Cite

Trams EG, Lauter CJ, Norman Salem J, Heine U. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. BBA – Biomembr. 1981;645:63–70; DOI:10.1016/0005-2736(81)90512-5.TramsEGLauterCJNormanSalem JHeineUExfoliation of membrane ecto-enzymes in the form of micro-vesiclesBBA – Biomembr1981645637010.1016/0005-2736(81)90512-5Open DOISearch in Google Scholar

Żebryk P, Puszczewicz Katedra Klinika Reumatologii Chorób Wewnętrznych Uniwersytetu Medycznego im Karola Marcinkowskiego Poznaniu M. Autoprzeciwciała w twardzinie układowej* Autoantibodies in systemic sclerosis. Postepy Hig Med Dosw. 2015:654–60.ŻebrykPPuszczewicz Katedra Klinika Reumatologii Chorób Wewnętrznych Uniwersytetu Medycznego im Karola Marcinkowskiego Poznaniu M. Autoprzeciwciała w twardzinie układowej* Autoantibodies in systemic sclerosisPostepy Hig Med Dosw20156546010.5604/17322693.1154085Search in Google Scholar

Carpousis AJ. The Escherichia coli RNA degradosome: structure, function and relationship in other ribonucleolytic multienzyme complexes. Biochem Soc Trans. 2002;30:150–5; DOI:10.1042/bst0300150.CarpousisAJThe Escherichia coli RNA degradosome: structure, function and relationship in other ribonucleolytic multienzyme complexesBiochem Soc Trans200230150510.1042/bst0300150Open DOISearch in Google Scholar

Shen V, Kiledjian M. A View to a Kill: Structure of the RNA Exosome. Cell. 2006;127:1093–5; DOI:10.1016/j.cell.2006.11.035.ShenVKiledjianMA View to a Kill: Structure of the RNA ExosomeCell20061271093510.1016/j.cell.2006.11.035Open DOISearch in Google Scholar

Théry C, Zitvogel L, Amigorena S. Exosomes: Composition, biogenesis and function. Nat Rev Immunol. 2002;2:569–79; DOI:10.1038/nri855.ThéryCZitvogelLAmigorenaS.Exosomes: Composition, biogenesis and functionNat Rev Immunol200225697910.1038/nri855Open DOISearch in Google Scholar

Harrell CR, Jovicic N, Djonov V, Arsenijevic N, Volarevic V. Mesenchymal Stem Cell-Derived Exosomes and Other Extracellular Vesicles as New Remedies in the Therapy of Inflammatory Diseases. Cells. 2019;8; DOI:10.3390/cells8121605.HarrellCRJovicicNDjonovVArsenijevicNVolarevicVMesenchymal Stem Cell-Derived Exosomes and Other Extracellular Vesicles as New Remedies in the Therapy of Inflammatory DiseasesCells2019810.3390/cells8121605Open DOISearch in Google Scholar

Song M, Han L, Chen FF, Wang D, Wang F, Zhang L, Wang ZH, Zhong M, Tang MX, Zhang W. Adipocyte-derived exosomes carrying sonic hedgehog mediate M1 macrophage polarization-induced insulin resistance via Ptch and PI3K pathways. Cell Physiol Biochem. 2018; DOI:10.1159/000492252.SongMHanLChenFFWangDWangFZhangLWangZHZhongMTangMXZhangWAdipocyte-derived exosomes carrying sonic hedgehog mediate M1 macrophage polarization-induced insulin resistance via Ptch and PI3K pathwaysCell Physiol Biochem201810.1159/000492252Open DOISearch in Google Scholar

Yuan Y, Du W, Liu J, Ma W, Zhang L, Du Z, Cai B. Stem cell-derived exosome in cardiovascular diseases: Macro roles of micro particles. Front Pharmacol. 2018; DOI:10.3389/fphar.2018.00547.YuanYDuWLiuJMaWZhangLDuZCaiBStem cell-derived exosome in cardiovascular diseases: Macro roles of micro particlesFront Pharmacol201810.3389/fphar.2018.00547Open DOISearch in Google Scholar

Hirsch E, Hilfiker-Kleiner D, Balligand JL, Tarone G, De Windt L, Bauersachs J, Ferdinandy P, Davidson S, Hausenloy DJ, Schulz R. Interaction of the heart and its close and distant neighbours: Report of the Meeting of the ESC Working Groups Myocardial Function and Cellular Biology. Cardiovasc Res. 2013; DOI:10.1093/cvr/cvt179.HirschEHilfiker-KleinerDBalligandJLTaroneGDeWindt LBauersachsJFerdinandyPDavidsonSHausenloyDJSchulzRInteraction of the heart and its close and distant neighbours: Report of the Meeting of the ESC Working Groups Myocardial Function and Cellular BiologyCardiovasc Res201310.1093/cvr/cvt179Open DOISearch in Google Scholar

Kishore R, Garikipati VNS, Gumpert A. Tiny Shuttles for Information Transfer: Exosomes in Cardiac Health and Disease. J Cardiovasc Transl Res. 2016; DOI:10.1007/s12265-016-9682-4.KishoreRGarikipatiVNSGumpertATiny Shuttles for Information Transfer: Exosomes in Cardiac Health and DiseaseJ Cardiovasc Transl Res201610.1007/s12265-016-9682-4Open DOISearch in Google Scholar

Gupta A, Pulliam L. Exosomes as mediators of neuroinflammation. J Neuroinflammation. 2014; DOI:10.1186/1742-2094-11-68.GuptaAPulliamLExosomes as mediators of neuroinflammationJ Neuroinflammation201410.1186/1742-2094-11-68Open DOISearch in Google Scholar

Janas AM, Sapoń K, Janas T, Stowell MHB, Janas T. Exosomes and other extracellular vesicles in neural cells and neurodegenerative diseases. Biochim Biophys Acta – Biomembr. 2016;1858:1139–51; DOI:10.1016/j.bbamem.2016.02.011.JanasAMSapońKJanasTStowellMHBJanasT.Exosomes and other extracellular vesicles in neural cells and neurodegenerative diseasesBiochim Biophys Acta – Biomembr2016185811395110.1016/j.bbamem.2016.02.011Open DOISearch in Google Scholar

Sims B, Gu L, Krendelchtchikov A, Matthews QL. Neural stem cell-derived exosomes mediate viral entry. Int J Nanomedicine. 2014; DOI:10.2147/IJN.S70999.SimsBGuLKrendelchtchikovAMatthewsQLNeural stem cell-derived exosomes mediate viral entryInt J Nanomedicine201410.2147/IJN.S70999Open DOISearch in Google Scholar

Nojima H, Freeman CM, Schuster RM, Japtok L, Kleuser B, Edwards MJ, Gulbins E, Lentsch AB. Hepatocyte exosomes mediate liver repair and regeneration via sphingosine-1-phosphate. J Hepatol. 2016; DOI:10.1016/j.jhep.2015.07.030.NojimaHFreemanCMSchusterRMJaptokLKleuserBEdwardsMJGulbinsELentschABHepatocyte exosomes mediate liver repair and regeneration via sphingosine-1-phosphateJ Hepatol201610.1016/j.jhep.2015.07.030Open DOISearch in Google Scholar

Dinh PUC, Paudel D, Brochu H, Popowski KD, Gracieux MC, Cores J, Huang K, Hensley MT, Harrell E, Vandergriff AC, George AK, Barrio RT, Hu S, Allen TA, Blackburn K, Caranasos TG, Peng X, Schnabel L V., Adler KB, Lobo LJ, Goshe MB, Cheng K. Inhalation of lung spheroid cell secretome and exosomes promotes lung repair in pulmonary fibrosis. Nat Commun. 2020; DOI:10.1038/s41467-020-14344-7.DinhPUCPaudelDBrochuHPopowskiKDGracieuxMCCoresJHuangKHensleyMTHarrellEVandergriffACGeorgeAKBarrioRTHuSAllenTABlackburnKCaranasosTGPengXSchnabelL V.AdlerKBLoboLJGosheMBChengKInhalation of lung spheroid cell secretome and exosomes promotes lung repair in pulmonary fibrosisNat Commun202010.1038/s41467-020-14344-7Open DOISearch in Google Scholar

Wolfers J, Lozier A, Raposo G, Regnault A, Théry C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T, Angevin E, Amigorena S, Zitvogel L. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med. 2001; DOI:10.1038/85438.WolfersJLozierARaposoGRegnaultAThéryCMasurierCFlamentCPouzieuxSFaureFTurszTAngevinEAmigorenaSZitvogelLTumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-primingNat Med200110.1038/85438Open DOISearch in Google Scholar

Keller S, Ridinger J, Rupp AK, Janssen JWG, Altevogt P. Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med. 2011; DOI:10.1186/1479-5876-9-86.KellerSRidingerJRuppAKJanssenJWGAltevogtPBody fluid derived exosomes as a novel template for clinical diagnosticsJ Transl Med201110.1186/1479-5876-9-86Open DOISearch in Google Scholar

Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, LeB-leu VS, Mittendorf EA, Weitz J, Rahbari N, Reissfelder C, Pilarsky C, Fraga MF, Piwnica-Worms D, Kalluri R. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 2015;523:177–82; DOI:10.1038/nature14581.MeloSALueckeLBKahlertCFernandezAFGammonSTKayeJLeB-leuVSMittendorfEAWeitzJRahbariNReissfelderCPilarskyCFragaMFPiwnica-WormsDKalluriRGlypican-1 identifies cancer exosomes and detects early pancreatic cancerNature20155231778210.1038/nature14581Open DOISearch in Google Scholar

Chiasserini D, Van Weering JRT, Piersma SR, Pham T V., Malekzadeh A, Teunissen CE, De Wit H, Jiménez CR. Proteomic analysis of cerebrospinal fluid extracellular vesicles: A comprehensive dataset. J Proteomics. 2014; DOI:10.1016/j.jprot.2014.04.028.ChiasseriniDVanWeering JRTPiersmaSRPhamT V.MalekzadehATeunissenCEDeWit HJiménezCRProteomic analysis of cerebrospinal fluid extracellular vesicles: A comprehensive datasetJ Proteomics201410.1016/j.jprot.2014.04.028Open DOISearch in Google Scholar

Hood JL. The association of exosomes with lymph nodes. Semin Cell Dev Biol. 2017; DOI:10.1016/j.semcdb.2016.12.002.HoodJLThe association of exosomes with lymph nodesSemin Cell Dev Biol201710.1016/j.semcdb.2016.12.002Open DOISearch in Google Scholar

Vojtech L, Woo S, Hughes S, Levy C, Ballweber L, Sauteraud RP, Strobl J, Westerberg K, Gottardo R, Tewari M, Hladik F. Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res. 2014; DOI:10.1093/nar/gku347.VojtechLWooSHughesSLevyCBallweberLSauteraudRPStroblJWesterbergKGottardoRTewariMHladikFExosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functionsNucleic Acids Res201410.1093/nar/gku347Open DOISearch in Google Scholar

Admyre C, Johansson SM, Qazi KR, Filén J-J, Lahesmaa R, Norman M, Neve EPA, Scheynius A, Gabrielsson S. Exosomes with Immune Modulatory Features Are Present in Human Breast Milk. J Immunol. 2007; DOI:10.4049/jimmunol.179.3.1969.AdmyreCJohanssonSMQaziKRFilénJ-JLahesmaaRNormanMNeveEPAScheyniusAGabrielssonSExosomes with Immune Modulatory Features Are Present in Human Breast MilkJ Immunol200710.4049/jimmunol.179.3.1969Open DOISearch in Google Scholar

Severino V, Dumonceau JM, Delhaye M, Moll S, Annessi-Ramseyer I, Robin X, Frossard JL, Farina A. Extracellular Vesicles in Bile as Markers of Malignant Biliary Stenoses. Gastroenterology. 2017; DOI:10.1053/j.gastro.2017.04.043.SeverinoVDumonceauJMDelhayeMMollSAnnessi-RamseyerIRobinXFrossardJLFarinaAExtracellular Vesicles in Bile as Markers of Malignant Biliary StenosesGastroenterology201710.1053/j.gastro.2017.04.043Open DOISearch in Google Scholar

Admyre C, Grunewald J, Thyberg J, Bripenäck S, Tornling G, Eklund A, Scheynius A, Gabrielsson S. Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid. Eur Respir J. 2003; DOI:10.1183/09031936.03.00041703.AdmyreCGrunewaldJThybergJBripenäckSTornlingGEklundAScheyniusAGabrielssonSExosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluidEur Respir J200310.1183/09031936.03.00041703Open DOISearch in Google Scholar

Foers AD, Chatfield S, Dagley LF, Scicluna BJ, Webb AI, Cheng L, Hill AF, Wicks IP, Pang KC. Enrichment of extracellular vesicles from human synovial fluid using size exclusion chromatography. J Extracell Vesicles. 2018; DOI:10.1080/20013078.2018.1490145.FoersADChatfieldSDagleyLFSciclunaBJWebbAIChengLHillAFWicksIPPangKCEnrichment of extracellular vesicles from human synovial fluid using size exclusion chromatographyJ Extracell Vesicles201810.1080/20013078.2018.1490145Open DOISearch in Google Scholar

Kagota S, Taniguchi K, Lee SW, Ito Y, Kuranaga Y, Hashiguchi Y, Inomata Y, Imai Y, Tanaka R, Tashiro K, Kawai M, Akao Y, Uchiyama K. Analysis of extracellular vesicles in gastric juice from gastric cancer patients. Int J Mol Sci. 2019; DOI:10.3390/ijms20040953.KagotaSTaniguchiKLeeSWItoYKuranagaYHashiguchiYInomataYImaiYTanakaRTashiroKKawaiMAkaoYUchiyamaKAnalysis of extracellular vesicles in gastric juice from gastric cancer patientsInt J Mol Sci201910.3390/ijms20040953Open DOISearch in Google Scholar

Grigor’eva AE, Tamkovich SN, Eremina A V., Tupikin AE, Kabilov MR, Chernykh V V., Vlassov V V., Laktionov PP, Ryabchikova EI. Exosomes in tears of healthy individuals: Isolation, identification, and characterization. Biochem Suppl Ser B Biomed Chem. 2016; DOI:10.1134/S1990750816020049.Grigor’evaAETamkovichSNEreminaA V.TupikinAEKabilovMRChernykhV V.VlassovV V.LaktionovPPRyabchikovaEIExosomes in tears of healthy individuals: Isolation, identification, and characterizationBiochem Suppl Ser B Biomed Chem201610.1134/S1990750816020049Open DOISearch in Google Scholar

Andre F, Schartz NEC, Movassagh M, Flament C, Pautier P, Morice P, Pomel C, Lhomme C, Escudier B, Le Chevalier T, Tursz T, Amigorena S, Raposo G, Angevin E, Zitvogel L. Malignant effusions and immunogenic tumour-derived exosomes. Lancet. 2002; DOI:10.1016/S0140-6736(02)09552-1.AndreFSchartzNECMovassaghMFlamentCPautierPMoricePPomelCLhommeCEscudierBLe ChevalierTTurszTAmigorenaSRaposoGAngevinEZitvogelLMalignant effusions and immunogenic tumour-derived exosomesLancet200210.1016/S0140-6736(02)09552-1Open DOISearch in Google Scholar

Trams EG, Lauter CJ, Norman Salem J, Heine U. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. BBA – Biomembr. 1981; DOI:10.1016/0005-2736(81)90512-5.TramsEGLauterCJNormanSalem JHeineUExfoliation of membrane ecto-enzymes in the form of micro-vesiclesBBA – Biomembr198110.1016/0005-2736(81)90512-5Open DOISearch in Google Scholar

Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983; DOI:10.1083/jcb.97.2.329.HardingCHeuserJStahlPReceptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytesJ Cell Biol198310.1083/jcb.97.2.329Open DOISearch in Google Scholar

Pan BT, Teng K, Wu C, Adam M, Johnstone RM. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol. 1985; DOI:10.1083/jcb.101.3.942.PanBTTengKWuCAdamMJohnstoneRMElectron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytesJ Cell Biol198510.1083/jcb.101.3.942Open DOISearch in Google Scholar

Raposo G, Nijman HW, Stoorvogel W, Leijendekker R, Harding C V., Melief CJM, Geuze HJ. B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 1996; DOI:10.1084/jem.183.3.1161.RaposoGNijmanHWStoorvogelWLeijendekkerRHardingC V.MeliefCJMGeuzeHJB lymphocytes secrete antigen-presenting vesiclesJ Exp Med199610.1084/jem.183.3.1161Open DOISearch in Google Scholar

Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9; DOI:10.1038/ncb1596.ValadiHEkströmKBossiosASjöstrandMLeeJJLötvallJO.Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cellsNat Cell Biol20079654910.1038/ncb1596Open DOISearch in Google Scholar

Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 2018;75:193–208; DOI:10.1007/s00018-017-2595-9.HessvikNPLlorenteACurrent knowledge on exosome biogenesis and releaseCell Mol Life Sci20187519320810.1007/s00018-017-2595-9Open DOISearch in Google Scholar

Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science (80- ). 2020; DOI:10.1126/science.aau6977.KalluriRLeBleuVSThe biology, function, and biomedical applications of exosomesScience (80- )202010.1126/science.aau6977Open DOISearch in Google Scholar

Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21:9–17; DOI:10.1038/s41556-018-0250-9.MathieuMMartin-JaularLLavieuGThéryCSpecificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communicationNat Cell Biol20192191710.1038/s41556-018-0250-9Open DOISearch in Google Scholar

Bebelman MP, Smit MJ, Pegtel DM, Baglio SR. Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther. 2018; DOI:10.1016/j.pharmthera.2018.02.013.BebelmanMPSmitMJPegtelDMBaglioSRBiogenesis and function of extracellular vesicles in cancerPharmacol Ther201810.1016/j.pharmthera.2018.02.013Open DOISearch in Google Scholar

Ciardiello C, Cavallini L, Spinelli C, Yang J, Reis-Sobreiro M, Candia P De, Minciacchi VR, Di Vizio D. Focus on extracellular vesicles: New frontiers of cell-to-cell communication in cancer. Int J Mol Sci. 2016; DOI:10.3390/ijms17020175.CiardielloCCavalliniLSpinelliCYangJReis-SobreiroMCandiaP DeMinciacchiVRDiVizio DFocus on extracellular vesicles: New frontiers of cell-to-cell communication in cancerInt J Mol Sci201610.3390/ijms17020175Open DOISearch in Google Scholar

Edgar JR, Manna PT, Nishimura S, Banting G, Robinson MS. Tetherin is an exosomal tether. Elife. 2016; DOI:10.7554/eLife.17180.EdgarJRMannaPTNishimuraSBantingGRobinsonMSTetherin is an exosomal tetherElife201610.7554/eLife.17180Open DOISearch in Google Scholar

Mulcahy LA, Pink RC, Carter DRF. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014;3; DOI:10.3402/jev.v3.24641.MulcahyLAPinkRCCarterDRFRoutes and mechanisms of extracellular vesicle uptakeJ Extracell Vesicles2014310.3402/jev.v3.24641Open DOISearch in Google Scholar

Fonseca P, Vardaki I, Occhionero A, Panaretakis T. Metabolic and Signaling Functions of Cancer Cell-Derived Extracellular Vesicles. Int. Rev. Cell Mol. Biol., 2016; DOI:10.1016/bs.ircmb.2016.04.004.FonsecaPVardakiIOcchioneroAPanaretakisTMetabolic and Signaling Functions of Cancer Cell-Derived Extracellular VesiclesInt. Rev. Cell Mol. Biol201610.1016/bs.ircmb.2016.04.004Open DOISearch in Google Scholar

Fitzner D, Schnaars M, Van Rossum D, Krishnamoorthy G, Dibaj P, Bakhti M, Regen T, Hanisch UK, Simons M. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J Cell Sci. 2011;124:447–58; DOI:10.1242/jcs.074088.FitznerDSchnaarsMVanRossum DKrishnamoorthyGDibajPBakhtiMRegenTHanischUKSimonsM.Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosisJ Cell Sci20111244475810.1242/jcs.074088Open DOISearch in Google Scholar

Horibe S, Tanahashi T, Kawauchi S, Murakami Y, Rikitake Y. Mechanism of recipient cell-dependent differences in exosome uptake. BMC Cancer. 2018;18:47; DOI:10.1186/s12885-017-3958-1.HoribeSTanahashiTKawauchiSMurakamiYRikitakeYMechanism of recipient cell-dependent differences in exosome uptakeBMC Cancer2018184710.1186/s12885-017-3958-1Open DOISearch in Google Scholar

Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM, Simpson RJ. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods. 2012; DOI:10.1016/j.ymeth.2012.01.002.TauroBJGreeningDWMathiasRAJiHMathivananSScottAMSimpsonRJComparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomesMethods201210.1016/j.ymeth.2012.01.002Open DOISearch in Google Scholar

Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H. New Technologies for Analysis of Extracellular Vesicles. Chem Rev. 2018; DOI:10.1021/acs.chemrev.7b00534.ShaoHImHCastroCMBreakefieldXWeisslederRLeeHNew Technologies for Analysis of Extracellular VesiclesChem Rev201810.1021/acs.chemrev.7b00534Open DOISearch in Google Scholar

Zaborowski MP, Balaj L, Breakefield XO, Lai CP. Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study. Bioscience. 2015; DOI:10.1093/biosci/biv084.ZaborowskiMPBalajLBreakefieldXOLaiCPExtracellular Vesicles: Composition, Biological Relevance, and Methods of StudyBioscience201510.1093/biosci/biv084Open DOISearch in Google Scholar

Shin S, Han D, Park MC, Mun JY, Choi J, Chun H, Kim S, Hong JW. Separation of extracellular nanovesicles and apoptotic bodies from cancer cell culture broth using tunable microfluidic systems. Sci Rep. 2017; DOI:10.1038/s41598-017-08826-w.ShinSHanDParkMCMunJYChoiJChunHKimSHongJWSeparation of extracellular nanovesicles and apoptotic bodies from cancer cell culture broth using tunable microfluidic systemsSci Rep201710.1038/s41598-017-08826-wOpen DOISearch in Google Scholar

Greening DW, Xu R, Ji H, Tauro BJ, Simpson RJ. A protocol for exosome isolation and characterization: Evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods Mol. Biol., 2015; DOI:10.1007/978-1-4939-2550-6_15.GreeningDWXuRJiHTauroBJSimpsonRJA protocol for exosome isolation and characterization: Evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methodsMethods Mol. Biol201510.1007/978-1-4939-2550-6_15Open DOISearch in Google Scholar

Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJP, Hole P, Carr B, Redman CWG, Harris AL, Dobson PJ, Harrison P, Sargent IL. Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine Nanotechnology, Biol Med. 2011; DOI:10.1016/j.nano.2011.04.003.DragovicRAGardinerCBrooksASTannettaDSFergusonDJPHolePCarrBRedmanCWGHarrisALDobsonPJHarrisonPSargentILSizing and phenotyping of cellular vesicles using Nanoparticle Tracking AnalysisNanomedicine Nanotechnology, Biol Med201110.1016/j.nano.2011.04.003Open DOISearch in Google Scholar

Keerthikumar S, Chisanga D, Ariyaratne D, Al Saffar H, Anand S, Zhao K, Samuel M, Pathan M, Jois M, Chilamkurti N, Gangoda L, Mathivanan S. ExoCarta: A Web-Based Compendium of Exosomal Cargo. J Mol Biol. 2016; DOI:10.1016/j.jmb.2015.09.019.KeerthikumarSChisangaDAriyaratneDAlSaffar HAnandSZhaoKSamuelMPathanMJoisMChilamkurtiNGangodaLMathivananSExoCarta: A Web-Based Compendium of Exosomal CargoJ Mol Biol201610.1016/j.jmb.2015.09.019Open DOISearch in Google Scholar

Wen SW, Lima LG, Lobb RJ, Norris EL, Hastie ML, Krumeich S, Möller A. Breast Cancer-Derived Exosomes Reflect the Cell-of-Origin Phenotype. Proteomics. 2019; DOI:10.1002/pmic.201800180.WenSWLimaLGLobbRJNorrisELHastieMLKrumeichSMöllerABreast Cancer-Derived Exosomes Reflect the Cell-of-Origin PhenotypeProteomics201910.1002/pmic.201800180Open DOISearch in Google Scholar

Vincent-Schneider H, Stumptner-Cuvelette P, Lankar D, Pain S, Raposo G, Benaroch P, Bonnerot C. Exosomes bearing HLA-DR1 molecules needs dendritic cells to efficiently stimulate specific T cells. Int Immunol. 2002; DOI:10.1093/intimm/dxf048.Vincent-SchneiderHStumptner-CuvelettePLankarDPainSRaposoGBenarochPBonnerotCExosomes bearing HLA-DR1 molecules needs dendritic cells to efficiently stimulate specific T cellsInt Immunol200210.1093/intimm/dxf048Open DOISearch in Google Scholar

Potolicchio I, Carven GJ, Xu X, Stipp C, Riese RJ, Stern LJ, Santambrogio L. Proteomic Analysis of Microglia-Derived Exosomes: Metabolic Role of the Aminopeptidase CD13 in Neuropeptide Catabolism. J Immunol. 2005; DOI:10.4049/jimmunol.175.4.2237.PotolicchioICarvenGJXuXStippCRieseRJSternLJSantambrogioLProteomic Analysis of Microglia-Derived Exosomes: Metabolic Role of the Aminopeptidase CD13 in Neuropeptide CatabolismJ Immunol200510.4049/jimmunol.175.4.2237Open DOISearch in Google Scholar

Choi D, Montermini L, Kim DK, Meehan B, Roth FP, Rak J. The impact of oncogenic egfrviii on the proteome of extracellular vesicles released from glioblastoma cells. Mol Cell Proteomics. 2018; DOI:10.1074/mcp.RA118.000644.ChoiDMonterminiLKimDKMeehanBRothFPRakJThe impact of oncogenic egfrviii on the proteome of extracellular vesicles released from glioblastoma cellsMol Cell Proteomics201810.1074/mcp.RA118.000644Open DOISearch in Google Scholar

Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci. 2019; DOI:10.1186/s13578-019-0282-2.ZhangYLiuYLiuHTangWHExosomes: Biogenesis, biologic function and clinical potentialCell Biosci201910.1186/s13578-019-0282-2Open DOISearch in Google Scholar

H. Rashed M, Bayraktar E, K. Helal G, Abd-Ellah M, Amero P, Chavez-Reyes A, Rodriguez-Aguayo C. Exosomes: From Garbage Bins to Promising Therapeutic Targets. Int J Mol Sci. 2017;18:538; DOI:10.3390/ijms18030538.MH.RashedBayraktarE, KHelal G, Abd-Ellah M, Amero P, Chavez-Reyes A, Rodriguez-Aguayo CExosomes: From Garbage Bins to Promising Therapeutic Targets. Int J Mol Sci20171853810.3390/ijms18030538Open DOISearch in Google Scholar

Skotland T, Hessvik NP, Sandvig K, Llorente A. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J Lipid Res. 2019; DOI:10.1194/jlr.R084343.SkotlandTHessvikNPSandvigKLlorenteAExosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biologyJ Lipid Res201910.1194/jlr.R084343Open DOISearch in Google Scholar

Skotland T, Sandvig K, Llorente A. Lipids in exosomes: Current knowledge and the way forward. Prog Lipid Res. 2017; DOI:10.1016/j.plipres.2017.03.001.SkotlandTSandvigKLlorenteALipids in exosomes: Current knowledge and the way forwardProg Lipid Res201710.1016/j.plipres.2017.03.001Open DOISearch in Google Scholar

Record M, Carayon K, Poirot M, Silvente-Poirot S. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta – Mol Cell Biol Lipids. 2014; DOI:10.1016/j.bbalip.2013.10.004.RecordMCarayonKPoirotMSilvente-PoirotSExosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologiesBiochim Biophys Acta – Mol Cell Biol Lipids201410.1016/j.bbalip.2013.10.004Open DOISearch in Google Scholar

Xiang X, Poliakov A, Liu C, Liu Y, Deng Z Bin, Wang J, Cheng Z, Shah S V., Wang GJ, Zhang L, Grizzle WE, Mobley J, Zhang HG. Induction of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer. 2009; DOI:10.1002/ijc.24249.XiangXPoliakovALiuCLiuYDengZ BinWangJChengZShahS V.WangGJZhangLGrizzleWEMobleyJZhangHGInduction of myeloid-derived suppressor cells by tumor exosomesInt J Cancer200910.1002/ijc.24249Open DOISearch in Google Scholar

Van Balkom BWM, Eisele AS, Michiel Pegtel D, Bervoets S, Verhaar MC. Quantitative and qualitative analysis of small RNAs in human endothelial cells and exosomes provides insights into localized RNA processing, degradation and sorting. J Extracell Vesicles. 2015; DOI:10.3402/jev.v4.26760.VanBalkom BWMEiseleASMichielPegtel DBervoetsSVerhaarMCQuantitative and qualitative analysis of small RNAs in human endothelial cells and exosomes provides insights into localized RNA processing, degradation and sortingJ Extracell Vesicles201510.3402/jev.v4.26760Open DOISearch in Google Scholar

Fanale D, Taverna S, Russo A, Bazan V. Circular RNA in exosomes. Adv. Exp. Med. Biol., 2018; DOI:10.1007/978-981-13-1426-1_9.FanaleDTavernaSRussoABazanVCircular RNA in exosomesAdv. Exp. Med. Biol201810.1007/978-981-13-1426-1_9Open DOISearch in Google Scholar

Bellingham SA, Coleman BM, Hill AF. Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res. 2012; DOI:10.1093/nar/gks832.BellinghamSAColemanBMHillAFSmall RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cellsNucleic Acids Res201210.1093/nar/gks832Open DOISearch in Google Scholar

Guescini M, Genedani S, Stocchi V, Agnati LF. Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. J Neural Transm. 2010; DOI:10.1007/s00702-009-0288-8.GuesciniMGenedaniSStocchiVAgnatiLFAstrocytes and Glioblastoma cells release exosomes carrying mtDNAJ Neural Transm201010.1007/s00702-009-0288-8Open DOISearch in Google Scholar

Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, Du M, Liang M, Dittmar RL, Liu Y, Liang M, Kohli M, Thibodeau SN, Boardman L, Wang L. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics. 2013; DOI:10.1186/1471-2164-14-319.HuangXYuanTTschannenMSunZJacobHDuMLiangMDittmarRLLiuYLiangMKohliMThibodeauSNBoardmanLWangLCharacterization of human plasma-derived exosomal RNAs by deep sequencingBMC Genomics201310.1186/1471-2164-14-319Open DOISearch in Google Scholar

Ridder K, Keller S, Dams M, Rupp AK, Schlaudraff J, Del Turco D, Starmann J, Macas J, Karpova D, Devraj K, Depboylu C, Landfried B, Arnold B, Plate KH, Höglinger G, Sültmann H, Altevogt P, Momma S. Extracellular Vesicle-Mediated Transfer of Genetic Information between the Hematopoietic System and the Brain in Response to Inflammation. PLoS Biol. 2014; DOI:10.1371/journal.pbio.1001874.RidderKKellerSDamsMRuppAKSchlaudraffJDelTurco DStarmannJMacasJKarpovaDDevrajKDepboyluCLandfriedBArnoldBPlateKHHöglingerGSültmannHAltevogtPMommaSExtracellular Vesicle-Mediated Transfer of Genetic Information between the Hematopoietic System and the Brain in Response to InflammationPLoS Biol201410.1371/journal.pbio.1001874Open DOISearch in Google Scholar

Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S. Exosome and exosomal microRNA: Trafficking, sorting, and function. Genomics, Proteomics Bio-informa. 2015; DOI:10.1016/j.gpb.2015.02.001.ZhangJLiSLiLLiMGuoCYaoJMiSExosome and exosomal microRNA: Trafficking, sorting, and functionGenomics, Proteomics Bio-informa201510.1016/j.gpb.2015.02.001Open DOISearch in Google Scholar

Goldie BJ, Dun MD, Lin M, Smith ND, Verrills NM, Dayas C V., Cairns MJ. Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons. Nucleic Acids Res. 2014; DOI:10.1093/nar/gku594.GoldieBJDunMDLinMSmithNDVerrillsNMDayasC V.CairnsMJActivity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neuronsNucleic Acids Res201410.1093/nar/gku594Open DOISearch in Google Scholar

Le MTN, Hamar P, Guo C, Basar E, Perdigão-Henriques R, Balaj L, Lieberman J. MiR-200-containing extracellular vesicles promote breast cancer cell metastasis. J Clin Invest. 2014; DOI:10.1172/JCI75695.LeMTNHamarPGuoCBasarEPerdigão-HenriquesRBalajLLiebermanJMiR-200-containing extracellular vesicles promote breast cancer cell metastasisJ Clin Invest201410.1172/JCI75695Open DOISearch in Google Scholar

Umezu T, Ohyashiki K, Kuroda M, Ohyashiki JH. Leukemia cell to endothelial cell communication via exosomal miRNAs. Oncogene. 2013; DOI:10.1038/onc.2012.295.UmezuTOhyashikiKKurodaMOhyashikiJHLeukemia cell to endothelial cell communication via exosomal miRNAsOncogene201310.1038/onc.2012.295Open DOISearch in Google Scholar

Xiao J, Pan Y, Li XH, Yang XY, Feng YL, Tan HH, Jiang L, Feng J, Yu XY. Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4. Cell Death Dis. 2016; DOI:10.1038/cddis.2016.181.XiaoJPanYLiXHYangXYFengYLTanHHJiangLFengJYuXYCardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4Cell Death Dis201610.1038/cddis.2016.181Open DOISearch in Google Scholar

Morel L, Regan M, Higashimori H, Ng SK, Esau C, Vidensky S, Rothstein J, Yang Y. Neuronal exosomal mirna-dependent translational regulation of astroglial glutamate transporter glt1. J Biol Chem. 2013; DOI:10.1074/jbc.M112.410944.MorelLReganMHigashimoriHNgSKEsauCVidenskySRothsteinJYangYNeuronal exosomal mirna-dependent translational regulation of astroglial glutamate transporter glt1J Biol Chem201310.1074/jbc.M112.410944Open DOISearch in Google Scholar

Xue M, Chen W, Xiang A, Wang R, Chen H, Pan J, Pang H, An H, Wang X, Hou H, Li X. Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1. Mol Cancer. 2017; DOI:10.1186/s12943-017-0714-8.XueMChenWXiangAWangRChenHPanJPangHAnHWangXHouHLiXHypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1Mol Cancer201710.1186/s12943-017-0714-8Open DOISearch in Google Scholar

Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X, Huang S. Circular RNA is enriched and stable in exosomes: A promising bio-marker for cancer diagnosis. Cell Res. 2015;25:981–4; DOI:10.1038/cr.2015.82.LiYZhengQBaoCLiSGuoWZhaoJChenDGuJHeXHuangSCircular RNA is enriched and stable in exosomes: A promising bio-marker for cancer diagnosisCell Res201525981410.1038/cr.2015.82Open DOISearch in Google Scholar

Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltri C, González S, Sánchez-Cabo F, González MÁ, Bernad A, Sánchez-Madrid F. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun. 2011; DOI:10.1038/ncomms1285.MittelbrunnMGutiérrez-VázquezCVillarroya-BeltriCGonzálezSSánchez-CaboFGonzálezBernadASánchez-MadridFUnidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cellsNat Commun201110.1038/ncomms1285Open DOISearch in Google Scholar

Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Curry WT, Carter BS, Krichevsky AM, Breakefield XO. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10:1470–6; DOI:10.1038/ncb1800.SkogJWürdingerTvan RijnSMeijerDHGaincheLCurryWTCarterBSKrichevskyAMBreakefieldXOGlioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkersNat Cell Biol2008101470610.1038/ncb1800Open DOISearch in Google Scholar

Mukherjee K, Ghoshal B, Ghosh S, Chakrabarty Y, Shwetha S, Das S, Bhattacharyya SN. Reversible HuR‐micro RNA binding controls extracellular export of miR‐122 and augments stress response . EMBO Rep. 2016; DOI:10.15252/embr.201541930.MukherjeeKGhoshalBGhoshSChakrabartyYShwethaSDasSBhattacharyyaSNReversible HuR‐micro RNA binding controls extracellular export of miR‐122 and augments stress responseEMBO Rep201610.15252/embr.201541930Open DOISearch in Google Scholar

Lu P, Li H, Li N, Singh RN, Bishop CE, Chen X, Lu B. MEX3C interacts with adaptor-related protein complex 2 and involves in miR-451a exosomal sorting. PLoS One. 2017; DOI:10.1371/journal.pone.0185992.LuPLiHLiNSinghRNBishopCEChenXLuBMEX3C interacts with adaptor-related protein complex 2 and involves in miR-451a exosomal sortingPLoS One201710.1371/journal.pone.0185992Open DOISearch in Google Scholar

Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofreces N, Martinez-Herrera DJ, Pascual-Montano A, Mittelbrunn M, Sánchez-Madrid F. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 2013; DOI:10.1038/ncomms3980.Villarroya-BeltriCGutiérrez-VázquezCSánchez-CaboFPérez-HernándezDVázquezJMartin-CofrecesNMartinez-HerreraDJPascual-MontanoAMittelbrunnMSánchez-MadridFSumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifsNat Commun201310.1038/ncomms3980Open DOISearch in Google Scholar

Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, Zheng Y, Hoshino A, Brazier H, Xiang J, Williams C, Rodriguez-Barrueco R, Silva JM, Zhang W, Hearn S, Elemento O, Paknejad N, Manova-Todoro-va K, Welte K, Bromberg J, Peinado H, Lyden D. Double-stranded DNA in exosomes: A novel biomarker in cancer detection. Cell Res. 2014; DOI:10.1038/cr.2014.44.ThakurBKZhangHBeckerAMateiIHuangYCosta-SilvaBZhengYHoshinoABrazierHXiangJWilliamsCRodriguez-BarruecoRSilvaJMZhangWHearnSElementoOPaknejadNManova-Todoro-vaKWelteKBrombergJPeinadoHLydenDDouble-stranded DNA in exosomes: A novel biomarker in cancer detectionCell Res201410.1038/cr.2014.44Open DOISearch in Google Scholar

Sisquella X, Ofir-Birin Y, Pimentel MA, Cheng L, Abou Karam P, Sampaio NG, Penington JS, Connolly D, Giladi T, Scicluna BJ, Sharples RA, Waltmann A, Avni D, Schwartz E, Schofield L, Porat Z, Hansen DS, Papenfuss AT, Eriksson EM, Gerlic M, Hill AF, Bowie AG, Regev-Rudzki N. Malaria parasite DNA-harbouring vesicles activate cytosolic immune sensors. Nat Commun. 2017; DOI:10.1038/s41467-017-02083-1.SisquellaXOfir-BirinYPimentelMAChengLAbouKaram PSampaioNGPeningtonJSConnollyDGiladiTSciclunaBJSharplesRAWaltmannAAvniDSchwartzESchofieldLPoratZHansenDSPapenfussATErikssonEMGerlicMHillAFBowieAGRegev-RudzkiNMalaria parasite DNA-harbouring vesicles activate cytosolic immune sensorsNat Commun201710.1038/s41467-017-02083-1Open DOISearch in Google Scholar

Takahashi A, Okada R, Nagao K, Kawamata Y, Hanyu A, Yoshimoto S, Takasugi M, Watanabe S, Kanemaki MT, Obuse C, Hara E. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat Commun. 2017; DOI:10.1038/ncomms15287.TakahashiAOkadaRNagaoKKawamataYHanyuAYoshimotoSTakasugiMWatanabeSKanemakiMTObuseCHaraEExosomes maintain cellular homeostasis by excreting harmful DNA from cellsNat Commun201710.1038/ncomms15287Open DOISearch in Google Scholar

Fauré J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C, Blot B, Grange J, Schoehn G, Goldberg Y, Boyer V, Kirchhoff F, Raposo G, Garin J, Sadoul R. Exosomes are released by cultured cortical neurones. Mol Cell Neurosci. 2006; DOI:10.1016/j.mcn.2005.12.003.FauréJLachenalGCourtMHirrlingerJChatellard-CausseCBlotBGrangeJSchoehnGGoldbergYBoyerVKirchhoffFRaposoGGarinJSadoulRExosomes are released by cultured cortical neuronesMol Cell Neurosci200610.1016/j.mcn.2005.12.003Open DOISearch in Google Scholar

Lopez-Verrilli MA, Picou F, Court FA. Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system. Glia. 2013; DOI:10.1002/glia.22558.Lopez-VerrilliMAPicouFCourtFASchwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous systemGlia201310.1002/glia.22558Open DOISearch in Google Scholar

Budnik V, Ruiz-Cañada C, Wendler F. Extracellular vesicles round off communication in the nervous system. Nat Rev Neurosci. 2016; DOI:10.1038/nrn.2015.29.BudnikVRuiz-CañadaCWendlerFExtracellular vesicles round off communication in the nervous systemNat Rev Neurosci201610.1038/nrn.2015.29Open DOISearch in Google Scholar

Bakhti M, Winter C, Simons M. Inhibition of myelin membrane sheath formation by oligodendrocyte-derived exosome-like vesicles. J Biol Chem. 2011; DOI:10.1074/jbc.M110.190009.BakhtiMWinterCSimonsMInhibition of myelin membrane sheath formation by oligodendrocyte-derived exosome-like vesiclesJ Biol Chem201110.1074/jbc.M110.190009Open DOISearch in Google Scholar

Glebov K, Löchner M, Jabs R, Lau T, Merkel O, Schloss P, Steinhäuser C, Walter J. Serotonin stimulates secretion of exosomes from microglia cells. Glia. 2015; DOI:10.1002/glia.22772.GlebovKLöchnerMJabsRLauTMerkelOSchlossPSteinhäuserCWalterJSerotonin stimulates secretion of exosomes from microglia cellsGlia201510.1002/glia.22772Open DOISearch in Google Scholar

Chivet M, Javalet C, Laulagnier K, Blot B, Hemming FJ, Sadoul R. Exosomes secreted by cortical neurons upon glutamatergic synapse activation specifically interact with neurons. J Extracell Vesicles. 2014;3; DOI:10.3402/jev.v3.24722.ChivetMJavaletCLaulagnierKBlotBHemmingFJSadoulRExosomes secreted by cortical neurons upon glutamatergic synapse activation specifically interact with neuronsJ Extracell Vesicles2014310.3402/jev.v3.24722Open DOISearch in Google Scholar

Fröhlich D, Kuo WP, Frühbeis C, Sun JJ, Zehendner CM, Luhmann HJ, Pinto S, Toedling J, Trotter J, Krämer-Albers EM. Multifaceted effects of oligodendroglial exosomes on neurons: Impact on neuronal firing rate, signal transduction and gene regulation. Philos Trans R Soc B Biol Sci. 2014; DOI:10.1098/rstb.2013.0510.FröhlichDKuoWPFrühbeisCSunJJZehendnerCMLuhmannHJPintoSToedlingJTrotterJKrämer-Albers EM. Multifaceted effects of oligodendroglial exosomes on neurons: Impact on neuronal firing rate, signal transduction and gene regulationPhilos Trans R Soc B Biol Sci201410.1098/rstb.2013.0510Open DOISearch in Google Scholar

Bang C, Batkai S, Dangwal S, Gupta SK, Foinquinos A, Holzmann A, Just A, Remke J, Zimmer K, Zeug A, Ponimaskin E, Schmiedl A, Yin X, Mayr M, Halder R, Fischer A, Engelhardt S, Wei Y, Schober A, Fiedler J, Thum T. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest. 2014; DOI:10.1172/JCI70577.BangCBatkaiSDangwalSGuptaSKFoinquinosAHolzmannAJustARemkeJZimmerKZeugAPonimaskinESchmiedlAYinXMayrMHalderRFischerAEngelhardtSWeiYSchoberAFiedlerJThumTCardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophyJ Clin Invest201410.1172/JCI70577Open DOISearch in Google Scholar

Chen C-H, Hsu S-Y, Chiu C-C, Leu S. MicroRNA-21 Mediates the Protective Effect of Cardiomyocyte-Derived Conditioned Medium on Ameliorating Myocardial Infarction in Rats. Cells. 2019; DOI:10.3390/cells8080935.ChenC-HHsuS-YChiuC-CLeuSMicroRNA-21 Mediates the Protective Effect of Cardiomyocyte-Derived Conditioned Medium on Ameliorating Myocardial Infarction in RatsCells201910.3390/cells8080935Open DOISearch in Google Scholar

Jansen F, Yang X, Hoelscher M, Cattelan A, Schmitz T, Proebsting S, Wenzel D, Vosen S, Franklin BS, Fleischmann BK, Nickenig G, Werner N. Endothelial microparticle-mediated transfer of microRNA-126 promotes vascular endothelial cell repair via spred1 and is abrogated in glucose-damaged endothelial microparticles. Circulation. 2013; DOI:10.1161/CIRCULATIONAHA.113.001720.JansenFYangXHoelscherMCattelanASchmitzTProebstingSWenzelDVosenSFranklinBSFleischmannBKNickenigGWernerNEndothelial microparticle-mediated transfer of microRNA-126 promotes vascular endothelial cell repair via spred1 and is abrogated in glucose-damaged endothelial microparticlesCirculation201310.1161/CIRCULATIONAHA.113.001720Open DOISearch in Google Scholar

Garcia NA, Moncayo-Arlandi J, Sepulveda P, Diez-Juan A. Cardiomyocyte exosomes regulate glycolytic flux in endothelium by direct transfer of GLUT transporters and glycolytic enzymes. Cardiovasc Res. 2016; DOI:10.1093/cvr/cvv260.GarciaNAMoncayo-ArlandiJSepulvedaPDiez-JuanACardiomyocyte exosomes regulate glycolytic flux in endothelium by direct transfer of GLUT transporters and glycolytic enzymesCardiovasc Res201610.1093/cvr/cvv260Open DOISearch in Google Scholar

Ibrahim A, Marbán E. Exosomes: Fundamental Biology and Roles in Cardiovascular Physiology. Annu Rev Physiol. 2016; DOI:10.1146/annurev-physiol-021115-104929.IbrahimAMarbánEExosomes: Fundamental Biology and Roles in Cardiovascular PhysiologyAnnu Rev Physiol201610.1146/annurev-physiol-021115-104929Open DOISearch in Google Scholar

Zhang Y, Hu YW, Zheng L, Wang Q. Characteristics and Roles of Exosomes in Cardiovascular Disease. DNA Cell Biol. 2017; DOI:10.1089/dna.2016.3496.ZhangYHuYWZhengLWangQCharacteristics and Roles of Exosomes in Cardiovascular DiseaseDNA Cell Biol201710.1089/dna.2016.3496Open DOISearch in Google Scholar

Foster BP, Balassa T, Benen TD, Dominovic M, Elmadjian GK, Florova V, Fransolet MD, Kestlerova A, Kmiecik G, Kostadinova IA, Kyvelidou C, Meggyes M, Mincheva MN, Moro L, Pastuschek J, Spoldi V, Wandernoth P, Weber M, Toth B, Markert UR. Extracellular vesicles in blood, milk and body fluids of the female and male urogenital tract and with special regard to reproduction. Crit Rev Clin Lab Sci. 2016; DOI:10.1080/10408363.2016.1190682.FosterBPBalassaTBenenTDDominovicMElmadjianGKFlorovaVFransoletMDKestlerovaAKmiecikGKostadinovaIAKyvelidouCMeggyesMMinchevaMNMoroLPastuschekJSpoldiVWandernothPWeberMTothBMarkertURExtracellular vesicles in blood, milk and body fluids of the female and male urogenital tract and with special regard to reproductionCrit Rev Clin Lab Sci201610.1080/10408363.2016.1190682Open DOISearch in Google Scholar

Knight M, Redman CWG, Linton EA, Sargent IL. Shedding of syncytiotrophoblast microvilli into the maternal circulation in pre-eclamptic pregnancies. BJOG An Int J Obstet Gynaecol. 1998; DOI:10.1111/j.1471-0528.1998.tb10178.x.KnightMRedmanCWGLintonEASargentILShedding of syncytiotrophoblast microvilli into the maternal circulation in pre-eclamptic pregnanciesBJOG An Int J Obstet Gynaecol199810.1111/j.1471-0528.1998.tb10178.xOpen DOISearch in Google Scholar

Mincheva-Nilsson L, Baranov V. Placenta-Derived Exosomes and Syncytiotrophoblast Microparticles and their Role in Human Reproduction: Immune Modulation for Pregnancy Success. Am J Reprod Immunol. 2014; DOI:10.1111/aji.12311.Mincheva-NilssonLBaranovVPlacenta-Derived Exosomes and Syncytiotrophoblast Microparticles and their Role in Human Reproduction: Immune Modulation for Pregnancy SuccessAm J Reprod Immunol201410.1111/aji.12311Open DOISearch in Google Scholar

Delorme-Axford E, Donker RB, Mouillet JF, Chu T, Bayer A, Ouyang Y, Wang T, Stolz DB, Sarkar SN, Morelli AE, Sadovsky Y, Coyne CB. Human placental trophoblasts confer viral resistance to recipient cells. Proc Natl Acad Sci U S A. 2013; DOI:10.1073/pnas.1304718110.Delorme-AxfordEDonkerRBMouilletJFChuTBayerAOuyangYWangTStolzDBSarkarSNMorelliAESadovskyYCoyneCBHuman placental trophoblasts confer viral resistance to recipient cellsProc Natl Acad Sci U S A201310.1073/pnas.1304718110Open DOISearch in Google Scholar

Reátegui E, Van Der Vos KE, Lai CP, Zeinali M, Atai NA, Aldikacti B, Floyd FP, Khankhel A, Thapar V, Hochberg FH, Sequist L V., Nahed B V., Carter B, Toner M, Balaj L, Ting D, Breakefield XO, Stott SL. Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles. Nat Commun. 2018;9:1–11; DOI:10.1038/s41467-017-02261-1.ReáteguiEVanDer Vos KELaiCPZeinaliMAtaiNAAldikactiBFloydFPKhankhelAThaparVHochbergFHSequistL V.NahedB V.CarterBTonerMBalajLTingDBreakefieldXOStottSL.Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesiclesNat Commun2018911110.1038/s41467-017-02261-1Open DOISearch in Google Scholar

Ren Y, Yang J, Xie R, Gao L, Yang Y, Fan H, Qian K. Exosomal-like vesicles with immune-modulatory features are present in human plasma and can induce CD4+ T-cell apoptosis in vitro. Transfusion. 2011;51:1002–11; DOI:10.1111/j.1537-2995.2010.02909.x.RenYYangJXieRGaoLYangYFanHQianKExosomal-like vesicles with immune-modulatory features are present in human plasma and can induce CD4+ T-cell apoptosis in vitroTransfusion20115110021110.1111/j.1537-2995.2010.02909.xOpen DOISearch in Google Scholar

Wu Y, Deng W, Klinke DJ. Exosomes: Improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst. 2015;140:6631–42; DOI:10.1039/c5an00688k.WuYDengWKlinkeDJExosomes: Improved methods to characterize their morphology, RNA content, and surface protein biomarkersAnalyst201514066314210.1039/c5an00688kOpen DOISearch in Google Scholar

Lässer C, Eldh M, Lötvall J. Isolation and characterization of RNA-containing exosomes. J Vis Exp. 2012:1–6; DOI:10.3791/3037.LässerCEldhMLötvallJIsolation and characterization of RNA-containing exosomesJ Vis Exp20121610.3791/3037Open DOISearch in Google Scholar

Woo HK, Sunkara V, Park J, Kim TH, Han JR, Kim CJ, Choi H Il, Kim YK, Cho YK. Exodisc for Rapid, Size-Selective, and Efficient Isolation and Analysis of Nanoscale Extracellular Vesicles from Biological Samples. ACS Nano. 2017;11:1360–70; DOI:10.1021/acsnano.6b06131.WooHKSunkaraVParkJKimTHHanJRKimCJChoiH IlKimYKChoYK.Exodisc for Rapid, Size-Selective, and Efficient Isolation and Analysis of Nanoscale Extracellular Vesicles from Biological SamplesACS Nano20171113607010.1021/acsnano.6b06131Open DOISearch in Google Scholar

Gao F, Jiao F, Xia C, Zhao Y, Ying W, Xie Y, Guan X, Tao M, Zhang Y, Qin W, Qian X. A novel strategy for facile serum exosome isolation based on specific interactions between phospholipid bilayers and TiO2. Chem Sci. 2019;10:1579–88; DOI:10.1039/c8sc04197k.GaoFJiaoFXiaCZhaoYYingWXieYGuanXTaoMZhangYQinWQianXA novel strategy for facile serum exosome isolation based on specific interactions between phospholipid bilayers and TiO2Chem Sci20191015798810.1039/c8sc04197kOpen DOISearch in Google Scholar

Escudier B, Dorval T, Chaput N, André F, Caby MP, Novault S, Flament C, Leboulaire C, Borg C, Amigorena S, Boccaccio C, Bonnerot C, Dhellin O, Movassagh M, Piperno S, Robert C, Serra V, Valente N, Le Pecq JB, Spatz A, Lantz O, Tursz T, Angevin E, Zitvogel L. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: Results of the first phase 1 clinical trial. J Transl Med. 2005;3; DOI:10.1186/1479-5876-3-10.EscudierBDorvalTChaputNAndréFCabyMPNovaultSFlamentCLeboulaireCBorgCAmigorenaSBoccaccioCBonnerotCDhellinOMovassaghMPipernoSRobertCSerraVValenteNLePecq JBSpatzALantzOTurszTAngevinEZitvogelL.Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: Results of the first phase 1 clinical trialJ Transl Med2005310.1186/1479-5876-3-10Open DOISearch in Google Scholar

Heinemann ML, Ilmer M, Silva LP, Hawke DH, Recio A, Vorontsova MA, Alt E, Vykoukal J. Benchtop isolation and characterization of functional exosomes by sequential filtration. J Chromatogr A. 2014;1371:125–35; DOI:10.1016/j.chroma.2014.10.026.HeinemannMLIlmerMSilvaLPHawkeDHRecioAVorontsovaMAAltEVykoukalJBenchtop isolation and characterization of functional exosomes by sequential filtrationJ Chromatogr A201413711253510.1016/j.chroma.2014.10.026Open DOISearch in Google Scholar

Böing AN, van der Pol E, Grootemaat AE, Coumans FAW, Sturk A, Nieuwland R. Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles. 2014;3; DOI:10.3402/jev.v3.23430.BöingANvander Pol EGrootemaatAECoumansFAWSturkANieuwlandR.Single-step isolation of extracellular vesicles by size-exclusion chromatographyJ Extracell Vesicles2014310.3402/jev.v3.23430Open DOISearch in Google Scholar

Kang K, Lee SS, Hyun K, Lee SJ, Kim JM. DNA-based highly tunable particle focuser. Nat Commun. 2013;4:1–8; DOI:10.1038/ncomms3567.KangKLeeSSHyunKLeeSJKimJMDNA-based highly tunable particle focuserNat Commun201341810.1038/ncomms3567Open DOISearch in Google Scholar

Liu C, Guo J, Tian F, Yang N, Yan F, Ding Y, Wei J, Hu G, Nie G, Sun J. Field-Free Isolation of Exosomes from Extracellular Vesicles by Microfluidic Viscoelastic Flows. ACS Nano. 2017;11:6968–76; DOI:10.1021/acsnano.7b02277.LiuCGuoJTianFYangNYanFDingYWeiJHuGNieGSunJField-Free Isolation of Exosomes from Extracellular Vesicles by Microfluidic Viscoelastic FlowsACS Nano20171169687610.1021/acsnano.7b02277Open DOISearch in Google Scholar

Sitar S, Kejžar A, Pahovnik D, Kogej K, Tušek-Žnidarič M, Lenassi M, Ža- gar E. Size Characterization and Quantification of Exosomes by Asymmetrical-Flow Field-Flow Fractionation. Anal Chem. 2015;87:9225–33; DOI:10.1021/acs.analchem.5b01636.SitarSKejžarAPahovnikDKogejKTušek-ŽnidaričMLenassiMŽa-gar E.Size Characterization and Quantification of Exosomes by Asymmetrical-Flow Field-Flow FractionationAnal Chem20158792253310.1021/acs.analchem.5b01636Open DOISearch in Google Scholar

Zhang H, Freitas D, Kim HS, Fabijanic K, Li Z, Chen H, Mark MT, Molina H, Martin AB, Bojmar L, Fang J, Rampersaud S, Hoshino A, Matei I, Kenific CM, Nakajima M, Mutvei AP, Sansone P, Buehring W, Wang H, Jimenez JP, Cohen-Gould L, Paknejad N, Brendel M, Manova-Todorova K, Magalhães A, Ferreira JA, Osório H, Silva AM, Massey A, Cubillos-Ruiz JR, Galletti G, Giannakakou P, Cuervo AM, Blenis J, Schwartz R, Brady MS, Peinado H, Bromberg J, Matsui H, Reis CA, Lyden D. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol. 2018;20:332–43; DOI:10.1038/s41556-018-0040-4.ZhangHFreitasDKimHSFabijanicKLiZChenHMarkMTMolinaHMartinABBojmarLFangJRampersaudSHoshinoAMateiIKenificCMNakajimaMMutveiAPSansonePBuehringWWangHJimenezJPCohen-GouldLPaknejadNBrendelMManova-TodorovaKMagalhãesAFerreiraJAOsórioHSilvaAMMasseyACubillos-RuizJRGallettiGGiannakakouPCuervoAMBlenisJSchwartzRBradyMSPeinadoHBrombergJMatsuiHReisCALydenDIdentification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionationNat Cell Biol2018203324310.1038/s41556-018-0040-4Open DOISearch in Google Scholar

Kang D, Oh S, Ahn SM, Lee BH, Moon MH. Proteomic analysis of exosomes from human neural stem cells by flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry. J Proteome Res. 2008;7:3475–80; DOI:10.1021/pr800225z.KangDOhSAhnSMLeeBHMoonMHProteomic analysis of exosomes from human neural stem cells by flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometryJ Proteome Res2008734758010.1021/pr800225zOpen DOISearch in Google Scholar

Chen C, Skog J, Hsu CH, Lessard RT, Balaj L, Wurdinger T, Carter BS, Breakefield XO, Toner M, Irimia D. Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip. 2010;10:505–11; DOI:10.1039/b916199f.ChenCSkogJHsuCHLessardRTBalajLWurdingerTCarterBSBreakefieldXOTonerMIrimiaDMicrofluidic isolation and transcriptome analysis of serum microvesiclesLab Chip2010105051110.1039/b916199fOpen DOISearch in Google Scholar

Zhao Z, Yang Y, Zeng Y, He M. A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip. 2016;16:489–96; DOI:10.1039/c5lc01117e.ZhaoZYangYZengYHeMA microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosisLab Chip2016164899610.1039/c5lc01117eOpen DOISearch in Google Scholar

Yoo CE, Kim G, Kim M, Park D, Kang HJ, Lee M, Huh N. A direct extraction method for microRNAs from exosomes captured by immunoaffinity beads. Anal Biochem. 2012;431:96–8; DOI:10.1016/j.ab.2012.09.008.YooCEKimGKimMParkDKangHJLeeMHuhNA direct extraction method for microRNAs from exosomes captured by immunoaffinity beadsAnal Biochem201243196810.1016/j.ab.2012.09.008Open DOISearch in Google Scholar

Cai S, Luo B, Jiang P, Zhou X, Lan F, Yi Q, Wu Y. Immuno-modified super-paramagnetic nanoparticles via host-guest interactions for high-purity capture and mild release of exosomes. Nanoscale. 2018;10:14280–9; DOI:10.1039/c8nr02871k.CaiSLuoBJiangPZhouXLanFYiQWuYImmuno-modified super-paramagnetic nanoparticles via host-guest interactions for high-purity capture and mild release of exosomesNanoscale20181014280910.1039/c8nr02871kOpen DOISearch in Google Scholar

Théry C, Amigorena S, Raposo G, Clayton A. Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids. Curr Protoc Cell Biol. 2006;30:3.22.1-3.22.29; DOI:10.1002/0471143030.cb0322s30.ThéryCAmigorenaSRaposoGClaytonA.Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological FluidsCurr Protoc Cell Biol2006303221-3.22.2910.1002/0471143030.cb0322s30Open DOISearch in Google Scholar

Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987;262:9412–20.JohnstoneRMAdamMHammondJROrrLTurbideCVesicle formation during reticulocyte maturationAssociation of plasma membrane activities with released vesicles (exosomes) J Biol Chem198726294122010.1016/S0021-9258(18)48095-7Search in Google Scholar

Kim J, Tan Z, Lubman DM. Exosome enrichment of human serum using multiple cycles of centrifugation. Electrophoresis. 2015;36:2017–26; DOI:10.1002/elps.201500131.KimJTanZLubmanDMExosome enrichment of human serum using multiple cycles of centrifugationElectrophoresis20153620172610.1002/elps.201500131Open DOISearch in Google Scholar

Vidal M, Mangeat P, Hoekstra D. Aggregation reroutes molecules from a recycling to a vesicle-mediated Secretion pathway during reticulocyte maturation. J Cell Sci. 1997;110:1867–77.VidalMMangeatPHoekstraDAggregation reroutes molecules from a recycling to a vesicle-mediated Secretion pathway during reticulocyte maturationJ Cell Sci199711018677710.1242/jcs.110.16.1867Search in Google Scholar

Albertsson P åke, Frick G. Partition of virus particles in a liquid two-phase system. BBA – Biochim Biophys Acta. 1960;37:230–7; DOI:10.1016/0006-3002(60)90228-6.AlbertssonPåkeFrick G.Partition of virus particles in a liquid two-phase systemBBA – Biochim Biophys Acta196037230710.1016/0006-3002(60)90228-6Open DOISearch in Google Scholar

Rider MA, Hurwitz SN, Meckes DG. ExtraPEG: A polyethylene glycol-based method for enrichment of extracellular vesicles. Sci Rep. 2016;6:1–14; DOI:10.1038/srep23978.RiderMAHurwitzSNMeckesDGExtraPEG: A polyethylene glycol-based method for enrichment of extracellular vesiclesSci Rep2016611410.1038/srep23978Open DOISearch in Google Scholar

Macías M, Rebmann V, Mateos B, Varo N, Perez-Gracia JL, Alegre E, González Á. Comparison of six commercial serum exosome isolation methods suitable for clinical laboratories. Effect in cytokine analysis. Clin Chem Lab Med. 2019;57; DOI:10.1515/cclm-2018-1297.MacíasMRebmannVMateosBVaroNPerez-GraciaJLAlegreEGonzálezÁComparison of six commercial serum exosome isolation methods suitable for clinical laboratoriesEffect in cytokine analysis. Clin Chem Lab Med20195710.1515/cclm-2018-1297Open DOISearch in Google Scholar

Davies RT, Kim J, Jang SC, Choi EJ, Gho YS, Park J. Microfluidic filtration system to isolate extracellular vesicles from blood. Lab Chip. 2012;12:5202–10; DOI:10.1039/c2lc41006k.DaviesRTKimJJangSCChoiEJGhoYSParkJMicrofluidic filtration system to isolate extracellular vesicles from bloodLab Chip20121252021010.1039/c2lc41006kOpen DOISearch in Google Scholar

Lee K, Shao H, Weissleder R, Lee H. Acoustic purification of extracellular microvesicles. ACS Nano. 2015;9:2321–7; DOI:10.1021/nn506538f.LeeKShaoHWeisslederRLeeHAcoustic purification of extracellular microvesiclesACS Nano201592321710.1021/nn506538fOpen DOISearch in Google Scholar

Wang Z, Wu HJ, Fine D, Schmulen J, Hu Y, Godin B, Zhang JXJ, Liu X. Ciliated micropillars for the microfluidic-based isolation of nanoscale lipid vesicles. Lab Chip. 2013;13:2879–82; DOI:10.1039/c3lc41343h.WangZWuHJFineDSchmulenJHuYGodinBZhangJXJLiuXCiliated micropillars for the microfluidic-based isolation of nanoscale lipid vesiclesLab Chip20131328798210.1039/c3lc41343hOpen DOISearch in Google Scholar

Ibsen SD, Wright J, Lewis JM, Kim S, Ko SY, Ong J, Manouchehri S, Vyas A, Akers J, Chen CC, Carter BS, Esener SC, Heller MJ. Rapid Isolation and Detection of Exosomes and Associated Biomarkers from Plasma. ACS Nano. 2017;11:6641–51; DOI:10.1021/acsnano.7b00549.IbsenSDWrightJLewisJMKimSKoSYOngJManouchehriSVyasAAkersJChenCCCarterBSEsenerSCHellerMJRapid Isolation and Detection of Exosomes and Associated Biomarkers from PlasmaACS Nano20171166415110.1021/acsnano.7b00549Open DOISearch in Google Scholar

Alvarez-Llamas G, De La Cuesta F, Barderas MEG, Darde V, Padial LR, Vivanco F. Recent advances in atherosclerosis-based proteomics: New biomarkers and a future perspective. Expert Rev Proteomics. 2008;5:679–91; DOI:10.1586/14789450.5.5.679.Alvarez-LlamasGDeLa Cuesta FBarderasMEGDardeVPadialLRVivancoF.Recent advances in atherosclerosis-based proteomics: New biomarkers and a future perspectiveExpert Rev Proteomics200856799110.1586/14789450.5.5.679Open DOISearch in Google Scholar

Simpson RJ, Lim JWE, Moritz RL, Mathivanan S. Exosomes: Proteomic insights and diagnostic potential. Expert Rev Proteomics. 2009;6:267–83; DOI:10.1586/epr.09.17.SimpsonRJLimJWEMoritzRLMathivananSExosomes: Proteomic insights and diagnostic potentialExpert Rev Proteomics200962678310.1586/epr.09.17Open DOISearch in Google Scholar

Giusti I, Francesco M, Dolo V. Extracellular Vesicles in Glioblastoma: Role in Biological Processes and in Therapeutic Applications. Curr Cancer Drug Targets. 2016;17:221–35; DOI:10.2174/1568009616666160813182959.GiustiIFrancescoMDoloVExtracellular Vesicles in Glioblastoma: Role in Biological Processes and in Therapeutic ApplicationsCurr Cancer Drug Targets2016172213510.2174/1568009616666160813182959Open DOISearch in Google Scholar

Zhou H, Pisitkun T, Aponte A, Yuen PST, Hoffert JD, Yasuda H, Hu X, Chawla L, Shen RF, Knepper MA, Star RA. Exosomal Fetuin-A identified by proteomics: A novel urinary biomarker for detecting acute kidney injury. Kidney Int. 2006;70:1847–57; DOI:10.1038/sj.ki.5001874.ZhouHPisitkunTAponteAYuenPSTHoffertJDYasudaHHuXChawlaLShenRFKnepperMAStarRAExosomal Fetuin-A identified by proteomics: A novel urinary biomarker for detecting acute kidney injuryKidney Int20067018475710.1038/sj.ki.5001874Open DOISearch in Google Scholar

Sandfeld-Paulsen B, Aggerholm-Pedersen N, Bæk R, Jakobsen KR, Meldgaard P, Folkersen BH, Rasmussen TR, Varming K, Jørgensen MM, Sorensen BS. Exosomal proteins as prognostic biomarkers in non-small cell lung cancer. Mol Oncol. 2016;10:1595; DOI:10.1016/j.molonc.2016.10.003.Sandfeld-PaulsenBAggerholm-PedersenNBækRJakobsenKRMeldgaardPFolkersenBHRasmussenTRVarmingKJørgensenMMSorensenBS.Exosomal proteins as prognostic biomarkers in non-small cell lung cancerMol Oncol201610159510.1016/j.molonc.2016.10.003Open DOISearch in Google Scholar

Doyle L, Wang M. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells. 2019;8:727; DOI:10.3390/cells8070727.DoyleLWangMOverview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and AnalysisCells2019872710.3390/cells8070727Open DOISearch in Google Scholar

Sonoda H, Yokota-Ikeda N, Oshikawa S, Kanno Y, Yoshinaga K, Uchida K, Ueda Y, Kimiya K, Uezono S, Ueda A, Ito K, Ikeda M. Decreased abundance of urinary exosomal aquaporin-1 in renal ischemia-reperfusion injury. Am J Physiol – Ren Physiol. 2009;297; DOI:10.1152/ajprenal.00200.2009.SonodaHYokota-IkedaNOshikawaSKannoYYoshinagaKUchidaKUedaYKimiyaKUezonoSUedaAItoKIkedaMDecreased abundance of urinary exosomal aquaporin-1 in renal ischemia-reperfusion injuryAm J Physiol – Ren Physiol200929710.1152/ajprenal.00200.2009Open DOISearch in Google Scholar

Bobrie A, Colombo M, Raposo G, Théry C. Exosome Secretion: Molecular Mechanisms and Roles in Immune Responses. Traffic. 2011;12:1659–68; DOI:10.1111/j.1600-0854.2011.01225.x.BobrieAColomboMRaposoGThéryCExosome Secretion: Molecular Mechanisms and Roles in Immune ResponsesTraffic20111216596810.1111/j.1600-0854.2011.01225.xOpen DOISearch in Google Scholar

Chaput N, Théry C. Exosomes: Immune properties and potential clinical implementations. Semin Immunopathol. 2011;33:419–40; DOI:10.1007/s00281-010-0233-9.ChaputNThéryCExosomes: Immune properties and potential clinical implementationsSemin Immunopathol2011334194010.1007/s00281-010-0233-9Open DOISearch in Google Scholar

Lai RC, Yeo RWY, Tan KH, Lim SK. Exosomes for drug delivery – A novel application for the mesenchymal stem cell. Biotechnol Adv. 2013;31:543–51; DOI:10.1016/j.biotechadv.2012.08.008.LaiRCYeoRWYTanKHLimSKExosomes for drug delivery – A novel application for the mesenchymal stem cellBiotechnol Adv2013315435110.1016/j.biotechadv.2012.08.008Open DOISearch in Google Scholar

Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29:341–5; DOI:10.1038/nbt.1807.Alvarez-ErvitiLSeowYYinHBettsCLakhalSWoodMJA.Delivery of siRNA to the mouse brain by systemic injection of targeted exosomesNat Biotechnol201129341510.1038/nbt.1807Open DOISearch in Google Scholar

Gatti S, Bruno S, Deregibus MC, Sordi A, Cantaluppi V, Tetta C, Camussi G. Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant. 2011;26:1474–83; DOI:10.1093/ndt/gfr015.GattiSBrunoSDeregibusMCSordiACantaluppiVTettaCCamussiGMicrovesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injuryNephrol Dial Transplant20112614748310.1093/ndt/gfr015Open DOISearch in Google Scholar

Bruno S, Grange C, Collino F, Deregibus MC, Cantaluppi V, Biancone L, Tetta C, Camussi G. Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS One. 2012;7; DOI:10.1371/journal.pone.0033115.BrunoSGrangeCCollinoFDeregibusMCCantaluppiVBianconeLTettaCCamussiGMicrovesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injuryPLoS One2012710.1371/journal.pone.0033115Open DOISearch in Google Scholar

Reis LA, Borges FT, Simões MJ, Borges AA, Sinigaglia-Coimbra R, Schor N. Bone Marrow-Derived Mesenchymal Stem Cells Repaired but Did Not Prevent Gentamicin-Induced Acute Kidney Injury through Paracrine Effects in Rats. PLoS One. 2012;7; DOI:10.1371/journal.pone.0044092.ReisLABorgesFTSimõesMJBorgesAASinigaglia-CoimbraRSchorNBone Marrow-Derived Mesenchymal Stem Cells Repaired but Did Not Prevent Gentamicin-Induced Acute Kidney Injury through Paracrine Effects in RatsPLoS One2012710.1371/journal.pone.0044092Open DOISearch in Google Scholar

Guo BB, Bellingham SA, Hill AF. Stimulating the release of exosomes increases the intercellular transfer of prions. J Biol Chem. 2016; DOI:10.1074/jbc.M115.684258.GuoBBBellinghamSAHillAFStimulating the release of exosomes increases the intercellular transfer of prionsJ Biol Chem201610.1074/jbc.M115.684258Open DOISearch in Google Scholar

Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J, Haydar T, Wolozin B, Butovsky O, Kügler S, Ikezu T. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci. 2015; DOI:10.1038/nn.4132.AsaiHIkezuSTsunodaSMedallaMLuebkeJHaydarTWolozinBButovskyOKüglerSIkezuTDepletion of microglia and inhibition of exosome synthesis halt tau propagationNat Neurosci201510.1038/nn.4132Open DOISearch in Google Scholar

Rajendran L, Honsho M, Zahn TR, Keller P, Geiger KD, Verkade P, Simons K. Alzheimer’s disease β-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci U S A. 2006; DOI:10.1073/pnas.0603838103.RajendranLHonshoMZahnTRKellerPGeigerKDVerkadePSimonsKAlzheimer’s disease β-amyloid peptides are released in association with exosomesProc Natl Acad Sci U S A200610.1073/pnas.0603838103Open DOISearch in Google Scholar

Yuyama K, Sun H, Usuki S, Sakai S, Hanamatsu H, Mioka T, Kimura N, Okada M, Tahara H, Furukawa JI, Fujitani N, Shinohara Y, Igarashi Y. A potential function for neuronal exosomes: Sequestering intracerebral amyloid-β peptide. FEBS Lett. 2015; DOI:10.1016/j.febslet.2014.11.027.YuyamaKSunHUsukiSSakaiSHanamatsuHMiokaTKimuraNOkadaMTaharaHFurukawaJIFujitaniNShinoharaYIgarashiYA potential function for neuronal exosomes: Sequestering intracerebral amyloid-β peptideFEBS Lett201510.1016/j.febslet.2014.11.027Open DOISearch in Google Scholar

Stuendl A, Kunadt M, Kruse N, Bartels C, Moebius W, Danzer KM, Mollenhauer B, Schneider A. Induction of α-synuclein aggregate formation by CSF exosomes from patients with Parkinson’s disease and dementia with Lewy bodies. Brain. 2016; DOI:10.1093/brain/awv346.StuendlAKunadtMKruseNBartelsCMoebiusWDanzerKMMollenhauerBSchneiderAInduction of α-synuclein aggregate formation by CSF exosomes from patients with Parkinson’s disease and dementia with Lewy bodiesBrain201610.1093/brain/awv346Open DOISearch in Google Scholar

Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M, Margaritis LH, Stefanis L, Vekrellis K. Cell-produced α-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci. 2010; DOI:10.1523/JNEUROSCI.5699-09.2010.EmmanouilidouEMelachroinouKRoumeliotisTGarbisSDNtzouniMMargaritisLHStefanisLVekrellisKCell-produced α-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survivalJ Neurosci201010.1523/JNEUROSCI.5699-09.2010Open DOISearch in Google Scholar

Fraser KB, Rawlins AB, Clark RG, Alcalay RN, Standaert DG, Liu N, West AB. Ser(P)-1292 LRRK2 in urinary exosomes is elevated in idiopathic Parkinson’s disease. Mov Disord. 2016; DOI:10.1002/mds.26686.FraserKBRawlinsABClarkRGAlcalayRNStandaertDGLiuNWestABSer(P)-1292 LRRK2 in urinary exosomes is elevated in idiopathic Parkinson’s diseaseMov Disord201610.1002/mds.26686Open DOISearch in Google Scholar

Benussi L, Ciani M, Tonoli E, Morbin M, Palamara L, Albani D, Fusco F, Forloni G, Glionna M, Baco M, Paterlini A, Fostinelli S, Santini B, Galbiati E, Gagni P, Cretich M, Binetti G, Tagliavini F, Prosperi D, Chiari M, Ghidoni R. Loss of exosomes in progranulin-associated frontotemporal dementia. Neurobiol Aging. 2016; DOI:10.1016/j.neurobiolaging.2016.01.001.BenussiLCianiMTonoliEMorbinMPalamaraLAlbaniDFuscoFForloniGGlionnaMBacoMPaterliniAFostinelliSSantiniBGalbiatiEGagniPCretichMBinettiGTagliaviniFProsperiDChiariMGhidoniRLoss of exosomes in progranulin-associated frontotemporal dementiaNeurobiol Aging201610.1016/j.neurobiolaging.2016.01.001Open DOISearch in Google Scholar

Buck AH, Coakley G, Simbari F, McSorley HJ, Quintana JF, Le Bihan T, Kumar S, Abreu-Goodger C, Lear M, Harcus Y, Ceroni A, Babayan SA, Blaxter M, Ivens A, Maizels RM. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nat Commun. 2014;5:1–12; DOI:10.1038/ncomms6488.BuckAHCoakleyGSimbariFMcSorleyHJQuintanaJFLeBihan TKumarSAbreu-GoodgerCLearMHarcusYCeroniABabayanSABlaxterMIvensAMaizelsRM.Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunityNat Commun2014511210.1038/ncomms6488Open DOISearch in Google Scholar

Zhao Y, Sun X, Cao W, Ma J, Sun L, Qian H, Zhu W, Xu W. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Acute Myocardial Ischemic Injury. Stem Cells Int. 2015;2015; DOI:10.1155/2015/761643.ZhaoYSunXCaoWMaJSunLQianHZhuWXuWExosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Acute Myocardial Ischemic InjuryStem Cells Int2015201510.1155/2015/761643Open DOISearch in Google Scholar

Hu L, Wang J, Zhou X, Xiong Z, Zhao J, Yu R, Huang F, Zhang H, Chen L. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci Rep. 2016;6:1–11; DOI:10.1038/srep32993.HuLWangJZhouXXiongZZhaoJYuRHuangFZhangHChenLExosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblastsSci Rep2016611110.1038/srep32993Open DOISearch in Google Scholar

Li T, Yan Y, Wang B, Qian H, Zhang X, Shen L, Wang M, Zhou Y, Zhu W, Li W, Xu W. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev. 2013;22:845–54; DOI:10.1089/scd.2012.0395.LiTYanYWangBQianHZhangXShenLWangMZhouYZhuWLiWXuWExosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosisStem Cells Dev2013228455410.1089/scd.2012.0395Open DOISearch in Google Scholar

Fang S, Xu C, Zhang Y, Xue C, Yang C, Bi H, Qian X, Wu M, Ji K, Zhao Y, Wang Y, Liu H, Xing X. Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomal MicroRNAs Suppress Myofibroblast Differentiation by Inhibiting the Transforming Growth Factor-β/SMAD2 Pathway During Wound Healing. Stem Cells Transl Med. 2016;5:1425–39; DOI:10.5966/sctm.2015-0367.FangSXuCZhangYXueCYangCBiHQianXWuMJiKZhaoYWangYLiuHXingXUmbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomal MicroRNAs Suppress Myofibroblast Differentiation by Inhibiting the Transforming Growth Factor-β/SMAD2 Pathway During Wound HealingStem Cells Transl Med2016514253910.5966/sctm.2015-0367Open DOISearch in Google Scholar

Lv LL, Cao Y, Liu D, Xu M, Liu H, Tang RN, Ma KL, Liu BC. Isolation and quantification of MicroRNAs from urinary exosomes/microvesicles for biomarker discovery. Int J Biol Sci. 2013;9:1021–31; DOI:10.7150/ijbs.6100.LvLLCaoYLiuDXuMLiuHTangRNMaKLLiuBCIsolation and quantification of MicroRNAs from urinary exosomes/microvesicles for biomarker discoveryInt J Biol Sci2013910213110.7150/ijbs.6100Open DOISearch in Google Scholar

eISSN:
2544-3577
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry