Open Access

Ultrasound Elastography: Review of Techniques, Clinical Application, Technical Limitations, and Safety Considerations in Neonatology


Cite

1. Shiina T, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: basic principles and terminology. Ultrasound in medicine & biology, 2015, 41.5: 1126-1147. Search in Google Scholar

2. Decampo D, Hwang M. Characterizing the neonatal brain with ultrasound elastography. Pediatric neurology, 2018, 86: 19-26. Search in Google Scholar

3. Gabriel M L, Piatto V B, Souza A S. Clinical application of transcranial Doppler ultrasonography in premature, very - low - birth - weight neonates. RadiolBras, 2010, 43.4: 213-8. Search in Google Scholar

4. Sarvazyan A, et al. An overview of elastography - an emerging branch of medical imaging. Current Medical Imaging, 2011, 7.4: 255-282. Search in Google Scholar

5. Zemanová M. Nová diagnostická zobrazovací metoda - Shear waves elastografie. Česká a Slovenská oftalmologie, 2016, 72.4: 103–110 Search in Google Scholar

6. Kostović I; Jovanov - Milošević N. The development of cerebral connections during the first 20–45 weeks’ gestation. In: Seminars in Fetal and Neonatal Medicine. WB Saunders, 2006. p. 415-422. Search in Google Scholar

7. Clouchoux C, et al. Normative fetal brain growth by quantitative in vivo magnetic resonance imaging. American journal of obstetrics and gynecology, 2012, 206.2: 173. e1-173. e8. Search in Google Scholar

8. Kostović I; Vasung L. Insights from in vitro fetal magnetic resonance imaging of cerebral development. In: Seminars in perinatology. WB Saunders, 2009. p. 220-233. Search in Google Scholar

9. Bouyssi-Kobar M, et al. Third trimester brain growth in preterm infants compared with in utero healthy fetuses. Pediatrics, 2016, 138.5: e20161640. Search in Google Scholar

10. Sigrist R, et al. Ultrasound Elastography: Review of Techniques and Clinical Applications. Theranostics [online].2017,7(5), 1303-1329 [cit. 2019-06-25]. DOI: 10.7150/thno.18650. ISSN 1838-7640.Dostupné z:http://www.thno.org/v07p1303.htm Search in Google Scholar

11. Gennisson, JL, et al. Ultrasound elastography: Principles and techniques. Diagnostic and Interventional Imaging [online].2013, 94(5), 487-495 [cit. 2019-06-25]. DOI: 10.1016/j.diii. 2013.01.022. ISSN 22115684.Dostupné z: https://linkinghub.elsevier.com/retrieve/pii/S2211568413000302 Search in Google Scholar

12. Garra B S. Elastography: history, principles, and technique comparison. Abdominal imaging, 2015, 40.4: 680-697. Search in Google Scholar

13. Itoh A, et al. Breast disease: clinical application of US elastography for diagnosis. Radiology, 2006, 239.2: 341-350. Search in Google Scholar

14. Nightingale K, et al. Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound in medicine & biology, 2002, 28.2: 227-235. Search in Google Scholar

15. Catheline S, et al. Diffraction field of a low frequency vibrator in soft tissues using transient elastography. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1999, 46.4: 1013-1019. Search in Google Scholar

16. Dietrich C F, et al. Strain elastography-how to do it?.Ultrasound international open, 2017, 3.04: E137-E149. Search in Google Scholar

17. Sandrin L, et al. Shear elasticity probe for soft tissues with 1-D transient elastography. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2002, 49.4: 436-446. Search in Google Scholar

18. Tang A, et al. Ultrasound elastography and MR elastography for assessing liver fibrosis: part 1, principles and techniques. American journal of roentgenology, 2015, 205.1: 22-32. Search in Google Scholar

19. Ferraioli G, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 3: liver. Ultrasound in medicine & biology, 2015, 41.5: 1161-1179. Search in Google Scholar

20. Cosgrove D, et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications. Ultraschall in der Medizin-European Journal of Ultrasound, 2013, 34.03: 238-253. Search in Google Scholar

21. Shankar H; Pagel P S. Potential Adverse Ultrasound-related Biological Effects A Critical Review. Anesthesiology: The Journal of the American Society of Anesthesiologists, 2011, 115.5: 1109-1124. Search in Google Scholar

22. Su Y, et al. Evaluation of neonatal brain development using acoustic radiation force impulse imaging (ARFI). Neurophysiology, 2015, 47.4: 322-325. Search in Google Scholar

23. Kim H G, et al. Ultrasound elastography of the neonatal brain: preliminary study. Journal of Ultrasound in Medicine, 2017, 36.7: 1313-1319. Search in Google Scholar

24. Albayrak E; Kasap T. Evaluation of Neonatal Brain Parenchyma Using 2 Dimensional Shear Wave Elastography. Journal of Ultrasound in Medicine, 2018, 37.4: 959-967. Search in Google Scholar

25. El-Ali A M, et al. Feasibility and reproducibility of shear wave elastography in pediatric cranial ultrasound. Pediatric Radiology, 2019, 1-7. Search in Google Scholar

26. Yao D, et al. Establishment and identification of a hypoxia-ischemia brain damage model in neonatal rats. Biomedical reports, 2016, 4.4: 437-443. Search in Google Scholar

27. Xu Z S, et al. Evidence of changes in brain tissue stiffness after ischemic stroke derived from ultrasound based elastography. Journal of Ultrasound in Medicine, 2013, 32.3: 485-494. Search in Google Scholar

28. Xu Z S, et al. Detection of mild traumatic brain injury in rodent models using shear wave elastography: preliminary studies. Journal of Ultrasound in Medicine, 2014, 33.10: 1763-1771. Search in Google Scholar

29. Martín A, et al. Imaging of perfusion, angiogenesis, and tissue elasticity after stroke. Journal of Cerebral Blood Flow & Metabolism, 2012, 32.8: 1496-1507. Search in Google Scholar

30. Wang S-D, et al. Different extent of hypoxic-ischemic brain damage in newborn rats: histopathology, hemodynamic, virtual touch tissue quantification and neurobehavioral observation. International journal of clinical and experimental pathology,2015,8.10: 12177. 6 Search in Google Scholar

31. Zhu Z H, et al. Acoustic Radiation Force Impulse Imaging With Virtual Touch Tissue Quantification Enables Characterization of Mild Hypoxic Ischemic Brain Damage in Neonatal Rats. Journal of Ultrasound in Medicine, 2019, 38.7: 1797-1805. Search in Google Scholar

32. Bamber J, et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: Basic principles and technology. Ultraschall in der Medizin-European Journal of Ultrasound, 2013, 34.02: 169-184. Search in Google Scholar

33. Bercoff J; Tanter M; Fink M. Supersonic shear imaging: a new techniquefor soft tissue elasticity mapping. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2004, 51.4: 396-409. Search in Google Scholar

34. Ertl M, et al. Transtemporal investigation of brain parenchyma elasticity using 2-D shear wave elastography: Definition of age-matched normal values. Ultrasound in medicine&biology, 2018, 44.1: 78-84. Search in Google Scholar

35. WFUMB. WFUMB Clinical Safety Statement for Diagnostic Ultrasound – an overview. 2019. WFUMB Administrative Council. Retrieved from: https://wfumb.info/2019/04/15/echoes-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2/ Search in Google Scholar

36. BMUS. Guidelines for the safe use of diagnostic ultrasound equipment. 2010. The Safety Group of the British Medical Ultrasound Society, Ultrasound,18, Search in Google Scholar

37. Sedlář M; Staffa E; Mornstein V. Zobrazovací metody využívající neionizující záření. 2013. Brno: Biofyzikální ústav Lékařské fakulty Masarykovy univerzity v Brně. Retrieved from: http://www.med.muni.cz/biofyz/zobrazovacimetody/files/zobrazovaci_metody.pdf. Search in Google Scholar

38. Li C, et al. An experimental study of the potential biological effects associated with 2-D shear wave elastography on the neonatal brain. Ultrasound in medicine&biology, 2016, 42.7: 1551-1559. Search in Google Scholar

39. Gumulak R, et al. Cerebral near-infrared spectroscopy in term newborns: reference values and hypoxic-ischemic encephalopathy. Acta Medica Martiniana, 2019, 19.2: 58-63. Search in Google Scholar

eISSN:
1338-4139
Language:
English
Publication timeframe:
3 times per year
Journal Subjects:
Medicine, Clinical Medicine, Internal Medicine, Cardiology