Cite

Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng., Tissue Eng; 2001;211–28; DOI:10.1089/107632701300062859.ZukPAZhuMMizunoHHuangJFutrellJWKatzAJBenhaimPLorenzHPHedrickMHMultilineage cells from human adipose tissue: Implications for cell-based therapiesTissue Eng., Tissue Eng;2001211–2810.1089/107632701300062859Open DOISearch in Google Scholar

Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human Adipose Tissue Is a Source of Multipotent Stem Cells. Mol Biol Cell. 2002;13:4279–95; DOI:10.1091/mbc.E02-02-0105.ZukPAZhuMAshjianPDeUgarte DAHuangJIMizunoHAlfonsoZCFraserJKBenhaimPHedrickMH.Human Adipose Tissue Is a Source of Multipotent Stem CellsMol Biol Cell20021342799510.1091/mbc.E02-02-0105Open DOISearch in Google Scholar

Zhu M, Zhou Z, Chen Y, Schreiber R, Ransom JT, Fraser JK, Hedrick MH, Pinkernell K, Kuo HC. Supplementation of fat grafts with adipose-derived regenerative cells improves long-term graft retention. Ann Plast Surg. 2010;64:222–8; DOI:10.1097/SAP.0b013e31819ae05c.ZhuMZhouZChenYSchreiberRRansomJTFraserJKHedrickMHPinkernellKKuoHCSupplementation of fat grafts with adipose-derived regenerative cells improves long-term graft retentionAnn Plast Surg201064222810.1097/SAP.0b013e31819ae05cOpen DOISearch in Google Scholar

Majumdar MK, Banks V, Peluso DP, Morris EA. Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. J Cell Physiol. 2000;185:98–106; DOI:10.1002/1097-4652(200010)185:1<98::AID-JCP9>3.0.CO;2-1.MajumdarMKBanksVPelusoDPMorrisEAIsolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cellsJ Cell Physiol20001859810610.1002/1097-4652(200010)185:1<98::AID-JCP9>3.0.CO;2-1Open DOISearch in Google Scholar

Planat-Bénard V, Menard C, André M, Puceat M, Perez A, Garcia-Verdugo JM, Pénicaud L, Casteilla L. Spontaneous Cardiomyocyte Differentiation from Adipose Tissue Stroma Cells. Circ Res. 2004;94:223–9; DOI:10.1161/01.RES.0000109792.43271.47.Planat-BénardVMenardCAndréMPuceatMPerezAGarcia-VerdugoJMPénicaudLCasteillaLSpontaneous Cardiomyocyte Differentiation from Adipose Tissue Stroma CellsCirc Res200494223910.1161/01.RES.0000109792.43271.47Open DOISearch in Google Scholar

Halvorsen YDC, Franklin D, Bond AL, Hitt DC, Auchter C, Boskey AL, Paschalis EP, Wilkison WO, Gimble JM. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng. 2001;7:729–41; DOI:10.1089/107632701753337681.HalvorsenYDCFranklinDBondALHittDCAuchterCBoskeyALPaschalisEPWilkisonWOGimbleJMExtracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cellsTissue Eng200177294110.1089/107632701753337681Open DOISearch in Google Scholar

Li H, Zhu L, Chen H, Li T, Han Q, Wang S, Yao X, Feng H, Fan L, Gao S, Boyd R, Cao X, Zhu P, Li J, Keating A, Su X, Zhao RC. Generation of Functional Hepatocytes from Human Adipose-Derived MYC+ KLF4+ GMNN+ Stem Cells Analyzed by Single-Cell RNA-Seq Profiling. Stem Cells Transl Med. 2018;7:792–805; DOI:10.1002/sctm.17-0273.LiHZhuLChenHLiTHanQWangSYaoXFengHFanLGaoSBoydRCaoXZhuPLiJKeatingASuXZhaoRCGeneration of Functional Hepatocytes from Human Adipose-Derived MYC+ KLF4+ GMNN+ Stem Cells Analyzed by Single-Cell RNA-Seq ProfilingStem Cells Transl Med2018779280510.1002/sctm.17-0273Open DOISearch in Google Scholar

Abdanipour A, Tiraihi T, Delshad AR. Trans-differentiation of the adipose tissue-derived stem cells into neuron-like cells expressing neurotrophins by selegiline. Iran Biomed J. 2011;15:113–21; DOI:10.6091/IBJ.1011.2012.AbdanipourATiraihiTDelshadARTrans-differentiation of the adipose tissue-derived stem cells into neuron-like cells expressing neurotrophins by selegilineIran Biomed J2011151132110.6091/IBJ.1011.2012Open DOISearch in Google Scholar

Keck M, Kober J, Riedl O, Kitzinger HB, Wolf S, Stulnig TM, Zeyda M, Gugerell A. Power assisted liposuction to obtain adipose-derived stem cells: Impact on viability and differentiation to adipocytes in comparison to manual aspiration. J Plast Reconstr Aesthetic Surg. 2014;67:e1; DOI:10.1016/j.bjps.2013.08.019.KeckMKoberJRiedlOKitzingerHBWolfSStulnigTMZeydaMGugerellAPower assisted liposuction to obtain adipose-derived stem cells: Impact on viability and differentiation to adipocytes in comparison to manual aspirationJ Plast Reconstr Aesthetic Surg201467e110.1016/j.bjps.2013.08.019Open DOISearch in Google Scholar

Tanikawa DYS, Aguena M, Bueno DF, Passos-Bueno MR, Alonso N. Fat grafts supplemented with adipose-derived stromal cells in the rehabilitation of patients with craniofacial microsomia. Plast Reconstr Surg. 2013;132:141–52; DOI:10.1097/PRS.0b013e3182910a82.TanikawaDYSAguenaMBuenoDFPassos-BuenoMRAlonsoNFat grafts supplemented with adipose-derived stromal cells in the rehabilitation of patients with craniofacial microsomiaPlast Reconstr Surg20131321415210.1097/PRS.0b013e3182910a82Open DOISearch in Google Scholar

Dompe C, Wasiatycz G, Mozdziak P, Jankowski M, Kempisty B. Current clinical applications of adipose-derived stem cells in humans and animals. Med J Cell Biol. 2019;7; DOI:10.2478/acb-2019-0014.DompeCWasiatyczGMozdziakPJankowskiMKempistyBCurrent clinical applications of adipose-derived stem cells in humans and animalsMed J Cell Biol2019710.2478/acb-2019-0014Open DOISearch in Google Scholar

Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–9; DOI:10.1016/0003-2697(87)90021-2.ChomczynskiPSacchiNSingle-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extractionAnal Biochem1987162156910.1016/0003-2697(87)90021-2Open DOISearch in Google Scholar

Palumbo P, Lombardi F, Siragusa G, Cifone M, Cinque B, Giuliani M. Methods of Isolation, Characterization and Expansion of Human Adipose-Derived Stem Cells (ASCs): An Overview. Int J Mol Sci. 2018;19:1897; DOI:10.3390/ijms19071897.PalumboPLombardiFSiragusaGCifoneMCinqueBGiulianiMMethods of Isolation, Characterization and Expansion of Human Adipose-Derived Stem Cells (ASCs): An OverviewInt J Mol Sci201819189710.3390/ijms19071897Open DOISearch in Google Scholar

Miana VV, Prieto González EA. Adipose tissue stem cells in regenerative medicine. Ecancermedicalscience. 2018;12; DOI:10.3332/ecancer.2018.822.MianaVVPrietoGonzález EA.Adipose tissue stem cells in regenerative medicineEcancermedicalscience20181210.3332/ecancer.2018.822Open DOISearch in Google Scholar

Bacakova L, Zarubova J, Travnickova M, Musilkova J, Pajorova J, Slepicka P, Kasalkova NS, Svorcik V, Kolska Z, Motarjemi H, Molitor M. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells – a review. Biotechnol Adv. 2018;36:1111–26; DOI:10.1016/J.BIOTECHADV.2018.03.011.BacakovaLZarubovaJTravnickovaMMusilkovaJPajorovaJSlepickaPKasalkovaNSSvorcikVKolskaZMotarjemiHMolitorMStem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells – a reviewBiotechnol Adv20183611112610.1016/J.BIOTECHADV.2018.03.011Open DOISearch in Google Scholar

Dompe C, Kranc W, Jopek K, Kowalska K, Ciesiółka S, Chermuła B, Bryja A, Jankowski M, Perek J, Józkowiak M, Moncrieff L, Hutchings G, Janowicz K, Pawelczyk L, Bruska M, Petitte J, Mozdziak P, Kulus M, Piotrowska-Kempisty H, Spaczyński R, Nowicki M, Kempisty B. Muscle Cell Morphogenesis, Structure, Development and Differentiation Processes Are Significantly Regulated during Human Ovarian Granulosa Cells In Vitro Cultivation. J Clin Med. 2020;9:2006; DOI:10.3390/jcm9062006.DompeCKrancWJopekKKowalskaKCiesiółkaSChermułaBBryjaAJankowskiMPerekJJózkowiakMMoncrieffLHutchingsGJanowiczKPawelczykLBruskaMPetitteJMozdziakPKulusMPiotrowska-KempistyHSpaczyńskiRNowickiMKempistyBMuscle Cell Morphogenesis, Structure, Development and Differentiation Processes Are Significantly Regulated during Human Ovarian Granulosa Cells In Vitro CultivationJ Clin Med20209200610.3390/jcm9062006Open DOISearch in Google Scholar

Jankowski M, Dompe C, Sibiak R, Wąsiatycz G, Mozdziak P, Jaśkowski JM, Antosik P, Kempisty B, Dyszkiewicz-Konwińska M. In Vitro Cultures of Adipose-Derived Stem Cells: An Overview of Methods, Molecular Analyses, and Clinical Applications. Cells. 2020;9:1783; DOI:10.3390/cells9081783.JankowskiMDompeCSibiakRWąsiatyczGMozdziakPJaśkowskiJMAntosikPKempistyBDyszkiewicz-KonwińskaMIn Vitro Cultures of Adipose-Derived Stem Cells: An Overview of Methods, Molecular Analyses, and Clinical ApplicationsCells20209178310.3390/cells9081783Open DOISearch in Google Scholar

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7; DOI:10.1080/14653240600855905.DominiciMLeBlanc KMuellerISlaper-CortenbachIMariniFKrauseDDeansRKeatingAProckopDHorwitzE.Minimal criteria for defining multipotent mesenchymal stromal cellsThe International Society for Cellular Therapy position statement. Cytotherapy20068315710.1080/14653240600855905Open DOISearch in Google Scholar

Dallas NA, Samuel S, Xia L, Fan F, Gray MJ, Lim SJ, Ellis LM. Endoglin (CD105): A marker of tumor vasculature and potential target for therapy. Clin Cancer Res. 2008;14:1931–7; DOI:10.1158/1078-0432.CCR-07-4478.DallasNASamuelSXiaLFanFGrayMJLimSJEllisLMEndoglin (CD105): A marker of tumor vasculature and potential target for therapyClin Cancer Res2008141931710.1158/1078-0432.CCR-07-4478Open DOISearch in Google Scholar

Ollauri-Ibáñez C, Núñez-Gómez E, Egido-Turrión C, Silva-Sousa L, Díaz-Rodríguez E, Rodríguez-Barbero A, López-Novoa JM, Pericacho M. Continuous endoglin (CD105) overexpression disrupts angiogenesis and facilitates tumor cell metastasis. Angiogenesis. 2020;23:231–47; DOI:10.1007/s10456-019-09703-y.Ollauri-IbáñezCNúñez-GómezEEgido-TurriónCSilva-SousaLDíaz-RodríguezERodríguez-BarberoALópez-NovoaJMPericachoM.Continuous endoglin (CD105) overexpression disrupts angiogenesis and facilitates tumor cell metastasisAngiogenesis2020232314710.1007/s10456-019-09703-yOpen DOISearch in Google Scholar

Cleary MA, Narcisi R, Focke K, van der Linden R, Brama PAJ, van Osch GJVM. Expression of CD105 on expanded mesenchymal stem cells does not predict their chondrogenic potential. Osteoarthr Cartil. 2016;24:868–72; DOI:10.1016/j.joca.2015.11.018.ClearyMANarcisiRFockeKvander Linden RBramaPAJvanOsch GJVM.Expression of CD105 on expanded mesenchymal stem cells does not predict their chondrogenic potentialOsteoarthr Cartil2016248687210.1016/j.joca.2015.11.018Open DOISearch in Google Scholar

Antonioli L, Pacher P, Vizi ES, Haskó G. CD39 and CD73 in immunity and inflammation. Trends Mol Med. 2013;19:355–67; DOI:10.1016/j.molmed.2013.03.005.AntonioliLPacherPViziESHaskóG.CD39 and CD73 in immunity and inflammationTrends Mol Med2013193556710.1016/j.molmed.2013.03.005Open DOISearch in Google Scholar

Beavis PA, Stagg J, Darcy PK, Smyth MJ. CD73: A potent suppressor of antitumor immune responses. Trends Immunol. 2012;33:231–7; DOI:10.1016/j.it.2012.02.009.BeavisPAStaggJDarcyPKSmythMJCD73: A potent suppressor of antitumor immune responsesTrends Immunol201233231710.1016/j.it.2012.02.009Open DOISearch in Google Scholar

De Leve S, Wirsdörfer F, Jendrossek V. Targeting the immunomodulatory CD73/adenosine system to improve the therapeutic gain of radiotherapy. Front Immunol. 2019;10:698; DOI:10.3389/fimmu.2019.00698.DeLeve SWirsdörferFJendrossekV.Targeting the immunomodulatory CD73/adenosine system to improve the therapeutic gain of radiotherapyFront Immunol20191069810.3389/fimmu.2019.00698Open DOISearch in Google Scholar

Sauzay C, Voutetakis K, Chatziioannou AA, Chevet E, Avril T. CD90/Thy-1, a cancer-associated cell surface signaling molecule. Front Cell Dev Biol. 2019;7:66; DOI:10.3389/fcell.2019.00066.SauzayCVoutetakisKChatziioannouAAChevetEAvrilTCD90/Thy-1, a cancer-associated cell surface signaling moleculeFront Cell Dev Biol201976610.3389/fcell.2019.00066Open DOISearch in Google Scholar

Kisselbach L, Merges M, Bossie A, Boyd A. CD90 expression on human primary cells and elimination of contaminating fibroblasts from cell cultures. Cytotechnology. 2009;59:31–44; DOI:10.1007/s10616-009-9190-3.KisselbachLMergesMBossieABoydACD90 expression on human primary cells and elimination of contaminating fibroblasts from cell culturesCytotechnology200959314410.1007/s10616-009-9190-3Open DOISearch in Google Scholar

Moraes DA, Sibov TT, Pavon LF, Alvim PQ, Bonadio RS, Da Silva JR, Pic-Taylor A, Toledo OA, Marti LC, Azevedo RB, Oliveira DM. A reduction in CD90 (THY-1) expression results in increased differentiation of mesenchymal stromal cells. Stem Cell Res Ther. 2016;7:97; DOI:10.1186/s13287-016-0359-3.MoraesDASibovTTPavonLFAlvimPQBonadioRSDaSilva JRPic-TaylorAToledoOAMartiLCAzevedoRBOliveiraDM.A reduction in CD90 (THY-1) expression results in increased differentiation of mesenchymal stromal cellsStem Cell Res Ther201679710.1186/s13287-016-0359-3Open DOISearch in Google Scholar

AbuSamra DB, Aleisa FA, Al-Amoodi AS, Ahmed HMJ, Chin CJ, Abuelela AF, Bergam P, Sougrat R, Merzaban JS. Not just a marker: CD34 on human hematopoietic stem/progenitor cells dominates vascular selectin binding along with CD44. Blood Adv. 2017;1:2799–816; DOI:10.1182/bloodadvances.2017004317.AbuSamraDBAleisaFAAl-AmoodiASAhmedHMJChinCJAbuelelaAFBergamPSougratRMerzabanJS.Not just a marker: CD34 on human hematopoietic stem/progenitor cells dominates vascular selectin binding along with CD44Blood Adv20171279981610.1182/bloodadvances.2017004317Open DOISearch in Google Scholar

Sidney LE, Branch MJ, Dunphy SE, Dua HS, Hopkinson A. Concise review: Evidence for CD34 as a common marker for diverse progenitors. Stem Cells. 2014;32:1380–9; DOI:10.1002/stem.1661.SidneyLEBranchMJDunphySEDuaHSHopkinsonAConcise review: Evidence for CD34 as a common marker for diverse progenitorsStem Cells2014321380910.1002/stem.1661Open DOISearch in Google Scholar

Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science (80). 1990;249:1431–3; DOI:10.1126/science.1698311.WrightSDRamosRATobiasPSUlevitchRJMathisonJCCD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding proteinScience (80)19902491431310.1126/science.1698311Open DOISearch in Google Scholar

Lobba ARM, Forni MF, Carreira ACO, Sogayar MC. Differential expression of CD90 and CD14 stem cell markers in malignant breast cancer cell lines. Cytom Part A. 2012;81A:1084–91; DOI:10.1002/cyto.a.22220.LobbaARMForniMFCarreiraACOSogayarMCDifferential expression of CD90 and CD14 stem cell markers in malignant breast cancer cell linesCytom Part A201281A10849110.1002/cyto.a.22220Open DOISearch in Google Scholar

Behm C, Blufstein A, Gahn J, Noroozkhan N, Moritz A, Rausch-Fan X, Andrukhov O. Soluble CD14 enhances the response of periodontal ligament stem cells to toll-like receptor 2 agonists. Mediators Inflamm. 2019;2019; DOI:10.1155/2019/8127301.BehmCBlufsteinAGahnJNoroozkhanNMoritzARausch-FanXAndrukhovOSoluble CD14 enhances the response of periodontal ligament stem cells to toll-like receptor 2 agonistsMediators Inflamm2019201910.1155/2019/8127301Open DOISearch in Google Scholar

eISSN:
2544-3577
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry