Cite

[1] A.M. Amin, L. Wang, H. Yu, W. a. Amer, J. Gao, J. Huo, et al., “Synthesis and Characterization of Poly[bis(ethyl salicylate)phosphazenes] and Poly[bis(ethyl salicylate diethylamino)phosphazenes] and Their Hydrolytic Degradation”, J. Inorg. Organomet. Polym. Mater. 22, Pp. 196–204, 2011.10.1007/s10904-011-9529-zSearch in Google Scholar

[2] A.M. Amin, L. Wang, J. Wang, H. Yu, J. Gao, C. Li, et al., “Recent Research Progress in the Synthesis of Polyphosphazene and Their Applications”, Polym. Plast. Technol. Eng. Vol. 49, Pp. 1399–1405, 2010.Search in Google Scholar

[3] A.M. Amin, L. Wang, J. Wang, H. Yu, J. Gao, C. Li, et al., “Recent Research Progress in the Synthesis of Polyphosphazene Elastomers and Their Applications”, Polym. Plast. Technol. Eng. Vol. 49, Pp. 1399–1405, 2010.10.1080/03602559.2010.496387Search in Google Scholar

[4] A.M. Amin, L. Wang, J. Wang, W. a. Amer, J. Huo, H. Yu, et al., “Synthesis and Characterization of Poly[bis(resorcinol monobenzoate) phosphazenes] and Poly[bis(resorcinol monobenzoate diethylamino) phosphazenes] and Their Self Assembly Behaviors”, J. Inorg. Organomet. Polym. Mater. Vol. 21, Pp. 283–290, 2011.10.1007/s10904-011-9456-zSearch in Google Scholar

[5] A.M. Amin, L. Wang, H. Yu, W. a. Amer, J. Gao, T. Yulei, et al., “Synthesis and Characterization of Poly[bis(p -oxybenzaldehyde diethylamino)phosphazenes], Poly[bis(p -oxybenzaldehyde)phosphazenes], Poly[bis(diethylamino)phosphazenes] and their Self- assembly Behaviors”, J. Macromol. Sci. Part A. Vol. 48, Pp. 937–946, 2011.10.1080/10601325.2011.614866Search in Google Scholar

[6] Polyphosphazenes for Biomedical Applications, John Wiley & Sons, 2009.Search in Google Scholar

[7] T. Potta, C. Chun, S.-C. Song, “Chemically crosslinkable thermosensitive polyphosphazene gels as injectable materials for biomedical applications”, Biomaterials. Vol. 30, Pp. 6178–92, 2009.10.1016/j.biomaterials.2009.08.015Search in Google Scholar

[8] L.S. Nair, C.T. Laurencin, “Biodegradable polymers as biomaterials”, Prog. Polym. Sci. Vol. 32, Pp. 762–798, 2007.10.1016/j.progpolymsci.2007.05.017Search in Google Scholar

[9] D.G. van der Poll, H.M. Kieler-Ferguson, W.C. Floyd, S.J. Guillaudeu, K. Jerger, F.C. Szoka, et al., “Design, synthesis, and biological evaluation of a robust, biodegradable dendrimer”, Bioconjug. Chem. Vol. 21, Pp. 764–73, 2010.10.1021/bc900553n288496120353169Search in Google Scholar

[10] H.R. Allcock, N.L. Morozowich, “Bioerodible polyphosphazenes and their medical potential”, Polym. Chem. Vol. 3, 578–590, 2012.10.1039/C1PY00468ASearch in Google Scholar

[11] H.R. Allcock, T.J. Fuller, K. Matsumura, “Hydrolysis pathways for aminophosphazenes”, Inorg. Chem. Vol. 21, Pp. 515–521, 1982.10.1021/ic00132a009Search in Google Scholar

[12] Z.I. Zafar, M.A. Malana, H. Pervez, M.A. Shad, K. Momma, “Synthesis and Swelling Kinetics of a Cross-Linked pH-Sensitive Ternary Copolymer Gel System”, Polym. Korea. Vol. 32, Pp. 219–229, 2008.Search in Google Scholar

[13] C.-G. Li, Y.-Q. Yuan, Y.-F. Hu, J. Zhang, Y.-N. Tang, B.-Z. Ren, “Density functional theory study of the structures and electronic properties of copper and sulfur doped copper clusters”, Comput. Theor. Chem. Vol. 1080, Pp. 47–55, 2016.10.1016/j.comptc.2016.01.018Search in Google Scholar

[14] J. Castillo-tejas, O. Castrejón-gonzález, S. Carro, V. González-coronel, “Associative polymers. Part III : Shear rheology from molecular dynamics”, Colloids Surfaces A Physicochem. Eng. Asp. Vol. 491, Pp. 37–49, 2016.10.1016/j.colsurfa.2015.11.052Search in Google Scholar

[15] J. Fried, A.A. Skelton, J.L. Kroger, J.R. Fried, A.A. Skelton, “Computational simulations of hydrolysis of phosphazene oligomer utilizing atom - centered density matrix propagation”, Int. J. Quantum Chem. 2013.Search in Google Scholar

[16] W.-L. Feng, S.X. Tian, “Ab initio molecular dynamics simulation study of dissociative electron attachment to C6H5(CH2) nCl (n=0, 1, 2, 3, 4) ”, Int. J. Mass Spectrom. Pp. 8–11, 2016.10.1016/j.ijms.2016.02.008Search in Google Scholar

[17] R. Fondermann, M. Dolg, M. Raab, E. Niecke, “A quantum chemical ab initio study of the polymerization to polyhydridophosphazenes”, Chem. Phys. Vol. 325, Pp. 291–298, 2006.10.1016/j.chemphys.2006.01.016Search in Google Scholar

[18] J.L. Kroger, J.R. Fried, A.A. Skelton, “Computational simulations of hydrolysis of phosphazene oligomer utilizing atom-centered density matrix propagation”, Int. J. Quantum Chem. Vol. 113, Pp. 63–70, 2013.10.1002/qua.24137Search in Google Scholar

[19] I. Teasdale, O. Brüggemann, “Polyphosphazenes: Multifunctional, biodegradable vehicles for drug and gene delivery”, Polymers (Basel). Vol. 5, Pp. 161–187, 2013.10.3390/polym5010161398204624729871Search in Google Scholar

[20] B. Honarparvar, A.A. Skelton, “Molecular dynamics simulation and conformational analysis of some catalytically active peptides”, J. Mol. Model. Vol. 21, 2015.10.1007/s00894-015-2645-x25823390Search in Google Scholar

[21] A. V. Ratushny, S. A. Ramsey, and J. D. Aitchison. “Mathematical Modeling of Biomolecular Network Dynamics”, Methods Mol Biol. Vol. 781, Pp. 415-433, 2011.10.1007/978-1-61779-276-2_21448223721877294Search in Google Scholar

[22] N. Chen, N. Lee, S. A. Bortolato & D. M. Martino. “Experimental studies and mathematical modeling of the curing reaction of bioinspired copolymers”, Green Chemistry Letters and Reviews, Vol. 11, No. 4, Pp. 387-398, 2018.10.1080/17518253.2018.1516809Search in Google Scholar

[23] T. A. Rozen’kova, L. I. Makeeva, I. N. Tsareva, L. V. Zhuravlev, A. V. Tokareva, M. V. Shablygin, “Mathematical modeling of synthesis processes for polymers which are prepared by the low-temperature polycondensation method”, Fibre Chemistry, Vol. 17, Pp. 85-90, 1985.10.1007/BF00543462Search in Google Scholar

[24] N. Chen, N. Lee, S. A. Bortolato and D. M. Martino. “Experimental studies and mathematical modeling of the curing reaction of bioinspired copolymers”, Green Chemistry Letters and Reviews, Vol. 11, No. 4, Pp. 387-398, 2018.10.1080/17518253.2018.1516809Search in Google Scholar

[25] S. H. Jose R.Leiza José M.Asua. “A new approach for mathematical modeling of the dynamic development of particle morphology, Chemical Engineering Journal”, Vol. 304, Pp. 655-666, 2016.10.1016/j.cej.2016.06.127Search in Google Scholar

[26] R.A.F., Machado, J.C., Pinto, P.H.H., Araújo, A, Bolzan. “Mathematical modeling of polystyrene particle size distribution produced by suspension polymerization”, Brazilian Journal of Chemical Engineering, Vol. 17, No. 4-7, Pp. 395-407, 2000.10.1590/S0104-66322000000400004Search in Google Scholar

[27] I. Grigoryev, S. Mustafina and S. Mustafina. “Mathematical Modeling of the Polymerization of Butadiene on Neodymium containing Catalyst system”, ARPN Journal of Engineering and Applied Sciences. Vol. 14, No. 19, Pp. 3358-3363, 2019.Search in Google Scholar

[28] Y. Chen, S. Zhou, Q. Li. “Mathematical modeling of degradation for bulk-erosive polymers: Applications in tissue engineering scaffolds and drug delivery systems”, Acta Biomaterialia, Vol. 7, Pp. 1140-1149, 2011.10.1016/j.actbio.2010.09.038Search in Google Scholar

[29] W. J. Yoon, Y. S. Kim, I. S. Kim and K. Y. Choi. “Recent Advances in Polymer Reaction Engineering: Modeling and Control of Polymer Properties”, Korean J. Chem. Eng., Vol. 21, No. 1, Pp. 147-167, 2004.10.1007/BF02705393Search in Google Scholar

[30] J. A. Pojman, “Mathematical Modeling of Frontal Polymerization”, Math. Model. Nat. Phenom. Vol. 14, Pp. 604-614, 2019.10.1051/mmnp/2019059Search in Google Scholar

eISSN:
2576-6732
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Chemistry, Sustainable and Green Chemistry, Catalysis, other