Open Access

Quantitative analysis and resolution of pharmaceuticals in the environment using multivariate curve resolution-alternating least squares (MCR-ALS)


Cite

1. S. D. Richardson and T. A. Ternes, Water analysis: emerging contaminants and current issues, Anal. Chem. 83 (2011) 4614–4648; https://doi.org/10.1021/ac200915r10.1021/ac200915rSearch in Google Scholar

2. K. Kümmerer, Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks, Springer Science & Business Media, Heidelberg 2008, pp. 521.Search in Google Scholar

3. D. S. Aga, Fate of Pharmaceuticals in the Environment and in Water Treatment Systems, CRC Press, Boca Raton (FL) 2007.Search in Google Scholar

4. J. Rivera-Utrilla, M. Sánchez-Polo, M. Á. Ferro-García, G. Prados-Joya and R. Ocampo-Pérez, Pharmaceuticals as emerging contaminants and their removal from water. A review, Chemosphere, 93 (2013) 1268–1287; https://doi.org/10.1016/j.chemosphere.2013.07.05910.1016/j.chemosphere.2013.07.059Search in Google Scholar

5. T. A. Ternes, Occurrence of drugs in German sewage treatment plants and rivers 1, Water Res. 32 (1998) 3245–3260; https://doi.org/10.1016/S0043-1354(98)00099-210.1016/S0043-1354(98)00099-2Search in Google Scholar

6. M. D. Celiz, J. Tso and D. S. Aga, Pharmaceutical metabolites in the environment: analytical challenges and ecological risks, Environ. Toxicol. Chem. 28 (2009) 2473–2484; https://doi.org/10.1897/09-173.110.1897/09-173.119663539Search in Google Scholar

7. H. Shaaban, High speed hydrophilic interaction liquid chromatographic method for simultaneous determination of selected pharmaceuticals in wastewater using a cyano-bonded silica column, J. Liq. Chromatogr. Relat. Technol. 41 (2018) 180–187; https://doi.org/10.1080/10826076.2018.142928210.1080/10826076.2018.1429282Search in Google Scholar

8. E. Gracia-Lor, N. I. Rousis, E. Zuccato, R. Bade, J. A. Baz-Lomba, E. Castrignanò, A. Causanilles, F. Hernández, B. Kasprzyk-Hordern and J. Kinyua, Estimation of caffeine intake from analysis of caffeine metabolites in wastewater, Sci. Total Environ. 609 (2017) 1582–1588; https://doi.org/10.1016/j.scitotenv.2017.07.25810.1016/j.scitotenv.2017.07.25828810510Search in Google Scholar

9. F. Tohidi and Z. Cai, Fate and mass balance of triclosan and its degradation products: comparison of three different types of wastewater treatments and aerobic/anaerobic sludge digestion, J. Hazard. Mater. 323 (2017) 329–340; https://doi.org/10.1016/j.jhazmat.2016.04.03410.1016/j.jhazmat.2016.04.03427166780Search in Google Scholar

10. H. Shaaban and T. Górecki, High temperature-high efficiency liquid chromatography using sub-2 µm coupled columns for the analysis of selected non-steroidal anti-inflammatory drugs and veterinary antibiotics in environmental samples, Anal. Chim. Acta702 (2011) 136–143; https://doi.org/10.1016/j.aca.2011.06.04010.1016/j.aca.2011.06.04021819871Search in Google Scholar

11. K. Kotnik, T. Kosjek, U. Krajnc and E. Heath, Trace analysis of benzophenone-derived compounds in surface waters and sediments using solid-phase extraction and microwave-assisted extraction followed by gas chromatography-mass spectrometry, Anal. Bioanal. Chem. 406 (2014) 3179–3190; https://doi.org/10.1007/s00216-014-7749-010.1007/s00216-014-7749-024682231Search in Google Scholar

12. A. El-Gindy, S. Emara and A. Mostafa, UV partial least-squares calibration and liquid chromatographic methods for direct quantitation of levofloxacin in urine, J. AOAC Int. 90 (2007) 1258–1265; https://doi.org/10.1039/c0ay00662a10.1039/c0ay00662aSearch in Google Scholar

13. R. Tauler, Multivariate curve resolution applied to second order data, Chemom. Intel. Lab. Syst. 30 (1995) 133–146; https://doi.org/10.1016/0169-7439(95)00047-X10.1016/0169-7439(95)00047-XSearch in Google Scholar

14. W. Chen, X.-Y. Liu, B.-C. Huang, L.-F. Wang, H.-Q. Yu and B. Mizaikoff, Probing membrane fouling via infrared attenuated total reflection mapping coupled with multivariate curve resolution, Chemphyschem17 (2016) 358–363; https://doi.org/10.1002/cphc.20150093210.1002/cphc.20150093226639164Search in Google Scholar

15. M. Navarro-Reig, J. Jaumot, A. Baglai, G. Vivó-Truyols, P. J. Schoenmakers and R. Tauler, Untargeted comprehensive two-dimensional liquid chromatography coupled with high-resolution mass spectrometry analysis of rice metabolome using multivariate curve resolution, Anal. Chem. 89 (2017) 7675–7683; https://doi.org/10.1021/acs.analchem.7b0164810.1021/acs.analchem.7b0164828643516Search in Google Scholar

16. D. A. Forchetti and R. J. Poppi, Use of NIR hyperspectral imaging and multivariate curve resolution (MCR) for detection and quantification of adulterants in milk powder, LWT-Food Sci. Technol. 76 (2017) 337–343; https://doi.org/10.1016/j.lwt.2016.06.04610.1016/j.lwt.2016.06.046Search in Google Scholar

17. F. Puig-Castellví, I. Alfonso and R. Tauler, Untargeted assignment and automatic integration of 1H NMR metabolomic datasets using a multivariate curve resolution approach, Anal. Chim. Acta964 (2017) 55–66; https://doi.org/10.1016/j.aca.2017.02.01010.1016/j.aca.2017.02.01028351639Search in Google Scholar

18. J. B. Ghasemi, M. K. Rofouei and N. Amiri, Multivariate curve resolution alternating least squares in the quantitative determination of sulfur using overlapped S (Kα)–Mo (Lα) emission peaks by wavelength dispersive X-ray fluorescence spectrometry, X-Ray Spectrom. 44 (2015) 75–80; https://doi.org/10.1021/acs.analchem.6b0311610.1021/acs.analchem.6b0311627753475Search in Google Scholar

19. H. Parastar and H. Shaye, Comparative study of partial least squares and multivariate curve resolution for simultaneous spectrophotometric determination of pharmaceuticals in environmental samples, RSC Adv. 5 (2015) 70017–70024; https://doi.org/10.1039/C5RA10658C10.1039/C5RA10658CSearch in Google Scholar

20. R. L. Pérez and G. M. Escandar, Liquid chromatography with diode array detection and multivariate curve resolution for the selective and sensitive quantification of estrogens in natural waters, Anal. Chim. Acta835 (2014) 19–28; https://doi.org/10.1016/j.aca.2014.05.01510.1016/j.aca.2014.05.01524952625Search in Google Scholar

21. C. Ruckebusch and L. Blanchet, Multivariate curve resolution: a review of advanced and tailored applications and challenges, Anal. Chim. Acta765 (2013) 28–36; https://doi.org/10.1016/j.aca.2012.12.02810.1016/j.aca.2012.12.02823410623Search in Google Scholar

22. M. Garrido, F. Rius and M. Larrechi, Multivariate curve resolution-alternating least squares (MCR-ALS) applied to spectroscopic data from monitoring chemical reactions processes, Anal. Bioanal. Chem. 390 (2008) 2059–2066; https://doi.org/10.1007/s00216-008-1955-610.1007/s00216-008-1955-618320174Search in Google Scholar

23. J. Santos, I. Aparicio, E. Alonso and M. Callejón, Simultaneous determination of pharmaceutically active compounds in wastewater samples by solid phase extraction and high-performance liquid chromatography with diode array and fluorescence detectors, Anal. Chim. Acta550 (2005) 116–122; https://doi.org/10.1016/j.aca.2005.06.06410.1016/j.aca.2005.06.064Search in Google Scholar

24. J. Jaumot, A. de Juan and R. Tauler, MCR-ALS GUI 2.0: New features and applications, Chemom. Intel. Lab. Syst. 140 (2015) 1–12; https://doi.org/10.1016/j.chemolab.2014.10.00310.1016/j.chemolab.2014.10.003Search in Google Scholar

25. Multivariate Curve Resolution Homepage; http://www.mcrals.info; last access date Sept 4, 2018Search in Google Scholar

26. USP 29, NF 24, USP Convention, Rockville (MD) USA, 2005; http://www.pharmacopeia.cn/usp.asp; last access date Sept 4, 2018Search in Google Scholar

27. R. G. Brereton, Multilevel multifactor designs for multivariate calibration, Analyst122 (1997) 1521–1529; https://doi.org/10.1039/a703654j10.1039/a703654jSearch in Google Scholar

28. T. Azzouz and R. Tauler, Application of multivariate curve resolution alternating least squares (MCR-ALS) to the quantitative analysis of pharmaceutical and agricultural samples, Talanta74 (2008) 1201–1210; https://doi.org/10.1016/j.talanta.2007.08.02410.1016/j.talanta.2007.08.02418371770Search in Google Scholar

29. A. R. de Carvalho, M. del Nogal Sánchez, J. Wattoom and R. G. Brereton, Comparison of PLS and kinetic models for a second-order reaction as monitored using ultraviolet visible and mid-infrared spectroscopy, Talanta68 (2006) 1190–1200; https://doi.org/10.1016/j.talanta.2005.07.05310.1016/j.talanta.2005.07.05318970450Search in Google Scholar

30. W. Windig and J. Guilment, Interactive self-modeling mixture analysis, Anal. Chem. 63 (1991) 1425–1432; https://doi.org/10.1021/ac00014a01610.1021/ac00014a016Search in Google Scholar

31. R. Bro and S. De Jong, A fast non-negativity-constrained least squares algorithm, J. Chemom. 11 (1997) 393–401; https://doi.org/10.1002/(SICI)1099-128X(199709/10)11:53.0.CO;2-LSearch in Google Scholar

eISSN:
1846-9558
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Pharmacy, other