Cite

[1] A.F. Butt, M.N. Ahmed, M.H. Bhatti, M.A. Choudhary, K. Ayub, M.N. Tahir, and T. Mahmood, “Synthesis, structural properties, DFT studies, antimicrobial activities and DNA binding interactions of two newly synthesized organotin (IV) carboxylates”, J. Mol. Struct., Vol. 1191, Pp. 291-300, 2019.10.1016/j.molstruc.2019.04.066Search in Google Scholar

[2] M. Sirajuddin, S. Ali, V. McKee, N. Akhtar, S. Andleeb, and A. Wadood, “Spectroscopic characterizations, structural peculiarities, molecular docking study and evaluation of biological potential of newly designed organotin (IV) carboxylates”, J. Photochem. Photobiol. B., Vol. 197, Pp. 111-116, 2019.10.1016/j.jphotobiol.2019.111516Search in Google Scholar

[3] A. Munir, M. Sirajuddin, M. Zubair, A. Haider, S.A. Tirmizi, S. Ali, and I. Aziz, “Synthesis, spectroscopic characterization, and biological screening of levofloxacin based organotin (IV) derivatives”, Russ. J. Gen. Chem., Vol. 87, No. 10, Pp. 2380-2390, 2017.10.1134/S1070363217100206Search in Google Scholar

[4] F.F. Yan, Q. Zhu, Q.L. Li, R.F. Zhang, and C.L. Ma, “Triorganotin coordination polymers based on three dicarboxylate ligands containing flexible SS bonds: synthesis, structures and in vitro anti-tumor activity”, J. Organomet. Chem., Vol. 880, Pp. 156-162, 2019.10.1016/j.jorganchem.2018.11.003Search in Google Scholar

[5] I. Ahmad, A. Waseem, M. Tariq, C. Macbeth, J. Bacsa, D. Venkataraman, and S. Tabassum, “Organotin (IV) derivatives of amide-based carboxylates: Synthesis, spectroscopic characterization, single crystal studies and antimicrobial, antioxidant, cytotoxic, anti-leishmanial, hemolytic, noncancerous, anticancer activities”, Inorg. Chim. Acta, Pp. 119-133, 2020.10.1016/j.ica.2020.119433Search in Google Scholar

[6] S. Naz, M. Sirajuddin, I. Hussain, A. Haider, A. Nadhman, A. Gul, and S. Ali, “2-Phenylbutyric acid based organotin (IV) carboxylates; synthesis, spectroscopic characterization, antibacterial action against plant pathogens and in vitro hemolysis”, J. Mol. Struct., 1203, 127378, 2020.10.1016/j.molstruc.2019.127378Search in Google Scholar

[7] M. Sirajuddin, V. McKee, M. Tariq, and S. Ali, “Newly designed organotin (IV) carboxylates with peptide linkage: synthesis, structural elucidation, physicochemical characterizations and pharmacological investigations”, Eur. J. med. Chem., Vol. 143, Pp. 1903-1918, 2018.10.1016/j.ejmech.2017.11.001Search in Google Scholar

[8] M. Sirajuddin, S. Ali, V. McKee, and A. Matin, “Synthesis, characterization and biological screenings of 5-coordinated Organotin (IV) complexes based on carboxylate ligand”, J. Mol. Struct., 127683, 2020.10.1016/j.molstruc.2020.127683Search in Google Scholar

[9] R. Guan, Z. Zhou, M. Zhang, H. Liu, W. Du, X. Tian, and Y. Tian, “Organotin (IV) carboxylate complexes containing polyether oxygen chains with two-photon absorption in the near infrared region and their anticancer activity”, Dyes Pigments, Vol. 158, Pp. 428-437, 2018.10.1016/j.dyepig.2018.05.072Search in Google Scholar

[10] C.N. Banti, S.K. Hadjikakou, T. Sismanoglu, and N. Hadjiliadis, “Anti-proliferative and antitumor activity of organotin (IV) compounds. An overview of the last decade and future perspectives”, J. Inorg. Biochem., Vol. 194, Pp. 114-152, 2019.10.1016/j.jinorgbio.2019.02.003Search in Google Scholar

[11] A.M. Sakho, D. Du, W. Li, S. Liu, D. Zhu, and L. Xu, “Synthesis, crystal structures, and antitumor activity of three new organotin carboxylates”, Heteroatom Chem., Vol. 21, No. 5, Pp. 304-313, 2010.10.1002/hc.20614Search in Google Scholar

[12] J.O. Adeyemi, D.C. Onwudiwe, A.C. Ekennia, S.N. Okafor, and E.C. Hosten, “Organotin (IV) N-butyl-N-phenyldithiocarbamate complexes: Synthesis, characterization, biological evaluation and molecular docking studies”, J. Mol. Struct., Vol. 1192, Pp. 15-26, 2019.10.1016/j.molstruc.2019.04.097Search in Google Scholar

[13] K.M. Fock, T.L. Ang, L.C. Bee, and E.J.D. Lee, “Proton pump inhibitors”, Clin. Pharmacokinet, Vol. 47, No. 1, Pp. 1-6, 2008.10.2165/00003088-200847010-00001Search in Google Scholar

[14] L.S. Welage, and R.R. Berardi, “Evaluation of omeprazole, lansoprazole, pantoprazole, and rabeprazole in the treatment of acid-related diseases”, J. Am. Pharm. Assoc., Vol. 40, No.1, Pp. 52-62, 2000.10.1016/S1086-5802(16)31036-1Search in Google Scholar

[15] F. Salama, N. El-Abasawy, S.A. Razeq, M.M.F. Ismail, and M.M. Fouad, “Validation of the spectrophotometric determination of omeprazole and pantoprazole sodium via their metal chelates”, J. Pharmaceu. Biomed. Anal., Vol. 33, No. 3, Pp. 411-421, 2003.10.1016/S0731-7085(03)00233-4Search in Google Scholar

[16] C. Vidaillac, J. Guillon, C. Arpin, I. Forfar-Bares, B.B. Ba, J. Grellet, and C. Quentin, “Synthesis of omeprazole analogues and evaluation of these as potential inhibitors of the multidrug efflux pump NorA of Staphylococcus aureus”, Antimicrob. Agents chemother. Vol. 51, No. 3, Pp. 831-838, 2007.10.1128/AAC.01306-05180315617101679Search in Google Scholar

[17] M. Tariq, M. Sirajuddin, S. Ali, N. Khalid, and N.A. Shah, “Biological evaluations and spectroscopic characterizations of 3-(4-ethoxyphenyl)-2-methylacrylate based organotin (IV) carboxylates derivatives”, Russ. J. Gen. Chem., Vol. 87, No. 11, Pp. 2690-2698, 2017.10.1134/S1070363217110263Search in Google Scholar

[18] M. Tariq, N. Muhammad, S. Ali, J.H. Shirazi, M.N. Tahir, and N. Khalid, “Synthesis, spectroscopic, X-ray crystal structure, biological and DNA interaction studies of organotin (IV) complexes of 2-(4-ethoxybenzylidene) butanoic acid. Spectrochim”, Acta A:, Vol. 122, Pp. 356-364, 2014.10.1016/j.saa.2013.11.06524322756Search in Google Scholar

[19] M. Iqbal, S. Ali, A. Haider, and N. Khalid, “Therapeutic properties of organotin complexes with reference to their structural and environmental features”, Rev. Inorg. Chem., Vol. 37, No. 2, Pp. 51-70, 2017.10.1515/revic-2016-0005Search in Google Scholar

[20] R. Kumar, A. Rani, S.P. Singh, K.M. Kumari, and S.S. Srivastava, “A long term study on chemical composition of rainwater at Dayalbagh, a suburban site of semiarid region”, J. Atmos. Chem., Vol. 41, No. 3, Pp. 265-279, 2002.10.1023/A:1014955715633Search in Google Scholar

[21] N. Rani, A. Sharma, and R. Singh, “Imidazoles as promising scaffolds for antibacterial activity: a review”, Mini Rev. Med. Chem., Vol. 13, No. 12, Pp. 1812-1835, 2013.10.2174/13895575113136660091Search in Google Scholar

[22] L. Zhang, X.M. Peng, G.L. Damu, R.X. Geng, and C.H. Zhou, “Comprehensive review in current developments of imidazole-based medicinal chemistry”, Med. Res. Rev., Vol. 34, No. 2, Pp. 340-437, 2014.10.1002/med.2129023740514Search in Google Scholar

[23] W.L. Armarego, and C.L. Chai, “Purification of laboratory chemicals”, third ed., Pergamon Press, Berlin, 2013.10.1016/B978-0-12-382161-4.00004-2Search in Google Scholar

[24] M.I. Choudhary, and W.J. Thomsen, “Bioassay techniques for drug development”, CRC Press. Harwood Academic Publishers, Amsterdam, The Netherlands, 2001.Search in Google Scholar

[25] M. Tariq, N. Muhammad, M. Sirajuddin, S. Ali, N.A. Shah, N. Khalid, and M.R. Khan, “Synthesis, spectroscopic characterization, X-ray structures, biological screenings, DNA interaction study and catalytic activity of organotin (IV) 3-(4-flourophenyl)-2-methylacrylic acid derivatives”, J. Organomet. Chem., Vol. 723, Pp. 79-89, 2013.10.1016/j.jorganchem.2012.09.011Search in Google Scholar

[26] S. Nazir, J. Anwar, M.A. Munawar, J.I. Qazi, S.P. Best, M. Cheah, and M. Yaseen, “Metal complexation induces antibiotic activity in S-ethyl-l-cysteine sulfoxide”, Inorg. Chim. Acta, Vol. 478, Pp. 166-175, 2018.10.1016/j.ica.2018.04.002Search in Google Scholar

[27] M. Calligaris, “Structure and bonding in metal sulfoxide complexes: an update”, Coord. Chem. Rev., Vol. 248, No. 3-4, Pp. 351-375, 2004.10.1016/j.ccr.2004.02.005Search in Google Scholar

eISSN:
2576-6732
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Chemistry, Sustainable and Green Chemistry, Catalysis, other