Open Access

Poly(3-hydroxybutyrate): Promising biomaterial for bone tissue engineering


Cite

1. H. Tian, Z. Tang, X. Zhuang, X. Chen and X. Jing, Biodegradable synthetic polymers: Preparation, functionalization and biomedical application, Prog. Polym. Sci. 37 (2012) 237−280; https://doi.org/10.1016/j.progpolymsci.2011.06.004 Search in Google Scholar

2. D. B. Hazer, E. Kiliçay and B. Hazer, Poly(3-hydroxyalkanoate)s: Diversification and biomedical applications A state of art review, Mater. Sci. Eng. C 32 (2012) 637−647; https://doi.org/10.1016/j.msec.2012.01.021 Search in Google Scholar

3. M. Goonoo, A. Bhaw-Luximon, P. Passanha, S. R. Esteves and D. Jhurry, Third generation poly(hydroxyacid) composite scaffolds for tissue reengineering, J. Biomed. Mater. Res. B Appl. Biomater. 105B (2017) 1667−1684; https://doi.org/10.1002/jbm.b.33674 Search in Google Scholar

4. A. R. Amini, C. T. Laurencin and S. P. Nukavarapu, Bone tissue engineering: recent advances and challenges, Crit. Rev. Biomed. Eng. 40 (2012) 363−408. Search in Google Scholar

5. S. Bose, M. Roy and A. Bandyopadhyay, Recent advances in bone tissue engineering scaffolds, Trends Biotechnol. 30 (2012) 546−554; https://doi.org/10.1016/j.tibtech.2012.07.005 Search in Google Scholar

6. L. Wu, L. Wang, X. Wang and K. Xu, Synthesis, characterization and biocompatibility of novel bio-degradable star block copolymers based on poly[(R)-3-hydroxybutyrate] and poly(ε-caprolactone), Acta Biomater. 6 (2010) 1079−1089; https://doi.org/10.1016/j.actbio.2009.08.014 Search in Google Scholar

7. E. Masaeli, M. Morshed, P. Rasekhian, S. Karbasi, K. Karbalaie, F. Karamali, D. Abedi, S. Razavi, A. Jafarian-Dehkordi, M. H. Nasr-Esfahani and H. Baharvand, Does the tissue engineering architecture of Poly(3-hydroxybutyrate) scaffolds affect cell-material interactions? J. Biomed. Mater. Res. A 100A (2012) 1907−1918; https://doi.org/10.1002/jbm.a.34131 Search in Google Scholar

8. M. M. Reddy, S. Vivekanandhan, M. Misra, S. K. Bhatia and A. K. Mohanty, Biobased plastics and bionanocomposites: Current status and future opportunities, Prog. Polym. Sci. 38 (2013) 1653−1689; https://doi.org/10.1016/j.progpolymsci.2013.05.006 Search in Google Scholar

9. C. Peña, T. Castillo, A. Garcia, M. Millan and D. Segura, Biotechnological strategies to improve production of microbial poly(3-hydroxybutyrate): a review of recent research work, Microbial Biotechnol. 7 (2014) 278−293; https://doi.org/10.1111/1751-7915.12129 Search in Google Scholar

10. S. Centeno-Leija, G. Huerta-Beristain, M. Giles-Gomez, F. Bolivar, G. Gosset and A. Martinez, Improving poly-3-hydroxybutyrate production in Escherichia coli by combining the increase in the NADPH pool and acetyl-CoA availability, Antonie van Leeuwenhoek 105 (2014) 687−696; https://doi.org/10.1007/s10482-014-0124-5 Search in Google Scholar

11. A. M. Hayati, S. M. Hosseinalipour, H. R. Rezaie and M. A. Shokrgozar, Characterization of poly(3-hydroxybutyrate)/nano-hydroxyapatite composite scaffolds fabricated without the use of organic solvents for bone tissue engineering applications, Mater. Sci. Eng. C 32 (2012) 416−422; https://doi.org/10.1016/j.msec.2011.11.013 Search in Google Scholar

12. B. S. Kushwah, A. V. S. Kushwah and V. Singh, Towards understanding polyhydroxyalkanoates and their use, J. Polym. Res. 23 (2016) 153−166; https://doi.org/10.1007/s10965-016-0988-3 Search in Google Scholar

13. R. W. Lenz and R. H. Marchessault, Bacterial polyesters: Biosynthesis, biodegradable plastics and biotechnology, Biomacromolecules 6 (2005) 1−8; https://doi.org/10.1021/bm049700c Search in Google Scholar

14. Y. Zhao, B. Zou, Z. Shi, Q. Wu and G. Q. Chen, The effect of 3-hydroxybutyrate on the in vitro differentiation of murine osteoblast MC3T3-E1 and in vivo bone formation in ovariectomized rats, Biomaterials 28 (2007) 3063−3073; https://doi.org/10.1016/j.biomaterials.2007.03.003 Search in Google Scholar

15. S. Cheng, G. Q. Chen, M. Leski, B. Zou, Y. Wang and Q. Wu, The effect of D,L-β-hydroxybutyric acid on cell death and proliferation, Biomaterials 27 (2006) 3758−3765; https://doi.org/10.1016/j.biomaterials.2006.02.046 Search in Google Scholar

16. C. J. Brigham and A. J. Sinskey, Applications of polyhydroxyalkanoates in the medical industry, Int. J. Biotechnol. Wellness Ind. (IJBWI) 1 (2012) 53−60 Search in Google Scholar

17. E. I. Shishatskaya and T. G. Volova, A comparative investigation of biodegradable polyhydroxyalkanoate films as matrices for in vitro cell cultures, J. Mater. Sci. Mater. Med. 15 (2004) 915−923; https://doi.org/10.1023/B:JMSM.0000036280.98763.c1 Search in Google Scholar

18. S. W. Hong, H. W. Hsu and M. T. Ye, Thermal properties and applications of low molecular weight polyhydroxybutyrate, J. Therm. Anal. Calorim. 111 (2013) 1243−1250; https://doi.org/10.1007/s10973-012-2503-3 Search in Google Scholar

19. I. Manavitehrani, A. Fathi, H. Badr, S. Daly, A. N. Shirazi and F. Dehghani, Biomedical applications of biodegradable polyesters, Polymers 8 (2016) Article ID 20 (32 pages); https://doi.org/10.3390/polym8010020 Search in Google Scholar

20. R. Y. Basha, S. Kumar and M. Doble, Design of biocomposite materials for bone tissue regeneration, Mater. Sci. Eng. C 57 (2015) 452−463; https://doi.org/10.1016/j.msec.2015.07.016 Search in Google Scholar

21. S. H. Lee and H. Shin, Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering, Adv. Drug Deliv. Rev. 59 (2007) 339−359; https://doi.org/10.1016/j.addr.2007.03.016 Search in Google Scholar

22. D. W. Hutmacher, Scaffolds in tissue engineering bone and cartilage, Biomaterials 21 (2000) 2529−2543; https://doi.org/10.1016/S0142-9612(00)00121-6 Search in Google Scholar

23. P. P. Lopes, M. P. Garcia, M. H. Fernandes and M. H. V. Fernandes, Acrylic formulations containing bioactive and biodegradable filters to be used as bone cements: Properties and biocompatibility assessment, Mater. Sci. Eng. C 33 (2013) 1289−1299; https://doi.org/10.1016/j.msec.2012.12.028 Search in Google Scholar

24. M. Sadat-Shojai, M. T. Khorasani, A. Jamshidi and S. Irani, Nano-hydroxyapatite reinforced polyhydroxybutyrate composites: A comprehensive study on the structural and in vivo biological properties, Mater. Sci. Eng. C 33 (2013) 2776−2787; https://doi.org/10.1016/j.msec.2013.02.041 Search in Google Scholar

25. Y. Zhang, L. Hao, M. M. Savalani, R. A. Harris, L. Di Silvio and K. E. Tanner, In vitro biocompatibility of hydroxyapatite-reinforced polymeric composites manufactured by selective laser sintering, J. Biomed. Mater. Res. A 91A (2009) 1018−1027; https://doi.org/10.1002/jbm.a.32298 Search in Google Scholar

26. H. Zhou and J. Lee, Nanoscale hydroxyapatite particles for bone tissue engineering, Acta Biomater. 7 (2011) 2769−2781; https://doi.org/10.1016/j.actbio.2011.03.019 Search in Google Scholar

27. J. Michel, M. Penna, J. Kochen and H. Cheung, Recent advances in hydroxyapatite scaffolds containing mesenchymal stem cells, Stem Cell. Int. 2015 (2015) Article ID 305217 (13 pages); https://doi.org/10.1155/2015/305217 Search in Google Scholar

28. Y. W. Wang, Q. Wu, J. Chen and G. Q. Chen, Evaluation of three-dimensional scaffolds made of blends of hydroxyapatite and poly(3-hydroxybutyrate-co-3-hydroxyhexynoate) for bone reconstruction, Biomaterials 26 (2005) 899−904; https://doi.org/10.1016/j.biomaterials.2004.03.035 Search in Google Scholar

29. E. I. Shishatskaya, I. A. Khlusov and T. G. Volova, A hybrid PHB-hydroxyapatite composite for biomedical application: production, in vitro and in vivo investigation, J. Biomater. Sci. Polym. Ed. 17 (2006) 481−498. Search in Google Scholar

30. J. Ramier, D. Grande, T. Bouderlique, O. Stoilova, N. Manolova, I. Rashkov, V. Langlois, P. Albanese and E. Renard, From design of bio-based biocomposite electrospun scaffolds to osteogenic differentiation of human mesenchymal stromal cells, J. Mater. Sci. Mater. Med. 25 (2014) 1563−1575; https://doi.org/10.1007/s10856-014-5174-8 Search in Google Scholar

31. A. Saadat, A.A. Behnamghader, S. Karbasi, D. Abedi, M. Soleimani and A. Shafiee, Comparison of acellular and cellular bioactivity of poly 3-hydroxybutyrate/hydroxyapatite nanocomposite and poly 3-hydroxybutyrate scaffolds, Biotechnol. Bioprocess Eng. 18 (2013) 587−593; https://doi.org/10.1007/s12257-012-0744-4 Search in Google Scholar

32. Z. Chen, Y. Song, J. Zhang, W. Liu, J. Cui, H. Li and F. Chen, Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering, Mater. Sci. Eng. C 72 (2017) 341−351; https://doi.org/10.1016/j.msec.2016.11.070 Search in Google Scholar

33. M. Sadat-Shojai, Electrospun polyhydroxybutyrate/hydroxyapatite nanohybrids: microstructure and bone cell response, J. Mater. Sci. Technol. 32 (2016) 1013−1020; https://doi.org/10.1016/j.jmst.2016.07.007 Search in Google Scholar

34. B. Pourmollaabbassi, S. Karbasi and B. Hashemibeni, Evaluate the growth and adhesion of osteo-blast cells on nanocomposite scaffold of hydroxyapatite/titania coated with poly hydroxybutyrate, Adv. Biomed. Res. 5 (2016) Article ID 156 (11 pages); https://doi.org/10.4103/2277-9175.188486 Search in Google Scholar

35. H. Hajiali, M. Hosseinalipour, S. Karbasi and M. A. Shokrgozar, The influence of bioglass nano-particles on the biodegradation and biocompatibility of poly(3-hydroxybutyrate) scaffolds, Int. J. Artif. Organs 35 (2012) 1015−1024; https://doi.org/10.5301/ijao.5000119 Search in Google Scholar

36. S. K. Misra, T. I. Ansari, S. P. Valappil, D. Mohn, S. E. Philip, W. J. Stark, I. Roy, J. C. Knowles, V. Salih and A. R. Boccaccini, Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications, Biomaterials 31 (2010) 2806−2815; https://doi.org/10.1016/j.biomaterials.2009.12.045 Search in Google Scholar

37. M. Meischel, J. Eichler, E. Martinelli, U. Karr, J. Weigel, G. Schmöller, E. K. Tschegg, S. Fischerauer, A. M. Weinberg and S. E. Stanzl-Tschegg, Adhesive strength of bone-implant interfaces and in-vivo degradation of PHB composites for load-bearing applications, J. Mech. Behav. Biomed. Mater. 53 (2016) 104−118; https://doi.org/10.1016/j.jmbbm.2015.08.004 Search in Google Scholar

38. M. Franceschini, A. Di Matteo, H. Bösebeck, H. Büchner and S. Vogt, Treatment of a chronic recurrent fistulized tibial osteomyelitis: administration of a novel antibiotic-loaded bone substitute combined with a pedicular muscle flap sealing, Eur. J. Orthop. Surg. Traumatol. 22 (2012) 245−249; https://doi.org/10.1007/s00590-012-0956-5 Search in Google Scholar

39. L. Medvecky, Microstructure and properties of polyhydroxybutyrate-chitosan-nanohydroxyapatite composite scaffolds, Sci. World J. 2012 (2012) Article ID 537973 (8 pages); https://doi.org/10.1100/2012/537973 Search in Google Scholar

40. H. Y. Tai, E. Fu, L.-P. Cheng and T.-M. Don, Fabrication of asymmetric membranes from polyhydroxybutyrate and biphasic calcium phosphate/chitosan for guided bone regeneration, J. Polym. Res. 21 (2014) Article ID 421 (12 pages); https://doi.org/10.1007/s10965-014-0421-8 Search in Google Scholar

41. M. Giretova, L. Medvecky, R. Stulajterova, T. Sopcak, J. Briancin and M. Tatarkova, Effect of enzymatic degradation of chitosan in polyhydroxybutyrate/chitosan/calcium phosphate composites on in vitro osteoblast response, J. Mater. Sci. Mater. Med. 27 (2016) Article ID 181; https://doi.org/10.1007/s10856-016-5801-7 Search in Google Scholar

42. Y. Ding, Q. Yao, W. Li, D. W. Schubert, A. R. Boccaccini and J. A. Roether, The evaluation of physical properties and in vitro cell behavior of PHB/PCL/sol-gel derived silica hybrid scaffolds and PHB/PCL/fumed silica composite scaffolds, Colloids Surf. B Biointerfaces 136 (2015) 93−98; https://doi.org/10.1016/j.colsurfb.2015.08.023 Search in Google Scholar

43. Y. Ding, W. Li, T. Müller, D. W. Schubert, A. R. Boccaccini, Q. Yao and J. A. Roether, Electrospun polyhydroxybutyrate/poly(ε-caprolactone)/58S sol−gel bioactive glass hybrid scaffolds with highly improved osteogenic potential for bone tissue engineering, Appl. Mater. Interfaces 8 (2016) 17098−17108; https://doi.org/10.1021/acsami.6b03997 Search in Google Scholar

44. C. Zhijiang, X. Yi, Y. Haizheng, J. Jia and Y. Liu, Poly(hydroxybutyrate)/cellulose acetate blend nano-fiber scaffolds: Preparation, characterization and cytocompatibility, Mater. Sci. Eng. C 58 (2016) 757−767; https://doi.org/10.1016/j.msec.2015.09.048 Search in Google Scholar

45. A. Venault, A. Subarja and Y. Chang, Zwitterionic polyhydroxybutyrate electrospun fibrous membranes with a compromise of bioinert control and tissue-cell growth, Langmuir 33 (2017) 2460−2471; https://doi.org/10.1021/asc.langmuir.6b04683 Search in Google Scholar

46. N. Goonoo, A. Bhaw-Luximon, P. Passanha, S. Esteves, H. Schönherr and D. Jhurry, Biomineralization potential and cellular response of PHB and PHBV blends with natural anionic polysaccharides, Mater. Sci. Eng. C 76 (2017) 13−24; https://doi.org/10.1016/j.msec2017.02.156 Search in Google Scholar

47. H. Li, H. Pan, C. Ning, G. Tan, J. Liao and G. Ni, Magnesium with micro-arc oxidation coating and polymeric membrane: an in vitro study on microenvironment, J. Mater. Sci. Mater. Med. 26 (2015) Article ID 147; https://doi.org/10.1007/s10856-015-5428-0 Search in Google Scholar

48. Y. W. Wang, Q. Wu and G. Q. Chen, Attachment, proliferation and differentiation of osteoblasts on random biopolyester poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds, Biomaterials 25 (2004) 669−675; https://doi.org/10.1016/S0142-9612(03)00561-1 Search in Google Scholar

49. M. Sadat-Shojai, M. T. Khorasani and A. Jamshidi, A new strategy for fabrication of bone scaffolds using electrospun nano-Hap/PHB fibers and protein hydrogels, Chem. Eng. J. 289 (2016) 38−47; https://doi.org/10.1016/j.cej.2015.12.079 Search in Google Scholar

50. S. W. Peng, X. Y. Guo, G. G. Shang, J. Li, X. Y. Xu, M. L. You, P. Li and G. Q. Chen, An assessment of the risk of carcinogenicity associated with polyhydroxyalkanoates through an analysis of DNA aneuploid and telomerase activity, Biomaterials 32 (2011) 2546−2555; https://doi.org/10.1016/j.biomaterials.2010.12.051 Search in Google Scholar

51. A. Q. Ali, T. P. Kannan, A. Ahmad and Ab. R. Samsudin, In vitro genotoxicity tests for polyhydroxy-butyrate − A synthetic biomaterial, Toxicol. in Vitro 22 (2008) 57−67; https://doi.org/10.1016/j.tiv.2007.08.001 Search in Google Scholar

52. Y. Wang, X. L. Jiang, S. W. Peng, X. Y. Guo, G. G. Shang, J. C. Chen, Q. Wu and G. Q. Chen, Induced apoptosis of osteoblasts proliferating on polyhydroxyalkanoates, Biomaterials 34 (2013) 3737−3746; https://doi.org/10.1016/j.biomaterials.2013.01.088 Search in Google Scholar

53. C. Rentsch, B. Rentsch, A. Breier, A. Hofmann, S. Manthey, D. Scharnweber and H. Zwipp, Evaluation of the osteogenic potential and vascularization of 3D poly(3)hydroxybutyrate scaffolds subcutaneously implanted in nude rats, J. Biomed. Mater. Res. A 92A (2010) 185−195; https://doi.org/10.1002/jbm.a.32314 Search in Google Scholar

54. Z. Karahaliloğlu, B. Ercan, E. N. Taylor, S. Chung, E. B. Denkbas and T. J. Webster, Antibacterial nanostructured polyhydroxybutyrate membranes for guided bone regeneration, J. Biomed. Nanotechnol. 11 (2015) 2253−2263; https://doi.org/10.1166/jbn.2015.2106 Search in Google Scholar

55. I. Rozila, P. Azari, S. Munirah, W. K. Z. W. Safwani, S. N. Gan, A. G. N. Azurah, J. Jahendran, B. Pingguan-Murphy and K. H. Chua, Differential osteogenic potential of human adipose-derived stem cells co-cultured with human osteoblasts on polymeric microfiber scaffolds, J. Biomed. Mater. Res. A 104A (2016) 377−387; https://doi.org/10.1002/jbm.a.35573 Search in Google Scholar

56. P. Slepička, I. Michaljaničová, S. Rimpelová and V. Švorčík, Surface roughness in action – Cells in opposition, Mater. Sci. Eng. C 76 (2017) 818−826; https://doi.org/10.1016/j.msec.2017.03.061 Search in Google Scholar

57. H. E. Bernd, C. Kunze, T. Freier, K. Sternberg, S. Kramer, D. Behrend, F. Prall, M. Donat and B. Kramp, Poly(3-hydroxybutyrate) (PHB) patches for covering anterior skull base defects - an animal study with minipigs, Acta Otolaryngol. 129 (2009) 1010−1017; https://doi.org/10.1080/00016480802552493 Search in Google Scholar

58. T. Gredes, T. Gedrange, C. Hinüber, M. Gelinsky and C. Kunert-Keil, Histological and molecular-biological analyses of poly(3-hydroxybutyrate) (PHB) patches for enhancement of bone regeneration, Ann. Anat. 199 (2015) 36−42; https://doi.org/10.1016/j.aanat.2014.04.003 Search in Google Scholar

59. E. G. L. Alves, C. M. F. Rezende, R. Serakides, M. M. Pereira and I. R. Rosado, Orthopedic implant of a polyhydroxybutyrate (PHB) and hydroxyapatite composite in cats, J. Feline Med. Surg. 13 (2011) 546-552; https://doi.org/10.1016/j.jfms.2011.03.002 Search in Google Scholar

60. A. Celarek, T. Kraus, E. K. Tschegg, S. F. Fischerauer, S. Stanzl-Tschegg, P. J. Uggowitzer and A. M. Weinberg, PHB, crystalline and amorphous magnesium alloys: Promising candidates for bioresorbable osteosynthesis implants? Mater. Sci. Eng. C 32 (2012) 1503−1510; https://doi.org/10.1016/j.msec.2012.04.032 Search in Google Scholar

eISSN:
1846-9558
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Pharmacy, other