Open Access

Dendrimer functionalized folate-targeted gold nanoparticles for luciferase gene silencing in vitro: A proof of principle study


Cite

1. Z. Ziraksaz, A. Nomani, M. Soleimani, B. Bakhshandeh, E. Arefian, I. Haririan and M. Tabbakhian, Evaluation of cationic dendrimer and lipid as transfection reagents of short RNAs for stem cell modification, Int. J. Pharm.448 (2013) 231–238; https://doi.org/10.1016/j.ijpharm.2013.03.03510.1016/j.ijpharm.2013.03.035Search in Google Scholar

2. Y.-C. Tseng, S. Mozumdar and L. Huang, Lipid-based systemic delivery of siRNA, Adv. Drug Deliv. Rev.61 (2009) 721–731; https://doi.org/10.1016/j.addr.2009.03.00310.1016/j.addr.2009.03.003Search in Google Scholar

3. S. Dorasamy, N. Narainpersad, M. Singh and M. Ariatt, Novel targeted liposomes deliver sirna to hepatocellular carcinoma cells in vitro, Chem. Biol. Drug Des.80 (2012) 647–656; https://doi.org/10.1111/j.1747-0285.2012.01446.x10.1111/j.1747-0285.2012.01446.xSearch in Google Scholar

4. M. Banan and N. Puri, The ins and outs of RNAi in mammalian cells, Curr. Pharm. Biotechnol.5 (2004) 441–450; https://doi.org/10.2174/138920104337664310.2174/1389201043376643Search in Google Scholar

5. D. J. Gary, N. Puri and Y.-Y. Won, Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery, J. Control. Rel.121 (2007) 64–73; https://doi:10.1016/j.jconrel.2007.05.02110.1016/j.jconrel.2007.05.021Search in Google Scholar

6. J. Turkevich, P. C. Stevenson and J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday Soc.11 (1951) 55–75; https://doi:10.1039/DF951110005510.1039/df9511100055Search in Google Scholar

7. G. G. Lazarus, N. Revaprasadu, J. López-Viota and M. Singh, The electrokinetic characterization of gold nanoparticles, functionalized with cationic functional groups, and its interaction with DNA, Colloids Surf. B.121 (2014) 425–431; https://doi.org/10.1016/j.colsurfb.2014.06.03210.1016/j.colsurfb.2014.06.032Search in Google Scholar

8. E. C. Wiener, S. Konda, A. Shadron, M. Brechbiel and O. Gansow, Targeting dendrimer-chelates to tumors and tumor cells expressing the high-affinity folate receptor, Invest. radiol.32 (1997) 748–754; https://doi.org/10.1097/00004424-199712000-0000510.1097/00004424-199712000-00005Search in Google Scholar

9. Y. Wang, R. Guo, X. Cao, M. Shen and X. Shi, Encapsulation of 2-methoxyestradiol within multi-functional poly (amidoamine) dendrimers for targeted cancer therapy, Biomaterials32 (2011) 3322–3329; https://doi.org/10.1016/j.biomaterials.2010.12.06010.1016/j.biomaterials.2010.12.060Search in Google Scholar

10. X. Shi, K. Sun and J. R. Baker Jr, Spontaneous formation of functionalized dendrimer-stabilized gold nanoparticles, J. Phys. Chem. C.112 (2009) 8251–8258; https://doi.org/10.1021/jp801293a10.1021/jp801293aSearch in Google Scholar

11. C. T. de Ilarduya, Y. Sun and N. Düzgüneş, Gene delivery by lipoplexes and polyplexes, Eur. J. Pharm. Sci.40 (2010) 159–170; https://doi.org/10.1016/j.ejps.2010.03.01910.1016/j.ejps.2010.03.019Search in Google Scholar

12. T. Xiao, X. Cao and X. Shi, Dendrimer-entrapped gold nanoparticles modified with folic acid for targeted gene delivery applications, J. Control. Release172 (2013) e114-e115; https://doi.org/10.1016/j.jconrel.2013.08.27510.1016/j.jconrel.2013.08.275Search in Google Scholar

13. D. Pan, J. L. Turner and K. L. Wooley. Folic acid-conjugated nanostructured materials designed for cancer cell targeting, Chem. Commun. (2003) 2400–2401; https://doi.org/10.1039/B307878G10.1039/b307878gSearch in Google Scholar

14. G. A. Mansoori, K. S. Brandenburg and A. Shakeri-Zadeh, A comparative study of two folateconjugated gold nanoparticles for cancer nanotechnology applications, Cancers2 (2010) 1911–1928; https://doi.org/10.3390/cancers204191110.3390/cancers2041911Search in Google Scholar

15. Y. Chang, N. Liu, L. Chen, X. Meng, Y. Liu, Y. Li and J. Wang, Synthesis and characterization of DOX-conjugated dendrimer-modified magnetic iron oxide conjugates for magnetic resonance imaging, targeting, and drug delivery, J. Mater. Chem.22 (2012) 9594–9601; https://doi.org/10.1039/C2JM16792A10.1039/c2jm16792aSearch in Google Scholar

16. S. Honary and F. Zahir, Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2), Trop. J. Pharm. Res.12 (2013) 265–273; http://dx.doi.org/10.4314/tjpr.v12i2.1910.4314/tjpr.v12i2.19Search in Google Scholar

17. L. M. Hellman and M. G. Fried, Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions, Nat. Protoc.2 (2007) 1849–1861; https://doi.org/10.1038/nprot.2007.24910.1038/nprot.2007.249Search in Google Scholar

18. C.-C. Chuang and C.-W. Chang, Complexation of bioreducible cationic polymers with gold nanoparticles for improving stability in serum and application on nonviral gene delivery, ACS Appl. Mater. Inter.7 (2015) 7724–7731; https://doi.org/10.1021/acsami.5b0073210.1021/acsami.5b00732Search in Google Scholar

19. N. Lewinski, V. Colvin and R. Drezek. Cytotoxicity of nanoparticles, Smal.4 (2008) 26–49; https://doi.org/10.1002/smll.20070059510.1002/smll.200700595Search in Google Scholar

20. R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde and M. Sastry, Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview, Langmuir21 (2005) 10644–10654; https://doi.org/10.1021/la051371210.1021/la0513712Search in Google Scholar

21. Y. Shan, T. Luo, C. Peng, R. Sheng, A. Cao, X. Cao, M. Shen, R. Guo, H. Tomás and X. Shi, Gene delivery using dendrimer-entrapped gold nanoparticles as nonviral vectors, Biomaterials33 (2012) 3025–3035; https://doi.org/10.1016/j.biomaterials.2011.12.04510.1016/j.biomaterials.2011.12.045Search in Google Scholar

22. S. H. Lee, K. H. Bae, S. H. Kim, K. R. Lee and T. G. Park, Amine-functionalized gold nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers, Int. J. Pharm.364 (2008) 94–101; https://doi.org/10.1016/j.ijpharm.2008.07.02710.1016/j.ijpharm.2008.07.027Search in Google Scholar

23. A. Daniels, M. Singh and M. Ariatti, Pegylated and non-pegylated siRNA lipoplexes formulated with cholesteryl cytofectins promote efficient Luciferase knockdown in HeLa tat luc cells, Nucleos. Nucleot. Nucl.32 (2013) 206–220; https://doi.org/10.1080/15257770.2013.77607810.1080/15257770.2013.776078Search in Google Scholar

24. M. Elsabahy, A. Nazarali and M. Foldvari, Non-viral nucleic acid delivery: key challenges and future directions, Curr. Drug Deliv.8 (2011) 235–244; https://doi.org/10.2174/15672011179525617410.2174/156720111795256174Search in Google Scholar

25. T. Bettinger, R. C. Carlisle, M. L. Read, M. Ogris and L. W. Seymour, Peptide-mediated RNA delivery: a novel approach for enhanced transfection of primary and post-mitotic cells, Nucleic Acids Res.29 (2001) 3882–3891; https://doi.org/10.1093/nar/29.18.388210.1093/nar/29.18.3882Search in Google Scholar

26. H. Kang, R. DeLong, M. H. Fisher and R. L. Juliano, Tat-conjugated PAMAM dendrimers as delivery agents for antisense and siRNA oligonucleotides, Pharm. Res.22 (2005) 2099–2106; https://doi.org/10.1007/s11095-005-8330-510.1007/s11095-005-8330-5Search in Google Scholar

27. R. B. Kolhatkar, K. M. Kitchens, P. W. Swaan and H. Ghandehari, Surface acetylation of polyamidoamine (PAMAM) dendrimers decreases cytotoxicity while maintaining membrane permeability, Bioconjug. Chem.18 (2007) 2054–2060; https://doi.org/10.1021/bc060388910.1021/bc0603889Search in Google Scholar

28. B. Weide, S. Pascolo, B. Scheel, E. Derhovanessian, A. Pflugfelder, T. K. Eigentler, G. Pawelec, I. Hoerr, H.-G. Rammensee and C. Garbe, Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients, J. Immunother.32 (2009) 498–507; https://doi.org/10.1097/CJI.0b013e3181a0006810.1097/CJI.0b013e3181a00068Search in Google Scholar

29. M. L. Patil, M. Zhang, S. Betigeri, O. Taratula, H. He and T. Minko, Surface-modified and internally cationic polyamidoamine dendrimers for efficient siRNA delivery, Bioconjug. Chem.19 (2008) 1396–1403; https://doi.org/10.1021/bc800072210.1021/bc8000722Search in Google Scholar

30. S. Zhang, H. Gao and G. Bao, Physical principles of nanoparticle cellular endocytosis, ACS Nano9 (2015) 8655–8671; https://doi.org/10.1021/acsnano.5b0318410.1021/acsnano.5b03184Search in Google Scholar

eISSN:
1846-9558
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Pharmacy, other