Open Access

Core-in-cup/liquisol dual tackling effect on azelnidipine buccoadhesive tablet micromeritics, in vitro release, and mucoadhesive strength


Cite

1. D. Prabhakar, J. Sreekanth and K. N. Jayaveera, Development and evaluation of transdermal patches of azelnidipine, Int. J. Pharm. Pharm. Sci. 5 (2013) 805–810.Search in Google Scholar

2. K. Wellington and L. J. Scott, Azelnidipine, Drugs63 (2003) 2613–2621; https://doi.org/10.2165/00003495-200363230-0000410.2165/00003495-200363230-00004Search in Google Scholar

3. M. Kharwade and M. Sneha, A review on pioneering technique – liquisolid compact and applications, Res. J. Pharm. Biol. Chem. Sci. 6 (2015) 220–227.Search in Google Scholar

4. D. Modi, P. Amaliyar, Y. Kalal, B. Gangadia, S. Chaudhary, K. Sanghvi, H. Shah and D. Y. Sen, Novel approach in compressed-coated tablet dosage form: Core-in-cup (in lay) tablet with geometrically altered drug delivery concept, Brit. Bio. Bull.1 (2013) 90–102.Search in Google Scholar

5. J. K. Patel and N. K. Patel, Validated stability-indicating RP-HPLC method for the simultaneous determination of azelnidipine and olmesartan in their combined dosage form, Sci. Pharm. 82 (2014) 541–554; https://doi.org/10.3797/scipharm.1312-1410.3797/scipharm.1312-14Search in Google Scholar

6. British Pharmacopeia 2015, TSO, London 2015.Search in Google Scholar

7. B. Parodi, E. Russo, G. Caviglioli, S. Cafaggi and G. Brignardi, Development and characterization of a buccoadhesive dosage form of oxycodone hydrochloride, Drug Dev. Ind. Pharm. 22 (1996) 445–450; https://doi.org/10.3109/0363904960906935310.3109/03639049609069353Search in Google Scholar

8. M. A. A. Kassem, A. N. ElMeshad and A. R. Fares, Enhanced bioavailability of buspirone hydrochloride via cup and corebuccal tablets: Formulation and in vitro/in vivo evaluation, Int. J. Pharm. 463 (2014) 68–80; https://doi.org/10.1016/j.ijpharm.2014.01.00310.1016/j.ijpharm.2014.01.003Search in Google Scholar

9. European Medicines Agency, Guideline on quality of oral modified release products, 2012.Search in Google Scholar

10. T. Higuchi, Mechanisms of sustained action medication, theoretical analysis of the rate of release of solid drugs dispersed in solid matrices, J. Pharm. Sci. 52 (1963) 1145–1149; https://doi.org/10.1002/jps.260052121010.1002/jps.2600521210Search in Google Scholar

11. R. W. Korsmeyer, R. Gurny, E. Doelker, P. B. Nikolaos and A. Peppas, Mechanism of solute release from porous hydrophilic polymers, Int. J. Pharm. 72 (1983) 1189–1191; https://doi.org/10.1016/0378-5173(83)90064-910.1016/0378-5173(83)90064-9Search in Google Scholar

12. S. Dash, P. N. Murthy, L. Nath and P. Chowdhury, Kinetic modeling on drug release from controlled drug delivery systems, Acta Pol. Pharm.67 (2010) 217–223.Search in Google Scholar

13. J. Wu, H, Ho and M. Sheu, Influence of wet granulation and lubrication on the powder and tableting properties of codried product of microcrystalline cellulose with beta-cyclodextrin, Eur. J. Pharm. Biopharm. 51 (2001) 63–69.10.1016/S0939-6411(00)00137-5Search in Google Scholar

14. R. J. Dias, S. S. Sakhare and K. K. Mali, Design and development of mucoadhesive acyclovir tablet, Iran J. Pharm. Res.8 (2009) 231–239.Search in Google Scholar

15. Y.-C. Chen, H.-O. Ho, D.-Z. Liu, W.-S. Siow and M.-T. Sheu, Swelling/floating capability and drug release characterizations of gastroretentive drug delivery system based on a combination of hydroxyethyl cellulose and sodium carboxymethyl cellulose, PloS. one. 10 (2015) e0116914; https://doi.org/10.1371/journal.pone.011691410.1371/journal.pone.0116914430532325617891Search in Google Scholar

16. M. Mucha, Rheological characteristics of semi-dilute chitosan solutions, Macromol. Chem. Phys.198 (1997) 471–484; https://doi.org/10.1002/macp.1997.02198022010.1002/macp.1997.021980220Search in Google Scholar

17. A. Martínez-Ruvalcaba, J. C. Sánchez-Díaz, F. Becerra, L. E. Cruz-Barba and A. González-Álvarez, Swelling characterization and drug delivery kinetics of polyacrylamide-co-itaconic acid/chitosan hydrogels, Express Polym. Lett. 3 (2009) 25–32; https://doi.org/10.3144/expresspolymlett.2009.510.3144/expresspolymlett.2009.5Search in Google Scholar

18. J. W. Lee, J. H. Park, J. R. Robinson, Bioadhesive-based dosage forms: the next generation, J. Pharm. Sci. 89 (2000) 850–866; https://doi.org/10.1002/1520-6017(200007)89:7<850::aid-jps2>3.3.co;2-710.1002/1520-6017(200007)89:7<850::AID-JPS2>3.3.CO;2-7Search in Google Scholar

19. J. Akbari, M. Saeedi, K. Morteza-Semnani, B. Zarrabi, S. S. Rostamkalaei and H. R. Kelidari, The effect of Plantago major seed mucilage combined with carbopol on the release profile and bioadhesive properties of propranolol HCl buccoadhesive tablets, Pharm. Biomed. Res.2 (2016) 84–100; https://doi.org/10.18869/acadpub.pbr.2.2.8410.18869/acadpub.pbr.2.2.84Search in Google Scholar

20. F. Madsen, K. Eberth and J. D. Smart, A rheological examination of the mucoadhesive/mucus interaction: the effect of mucoadhesive type and concentration, J. Control. Release50 (1998) 167–178.10.1016/S0168-3659(97)00138-7Search in Google Scholar

21. V. V. Khutoryanskiy, Advances in mucoadhesion and mucoadhesive polymers, Macromol. Biosci. 11 (2011) 748–764; https://doi.org/10.1002/mabi.20100038810.1002/mabi.201000388Search in Google Scholar

22. U. Bertram and R. Bodmeier, In situ gelling, bioadhesive nasal inserts for extended drug delivery: in vitro characterization of a new nasal dosage form, Eur. J. Pharm. Sci. 27 (2006) 62–71; https://doi.org/10.1016/j.ejps.2005.08.00510.1016/j.ejps.2005.08.005Search in Google Scholar

23. M. S. Surapaneni, S. K. Das and N. G. Das, Effect of excipient and processing variables on adhesive properties and release profile of pentoxifylline from mucoadhesive tablets, Drug Dev. Ind. Pharm.32 (2006) 377–387; https://doi.org/10.1080/0363904050051936710.1080/03639040500519367Search in Google Scholar

24. A. Tiraferri, P. Maroni, D. Caro Rodriguez and M. Borkovec, Mechanism of chitosan adsorption on silica from aqueous solutions, Langmuir30 (2014) 4980–4988; https://doi.org/10.1021/la500680g10.1021/la500680gSearch in Google Scholar

25. M. Kocun, M. Grandbois and L. A. Cuccia, Single molecule atomic force microscopy and force spectroscopy of chitosan, Colloids. Surf. B. 82 (2011) 470–476; https://doi.org/10.1016/j.colsurfb.2010.10.00410.1016/j.colsurfb.2010.10.004Search in Google Scholar

26. H. Abdelkader, O. Y. Abdalla and H. Salem, Formulation of controlled-release baclofen matrix tablets: Influence of some hydrophilic polymers on the release rate and in-vitro evaluation, AAPS. Pharm. Sci. Tech. 8 (2007) 156–166; https://doi.org/10.1208/pt080410010.1208/pt0804100Search in Google Scholar

27. S. Prabhu, N. Kanthamneni and C. Ma, Novel combinations of rate-controlling polymers for the release of leuprolide acetate in the colon, Drug Deliv. 15 (2008) 119–125; https://doi.org/10.1080/1071754080190515710.1080/10717540801905157Search in Google Scholar

28. S. Agarwal and R. S. R. Murthy, Effect of different polymer concentration on drug release rate and physicochemical properties of mucoadhesive gastroretentive tablets, Indian J. Pharm. Sci. 77 (2015) 705–714; https://doi.org/10.4103/0250-474x.17499310.4103/0250-474X.174993Search in Google Scholar

29. C. Naveen, S. Nalini and R. R. Tadikonda, Use of the liquisolid compact technique for improvement of the dissolution rate of valsartan, Acta. Pharm. Sin. B.2 (2012) 502–508; https://doi.org/10.1016/j.apsb.2012.07.00510.1016/j.apsb.2012.07.005Search in Google Scholar

30. V. Vigoreaux and E. S. Ghaly, Fickian and relaxational contribution quantification of drug release in a swellable hydrophilic polymer matrix, Drug Dev. Ind. Pharm. 20 (1994) 2519–2526; https://doi.org/10.3109/0363904940904265510.3109/03639049409042655Search in Google Scholar

eISSN:
1846-9558
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Pharmacy, other