. M. Abdalla, M. A. Mesaik, A. Wadood, Z. Ul-Haq and M. Kontoyianni, Identification of novel interleukin-2 inhibitors through computational approaches, Mol. Div.17 (2013) 345–355; https://doi.org/10.1007/s11030-013-9431-410.1007/s11030-013-9431-423494734Search in Google Scholar

9. S. A. Halim, M. Jawad, M. Ilyas, Z. Mir, A. A. Mirza and T. Husnain, In silico identification of novel IL-1β inhibitors to target protein–protein interfaces, Comp. Biol. Chem.58 (2015) 158–166; https://doi.org/10.1016/j.compbiolchem.2015.06.00410.1016/j.compbiolchem.2015.06.00426253030Search in Google Scholar

10. E. S. H. E. Ashry, M. R. Amer, O. M. Abdalla, A. A. Aly, S. Soomro, A. Jabeen, S. A. Halim, M. A. Mesaik and Z. Ul-Haq, Synthesis, biological evaluation, and molecular docking studies of benzyl, alkyl and glycosyl [2-(arylamino)-4,4-dimethyl-6-oxocyclohex-1-ene]carbodithioates, as potential immunomodulatory and immunosuppressive agents, Bioorg. Med. Chem.20 (2012) 3000–3008; https://doi.org/10.1016/j.bmc.2012.03.00310.1016/j.bmc.2012.03.00322480848Search in Google Scholar

11. M. A. Mesaik, S. A. Halim, Z. Ul-Haq, M. I. Choudhary, S. Shahnaz, S. A. Ayatollahi, S. Murad and A. Ahmad, Immunosuppresive activity of buxidin and buxenone from Buxus hyrcana, Chem. Biol. Drug Des.75 (2010) 310–317; https://doi.org/10.1111/j.1747-0285.2009.00906.x10.1111/j.1747-0285.2009.00906.x20659112Search in Google Scholar

12. M. A. Mesaik, A. Jabeen, S. A. Halim, A. Begum, A. S. Khalid, M. Asif, B. Fatima, Z. Ul-Haq and M. I. Choudhary, In silico and in vitro immunomodulatory studies on compounds of Lindelofia stylosa, Chem. Biol. Drug Des.79 (2012) 290–299; https://doi.org/10.1111/j.1747-0285.2011.01310.x10.1111/j.1747-0285.2011.01310.x22181857Search in Google Scholar

13. Saifullah, S. Khan, Azizudin, S. A. Halim, M. Kashif, A. Jabeen, M. Asif, M. A. Mesaik, Z. Ul-Haq, A. Dar and M. I. Choudhary, In-vitro immunomodulatory and anti-cancerous activities of biotransformed products of dianabol through Azadirachta indica and its molecular docking studies, Chem. Cent. J.7 (2013) Article ID 163 (11 pages); https://doi.org/10.1186/1752-153X-7-16310.1186/1752-153X-7-163387477824764465Search in Google Scholar

14. G. B. McGaughey, R. P. Sheridan, C. I. Bayly, J. C. Culberson, C. Kreatsoulas, S. Lindsley, V. Maiorov, J. F. Truchon and W. D. Cornell, Comparison of topological, shape, and docking methods in virtual screening, J. Chem. Inf. Model.47 (2007) 1504–1519; https://doi.org/10.1021/ci700052x10.1021/ci700052x17591764Search in Google Scholar

15. M. R. McGann, H. R. Almond, A. Nicholls, J. A. Grant and F. K. Brown, Gaussian docking functions, Biopolymers68 (2003) 76–90; https://doi.org/10.1002/bip.1020710.1002/bip.1020712579581Search in Google Scholar

16. G. Jones, P. Willett, R. C. Glen, A. R. Leach and R. J. Taylor, Development and validation of a genetic algorithm for flexible docking, Mol. Biol.267 (1997) 727-748; https://doi.org/10.1006/jmbi.1996.089710.1006/jmbi.1996.08979126849Search in Google Scholar

17. A. N. Jain, Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine, J. Med. Chem.46 (2003) 499–511; https://doi.org/10.1021/jm020406h10.1021/jm020406h12570372Search in Google Scholar

18. MOE v2006.08 (2006) Chemical Computing Group Inc., 910-1010 Sherbrooke St. W. Montreal, QC H3A 2R7 Canada; https://www.chemcomp.com/Search in Google Scholar

19. H. Edelsbrunner, Weighted Alpha Shapes, Technical Report UIUCDCS-R-92-1760, Department of Computer Science, University of Illinois at Urbana-Champaign (IL) USA, 1992.Search in Google Scholar

20. J. J. Irwin and B. K. Shoichet, ZINC-a free database of commercially available compounds for virtual screening, J. Chem. Inf. Model.45 (2005) 177–182; https://doi.org/10.1021/ci049714+10.1021/ci049714+136065615667143Search in Google Scholar

21. SYBYL molecular modeling program version 7.3 (2007) Tripos Associates Inc., St. Louis (MO) USA; http://www.tripos.com/sybyl/Search in Google Scholar

22. GOLD Protein Ligand Docking Software version 3.2 (2008) Cambridge Crystallographic Data Center, Cambridge, UK; https://www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold/Search in Google Scholar

23. M. D. Eldridge, C. W. Murray, T. R. Auton, G. V. Paolini and R. P. Mee, Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes, J. Comp. Aid. Mol. Des.11 (1997) 425–445; https://doi.org/10.1023/A:100799612454510.1023/A:1007996124545Search in Google Scholar

24. G. M. Verkhivker, D. Bouzida, D. K. Gehlhaar, P. A. Rejto, S. Arthurs, A. B. Colson, S. T. Freer, V. Larson, B. A. Luty, T. Marrone and P. W. Rose, Deciphering common failures in molecular docking of ligand-protein complexes, J. Comp. Aid. Mol. Des.14 (2000) 731–751; https://doi.org/10.1023/A:100815823155810.1023/A:1008158231558Search in Google Scholar

25. M. Stahl and M. Rarey, Detailed analysis of scoring functions for virtual screening, J. Med. Chem.44 (2001) 1035–1042; https://doi.org/10.1021/jm000399210.1021/jm0003992Search in Google Scholar

26. W. Welch, J. Ruppert and A. N. Jain, Hammerhead: fast, fully automated docking of flexible ligands to protein binding sites, Chem. Biol.3 (1996) 449–462.Search in Google Scholar

27. M. R. Arkin, M. Randal, W. L. DeLano, J. Hyde, T. N. Luong, J. D. Oslob, D. R. Raphael, L. Taylor, J. Wang, R. S. McDowell, J. A. Wells and A. C. Braisted, Binding of small molecules to an adaptive protein–protein interface, Proc. Nat. Acad. Sci. USA100 (2003) 1603–1608; https://doi.org/10.1073/pnas.25275629910.1073/pnas.252756299Search in Google Scholar

28. C. D. Thanos, M. Randal and J. A. Wells, Potent small-molecule binding to a dynamic hot spot on IL-2, J. Am. Chem. Soc.25 (2003) 15280–15281; https://doi.org/10.1021/ja038261710.1021/ja0382617Search in Google Scholar

29. M. Clark, R. D. Cramer III and N. Van Opdenbosch, Validation of the general purpose tripos 5.2 force field, J. Comp. Chem.10 (1989) 982–1012; https://doi.org/10.1002/jcc.54010080410.1002/jcc.540100804Search in Google Scholar

30. T. A. Halgren, Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions, J. Comp. Chem.17 (1996) 520–552; https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<520::AID-JCC2>3.0.CO;2-W10.1002/(SICI)1096-987X(199604)17:5/6<520::AID-JCC2>3.0.CO;2-WSearch in Google Scholar

31. T. A. Halgren, MMFF VI. MMFF94s option for energy minimization studies, J. Comp. Chem.20 (1999) 720–729; https://doi.org/10.1002/(SICI)1096-987X(199905)20:7<720::AID-JCC7>3.0.CO;2-X10.1002/(SICI)1096-987X(199905)20:7<720::AID-JCC7>3.0.CO;2-XSearch in Google Scholar

32. J. Boström, J. R. Greenwood and J. Gottfries, Assessing the performance of OMEGA with respect to retrieving bioactive conformations, J. Mol. Graph. Model.21 (2003) 449–462; https://doi.org/10.1016/S1093-3263(02)00204-810.1016/S1093-3263(02)00204-8Search in Google Scholar

33. C. A. Lipinski, F. Lombardo, B. W. Dominy and P. J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Del. Rev.23 (1997) 3–25; https://doi.org/10.1016/S0169-409X(00)00129-010.1016/S0169-409X(00)00129-0Search in Google Scholar

34. R. Wang, Y. Fu and L. Lai, A new atom-additive method for calculating partition coefficients, J. Chem. Inf. Model.37 (1997) 615–621; https://doi.org/10.1021/ci960169p10.1021/ci960169pSearch in Google Scholar

35. Y. C. Martin, A bioavailability score, J. Med. Chem.48 (2005) 3164–3170; https://doi.org/10.1021/jm049200210.1021/jm0492002Search in Google Scholar

36. A. C. Braisted, J. D. Oslob, W. L. Delano, J. Hyde, R. S. McDowell, N. Waal, C. Yu, M. R. Arkin and B. C. Raimundo, Discovery of a potent small molecule IL-2 inhibitor through fragment assembly, J. Am. Chem. Soc.125 (2003) 3714–3715; https://doi.org/10.1021/ja034247i10.1021/ja034247iSearch in Google Scholar

37. B. Geng, P. R. Fleming, S. Umlauf, A. Lin and P. V. Pallaia, The synthesis and selective IL-2 inhibitory activity of bis piperazine–phenol Mannich adducts, Bioorg. Med. Chem. Lett.12 (2002) 775–778; https://doi.org/10.1016/S0960-894X(02)00011-210.1016/S0960-894X(02)00011-2Search in Google Scholar

38. B. C. Raimundo, J. D. Oslob, A. C. Braisted, J. Hyde, R. S. McDowell, M. Randal, N. D. Waal, J. Wilkinson, C. H. Yu and M. R. Arkin, Integrating fragment assembly and biophysical methods in the chemical advancement of small-molecule antagonists of IL-2: an approach for inhibiting protein-protein interactions, J. Med. Chem.47 (2004) 3111–3130; https://doi.org/10.1021/jm049967u10.1021/jm049967u15163192Search in Google Scholar

39. J. W. Tilley, L. Chen, D. C. Fry, S. D. Emerson, G. D. Powers, D. Biondi, T. Varnell, R. Trilles, R. Guthrie, F. Mennona, G. Kaplan, R. A. LeMahieu, M. Carson, R. J. Han, C. M. Liu, R. Palermo and G. Ju, Identification of a small molecule inhibitor of the IL-2/IL-2Rr receptor interaction which binds to IL-2, J. Am. Chem. Soc.119 (1997) 7589–7590; https://doi.org/10.1021/ja970702x10.1021/ja970702xSearch in Google Scholar

40. N. D. Waal, W. Yang, J. D. Oslob, M. R. Arkin, J. Hyde, W. Lu, R. S. McDowell, C. H. Yu and B. C. Raimundo, Identification of non-peptidic small-molecule inhibitors of interleukin-2, Bioorg. Med. Chem. Lett.15 (2005) 983–987; https://doi.org/10.1016/j.bmcl.2004.12.04510.1016/j.bmcl.2004.12.04515686897Search in Google Scholar

41. N. Triballeau, F. Acher, I. Brabet, J. P. Pin and H. O. Bertrand, Virtual screening workflow development guided by the “Receiver Operating Characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4, J. Med. Chem.48 (2005) 2534–2547; https://doi.org/10.1021/jm049092j10.1021/jm049092j15801843Search in Google Scholar

42. I. Halperin, B. Ma, H. Wolfson and R. Nussinov, Principles of docking: an overview of search algorithms and a guide to scoring functions, Proteins47 (2002) 409–443; https://doi.org/10.1002/prot.1011510.1002/prot.1011512001221Search in Google Scholar

43. Z. Ul-Haq, S. A. Halim, R. Uddin and J. D. Madura, Benchmarking docking and scoring protocol for the identification of potential acetylcholinesterase inhibitors, J. Mol. Graph. Model.28 (2010) 870–882; https://doi.org/10.1016/j.jmgm.2010.03.00710.1016/j.jmgm.2010.03.00720447848Search in Google Scholar

eISSN:
1846-9558
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Pharmacy, other