Open Access

Simultaneous determination of warfarin and 7-hydroxywarfarin in rat plasma by HPLC-FLD


Cite

1. A. M. Holbrook, J. A. Pereira, R. Labiris, H. McDonald, J. D. Douketis, M. Crowther and P. S. Wells, Systematic overview of warfarin and its drug and food interactions, Arch. Intern. Med.165 (2005) 1095–1106; https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/48657410.1001/archinte.165.10.1095Search in Google Scholar

2. M. Wadelius, L. Chen, K. Downes, J. Ghori, S. Hunt, N. Eriksson, O. Wallerman, H. Melhus, C. Wadelius and D. Bentley, Common VKORC1 and GGCX polymorphisms associated with warfarin dose, Pharmacogen. J.5 (2005) 262–270; https://doi.org/10.1038/sj.tpj.650031310.1038/sj.tpj.6500313Search in Google Scholar

3. N. H. Holford, Clinical pharmacokinetics and pharmacodynamics of warfarin, Clin. Pharmacokinet.11 (1986) 483–504; https://doi.org/10.2165/00003088-198611060-0000510.2165/00003088-198611060-00005Search in Google Scholar

4. J. G. Kelly and K. O’Malley, Clinical pharmacokinetics of oral anticoagulants, Clin. Pharmacokinet.4 (1979) 1–15; https://doi.org/10.2165/00003088-197904010-0000110.2165/00003088-197904010-00001Search in Google Scholar

5. A. Osman, C. Enström and T. L. Lindahl, Plasma S/R ratio of warfarin co-varies with VKORC1 haplotype, Arch. Intern. Med.18 (2007) 293–296; https://doi.org/10.1097/MBC.0b013e3280444bfd10.1097/MBC.0b013e3280444bfdSearch in Google Scholar

6. Bristol-Myers Squibb, Coumadin, 2006; http://www.accessdata.fda.gov/drugsatfda_docs/label/2006/021588s009lbl.pdf; last access date November 10, 2018.Search in Google Scholar

7. R. A. O’Reilly, Warfarin Metabolism and Drug-drug Interactions, in The New Dimensions of Warfarin Prophylaxis (Eds. S. Wessler, C. G. Becker and Y. Nemerson), Springer, Boston (MA) 1987, pp. 205–212.10.1007/978-1-4757-5985-3_18Search in Google Scholar

8. C. Guo, S. Xue, X. Zheng, Y. Lu, D. Zhao, X. Chen and N. Li, The effect of fenofibric acid on the pharmacokinetics and pharmacodynamics of warfarin in rats, Xenobiotica48 (2017) 400–406; https://doi.org/10.1080/00498254.2017.130676010.1080/00498254.2017.1306760Search in Google Scholar

9. L. S. Kaminsky and Z.-Y. Zhang, Human P450 metabolism of warfarin, Pharmacol. Ther.73 (1997) 67–74; https://doi.org/10.1016/S0163-7258(96)00140-410.1016/S0163-7258(96)00140-4Search in Google Scholar

10. M. Ufer, Comparative pharmacokinetics of vitamin K antagonists, Clin. Pharmacokinet.44 (2005) 1227–1246; https://doi.org/10.2165/00003088-200544120-0000310.2165/00003088-200544120-0000316372822Search in Google Scholar

11. M. Ufer, B. Kammerer, J. Kirchheiner, A. Rane and J.-O. Svensson, Determination of phenprocoumon, warfarin and their monohydroxylated metabolites in human plasma and urine by liquid chromatography–mass spectrometry after solid-phase extraction, J. Chromatogr. B809 (2004) 217–226; https://doi.org/10.1016/j.jchromb.2004.06.02310.1016/j.jchromb.2004.06.02315315768Search in Google Scholar

12. Q. Zhou, W. P. Yau and E. Chan, Enantioseparation of warfarin and its metabolites by capillary zone electrophoresis, Electrophoresis24 (2003) 2617–2626; https://doi.org/10.1002/elps.20030544110.1002/elps.20030544112900874Search in Google Scholar

13. Z. Zuo, S. K. Wo, C. M. Y. Lo, L. Zhou, G. Cheng and J. H. S. You, Simultaneous measurement of S-warfarin, R-warfarin, S-7-hydroxywarfarin and R-7-hydroxywarfarin in human plasma by liquid chromatography–tandem mass spectrometry, J. Pharm. Biomed. Anal.52 (2010) 305–310; https://doi.org/10.1016/j.jpba.2010.01.00510.1016/j.jpba.2010.01.005Search in Google Scholar

14. L. D. Heimark, L. Wienkers, K. Kunze, M. Gibaldi, A. C. Eddy, W. F. Trager, R. A. O’Reilly and D. A. Goulart, The mechanism of the interaction between amiodarone and warfarin in humans, Clin. Pharmacol. Ther.51 (1992) 398–407; https://doi.org/10.1038/clpt.1992.3910.1038/clpt.1992.39Search in Google Scholar

15. A. H. Salem, B. Hu, K. J. Freise, S. K. Agarwal, D. S. Sidhu and S. L. Wong, Evaluation of the pharmacokinetic interaction between venetoclax, a selective BCL-2 Inhibitor, and warfarin in healthy volunteers, Clin. Drug Invest.37 (2017) 303–309; https://doi.org/10.1007/s40261-016-0485-910.1007/s40261-016-0485-9Search in Google Scholar

16. D. K. Kumar, D. G. Shewade, S. Parasuraman, S. Rajan, J. Balachander, B. V. S. Chandran and C. Adithan, Estimation of plasma levels of warfarin and 7-hydroxy warfarin by high performance liquid chromatography in patients receiving warfarin therapy, J. Young Pharm.5 (2013) 13–17; https://doi.org/10.1016/j.jyp.2013.02.00110.1016/j.jyp.2013.02.001Search in Google Scholar

17. I. Locatelli, V. Kmetec, A. Mrhar and I. Grabnar, Determination of warfarin enantiomers and hydroxylated metabolites in human blood plasma by liquid chromatography with achiral and chiral separation, J. Chromatogr. B818 (2005) 191–198; https://doi.org/10.1016/j.jchromb.2004.12.02410.1016/j.jchromb.2004.12.024Search in Google Scholar

18. W. Naidong and J. W. Lee, Development and validation of a high-performance liquid chromatographic method for the quantitation of warfarin enantiomers in human plasma, J. Pharm. Biomed. Anal.11 (1993) 785–792; https://doi.org/10.1016/0731-7085(93)80070-H10.1016/0731-7085(93)80070-HSearch in Google Scholar

19. H. Takahashi, T. Kashima, S. Kimura, N. Muramoto, H. Nakahata, S. Kubo, Y. Shimoyama, M. Kajiwara and H. Echizen, Determination of unbound warfarin enantiomers in human plasma and 7-hydroxywarfarin in human urine by chiral stationary-phase liquid chromatography with ultraviolet or fluorescence and on-line circular dichroism detection, J. Chromatogr. B701 (1997) 71–80; https://doi.org/10.1016/S0378-4347(97)00346-010.1016/S0378-4347(97)00346-0Search in Google Scholar

20. T. Lomonaco, S. Ghimenti, I. Piga, M. Onor, B. Melai, R. Fuoco and F. Di Francesco, Determination of total and unbound warfarin and warfarin alcohols in human plasma by high performance liquid chromatography with fluorescence detection, J. Chromatogr. A1314 (2013) 54–62; https://doi.org/10.1016/j.chroma.2013.08.09110.1016/j.chroma.2013.08.09124054125Search in Google Scholar

21. A. Qayyum, M. H. Najmi, A. M. Khan, M. Abbas, A. K. Naveed and A. Jameel, Determination of S-and R-warfarin enantiomers by using modified HPLC method, Pak. J. Pharm. Sci.28 (2015) 1315–1321.Search in Google Scholar

22. C. Huang, J. Yang, Y. Du and L. Miao, Measurement of free concentrations of highly protein-bound warfarin in plasma by ultra performance liquid chromatography–tandem mass spectrometry and its correlation with the international normalized ratio, Clin. Chim. Acta393 (2008) 85–89; https://doi.org/10.1016/j.cca.2008.03.00810.1016/j.cca.2008.03.00818406352Search in Google Scholar

23. D. R. Jones, G. Boysen and G. P. Miller, Novel multi-mode ultra performance liquid chromatography–tandem mass spectrometry assay for profiling enantiomeric hydroxywarfarins and warfarin in human plasma, J. Chromatogr. B879 (2011) 1056–1062; https://doi.org/10.1016/j.jchromb.2011.03.02210.1016/j.jchromb.2011.03.02221470921Search in Google Scholar

24. M.-J. Kwon, H.-J. Kim, J.-W. Kim, K.-H. Lee, K.-H. Sohn, H.-J. Cho, Y.-K. On, J.-S. Kim and S.-Y. Lee, Determination of plasma warfarin concentrations in Korean patients and its potential for clinical application, Korean J. Lab. Med.29 (2009) 515–523; https://doi.org/10.3343/kjlm.2009.29.6.51510.3343/kjlm.2009.29.6.515Search in Google Scholar

25. A. N. Shaik, R. Grater, M. Lulla, D. A. Williams, L. L. Gan, T. Bohnert and B. W. LeDuc, Comparison of enzyme kinetics of warfarin analyzed by LC–MS/MS QTrap and differential mobility spectrometry, J. Chromatogr. B1008 (2016) 164–173; https://doi.org/10.1016/j.jchromb.2015.11.03610.1016/j.jchromb.2015.11.036Search in Google Scholar

26. Z.-Y. Zhang, B. M. King and Y. N. Wong, Quantitative liquid chromatography/mass spectrometry/mass spectrometry warfarin assay for in vitro cytochrome P450 studies, Anal. Biochem.298 (2001) 40–49; https://doi.org/10.1006/abio.2001.538310.1006/abio.2001.5383Search in Google Scholar

27. Y. Wong and P. Davis, Analysis of warfarin and its metabolites by reversed-phase ion-pair liquid chromatography with fluorescence detection, J. Chromatogr. A469 (1989) 281–291; https://doi.org/10.1016/S0021-9673(01)96463-510.1016/S0021-9673(01)96463-5Search in Google Scholar

28. S. H. Lee, L. Field, W. N. Howald and W. F. Trager, High-performance liquid chromatography separation and fluorescence detection of warfarin and its metabolites by postcolumn acid/base manipulation, Anal. Chem.53 (1981) 467–471; https://doi.org/10.1021/ac00226a01910.1021/ac00226a0197224175Search in Google Scholar

29. U. S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER) and Center for Veterinary Medicine (CVM), FDA Guidance: Guidance for Industry. Bioanalytical Method Validation, May 2018; http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm368107.pdf; last access date June 15, 2018.Search in Google Scholar

30. C. Guo, S. Xue, X. Zheng, Y. Lu, D. Zhao, X. Chen and N. Li, The effect of fenofibric acid on the pharmacokinetics and pharmacodynamics of warfarin in rats, Xenobiotica48 (2018) 400–406; https://doi.org/10.1080/00498254.2017.130676010.1080/00498254.2017.130676028287050Search in Google Scholar

eISSN:
1846-9558
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Pharmacy, other