Cite

Lopes SMC de S, Alexdottir MS, Valdimarsdottir G. The TGFβ family in human placental development at the fetal-maternal interface. Biomolecules. 2020;10:1–20; DOI:10.3390/biom10030453.LopesSMCdeSAlexdottirMSValdimarsdottirGThe TGFβ family in human placental development at the fetal-maternal interfaceBiomolecules20201012010.3390/biom10030453Open DOISearch in Google Scholar

Chang CW, Parast MM. Human trophoblast stem cells: Real or not real? Placenta. 2017;60; DOI:10.1016/j.placenta.2017.01.003.ChangCWParastMMHuman trophoblast stem cells: Real or not real?Placenta20176010.1016/j.placenta.2017.01.003Open DOISearch in Google Scholar

Fisher SJ. The placenta dilemma. Semin Reprod Med. 2000;18:321–6; DOI:10.1055/s-2000-12569.FisherSJThe placenta dilemmaSemin Reprod Med200018321610.1055/s-2000-12569Open DOISearch in Google Scholar

Roberts RM, Fisher SJ. Trophoblast stem cells. Biol Reprod. 2011;84:412–21; DOI:10.1095/biolreprod.110.088724.RobertsRMFisherSJTrophoblast stem cellsBiol Reprod2011844122110.1095/biolreprod.110.088724Open DOISearch in Google Scholar

Ohinata Y, Tsukiyama T. Establishment of trophoblast stem cells under defined culture conditions in mice. PLoS One. 2014;9; DOI:10.1371/journal.pone.0107308.OhinataYTsukiyamaTEstablishment of trophoblast stem cells under defined culture conditions in micePLoS One2014910.1371/journal.pone.0107308Open DOISearch in Google Scholar

Okae H, Toh H, Sato T, Hiura H, Takahashi S, Shirane K, Kabayama Y, Suyama M, Sasaki H, Arima T. Derivation of Human Trophoblast Stem Cells. Cell Stem Cell. 2018;22; DOI:10.1016/j.stem.2017.11.004.OkaeHTohHSatoTHiuraHTakahashiSShiraneKKabayamaYSuyamaMSasakiHArimaTDerivation of Human Trophoblast Stem CellsCell Stem Cell20182210.1016/j.stem.2017.11.004Open DOISearch in Google Scholar

Lobo SE, Leonel LCPC, Miranda CMFC, Coelho TM, Ferreira GAS, Mess A, Abrão MS, Miglino MA. The placenta as an organ and a source of stem cells and extracellular matrix: A review. Cells Tissues Organs. 2016;201:239–52; DOI:10.1159/000443636.LoboSELeonelLCPCMirandaCMFCCoelhoTMFerreiraGASMessAAbrãoMSMiglinoMAThe placenta as an organ and a source of stem cells and extracellular matrix: A reviewCells Tissues Organs20162012395210.1159/000443636Open DOISearch in Google Scholar

Latos PA, Hemberger M. From the stem of the placental tree: Trophoblast stem cells and their progeny. Dev. 2016;143; DOI:10.1242/dev.133462.LatosPAHembergerMFrom the stem of the placental tree: Trophoblast stem cells and their progenyDev201614310.1242/dev.133462Open DOISearch in Google Scholar

Li Z, Kurosawa O, Iwata H. A Novel Human Placental Barrier Model Based on Trophoblast Stem Cells Derived from Human Induced Pluripotent Stem Cells. vol. 26. 2020; DOI:10.1089/ten.tea.2019.0342.LiZKurosawaOIwataHA Novel Human Placental Barrier Model Based on Trophoblast Stem Cells Derived from Human Induced Pluripotent Stem Cellsvol. 26202010.1089/ten.tea.2019.0342Open DOISearch in Google Scholar

Knöfler M, Haider S, Saleh L, Pollheimer J, Gamage TKJB, James J. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci. 2019;76:3479–96; DOI:10.1007/s00018-019-03104-6.KnöflerMHaiderSSalehLPollheimerJGamageTKJBJamesJ.Human placenta and trophoblast development: key molecular mechanisms and model systemsCell Mol Life Sci20197634799610.1007/s00018-019-03104-6Open DOISearch in Google Scholar

Horii M, Bui T, Touma O, Cho HY, Parast MM. An Improved Two-Step Protocol for Trophoblast Differentiation of Human Pluripotent Stem Cells. Curr Protoc Stem Cell Biol. 2019;50; DOI:10.1002/cpsc.96.HoriiMBuiTToumaOChoHYParastMMAn Improved Two-Step Protocol for Trophoblast Differentiation of Human Pluripotent Stem CellsCurr Protoc Stem Cell Biol20195010.1002/cpsc.96Open DOISearch in Google Scholar

Hemberger M, Hanna CW, Dean W. Mechanisms of early placental development in mouse and humans. Nat Rev Genet. 2020;21:27–43; DOI:10.1038/s41576-019-0169-4.HembergerMHannaCWDeanWMechanisms of early placental development in mouse and humansNat Rev Genet202021274310.1038/s41576-019-0169-4Open DOISearch in Google Scholar

Sozen B, Amadei G, Cox A, Wang R, Na E, Czukiewska S, Chappell L, Voet T, Michel G, Jing N, Glover DM, Zernicka-Goetz M. Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structures. Nat Cell Biol. 2018;20:979–89; DOI:10.1038/s41556-018-0147-7.SozenBAmadeiGCoxAWangRNaECzukiewskaSChappellLVoetTMichelGJingNGloverDMZernicka-GoetzMSelf-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structuresNat Cell Biol2018209798910.1038/s41556-018-0147-7Open DOISearch in Google Scholar

Li Z, Kurosawa O, Iwata H. Establishment of human trophoblast stem cells from human induced pluripotent stem cell-derived cystic cells under micromesh culture. Stem Cell Res Ther. 2019;10:1–14; DOI:10.1186/s13287-019-1339-1.LiZKurosawaOIwataHEstablishment of human trophoblast stem cells from human induced pluripotent stem cell-derived cystic cells under micromesh cultureStem Cell Res Ther20191011410.1186/s13287-019-1339-1Open DOISearch in Google Scholar

Maltepe E, Fisher SJ. Placenta: The Forgotten Organ. Annu Rev Cell Dev Biol. 2015;31:523–52; DOI:10.1146/annurev-cellbio-100814-125620.MaltepeEFisherSJPlacenta: The Forgotten OrganAnnu Rev Cell Dev Biol2015315235210.1146/annurev-cellbio-100814-125620Open DOISearch in Google Scholar

Huppertz B. The anatomy of the normal placenta. J Clin Pathol. 2008;61:1296–302; DOI:10.1136/jcp.2008.055277.HuppertzBThe anatomy of the normal placentaJ Clin Pathol200861129630210.1136/jcp.2008.055277Open DOISearch in Google Scholar

Douglas GC, VandeVoort CA, Kumar P, Chang TC, Golos TG. Trophoblast stem cells: Models for investigating trophectoderm differentiation and placental development. Endocr Rev. 2009;30:228–40; DOI:10.1210/er.2009-0001.DouglasGCVandeVoortCAKumarPChangTCGolosTGTrophoblast stem cells: Models for investigating trophectoderm differentiation and placental developmentEndocr Rev2009302284010.1210/er.2009-0001Open DOISearch in Google Scholar

Oda M, Shiota K, Tanaka S. Trophoblast Stem Cells. Methods Enzymol. 2006;419:387–400; DOI:10.1016/S0076-6879(06)19015-1.OdaMShiotaKTanakaSTrophoblast Stem CellsMethods Enzymol200641938740010.1016/S0076-6879(06)19015-1Open DOISearch in Google Scholar

Wu T, Wang H, He J, Kang L, Jiang Y, Liu J, Zhang Y, Kou Z, Liu L, Zhang X, Gao S. Reprogramming of trophoblast stem cells into pluripotent stem cells by Oct4. Stem Cells. 2011;29:755–63; DOI:10.1002/stem.617.WuTWangHHeJKangLJiangYLiuJZhangYKouZLiuLZhangXGaoSReprogramming of trophoblast stem cells into pluripotent stem cells by Oct4Stem Cells2011297556310.1002/stem.617Open DOISearch in Google Scholar

Hirose M, Hada M, Kamimura S, Matoba S, Honda A, Motomura K, Ogonuki N, Shawki HH, Inoue K, Takahashi S, Ogura A. Aberrant imprinting in mouse trophoblast stem cells established from somatic cell nuclear transfer-derived embryos. Epigenetics. 2018;13:693–703; DOI:10.1080/15592294.2018.1507199.HiroseMHadaMKamimuraSMatobaSHondaAMotomuraKOgonukiNShawkiHHInoueKTakahashiSOguraAAberrant imprinting in mouse trophoblast stem cells established from somatic cell nuclear transfer-derived embryosEpigenetics20181369370310.1080/15592294.2018.1507199Open DOISearch in Google Scholar

Parenti A, Ralston A. Three, two, one⋯ TROPHO-BLAST OFF! Cell Stem Cell. 2015;17:499–500; DOI:10.1016/j.stem.2015.10.005.ParentiARalstonAThree, two, one⋯ TROPHO-BLAST OFF!Cell Stem Cell20151749950010.1016/j.stem.2015.10.005Open DOISearch in Google Scholar

Abell AN, Granger DA, Johnson NL, Vincent-Jordan N, Dibble CF, Johnson GL. Trophoblast Stem Cell Maintenance by Fibroblast Growth Factor 4 Requires MEKK4 Activation of Jun N-Terminal Kinase. Mol Cell Biol. 2009;29:2748–61; DOI:10.1128/mcb.01391-08.AbellANGrangerDAJohnsonNLVincent-JordanNDibbleCFJohnsonGLTrophoblast Stem Cell Maintenance by Fibroblast Growth Factor 4 Requires MEKK4 Activation of Jun N-Terminal KinaseMol Cell Biol20092927486110.1128/mcb.01391-08Open DOISearch in Google Scholar

Kubaczka C, Senner CE, Cierlitza M, Araúzo-Bravo MJ, Kuckenberg P, Peitz M, Hemberger M, Schorle H. Direct Induction of Trophoblast Stem Cells from Murine Fibroblasts. Cell Stem Cell. 2015;17:557–68; DOI:10.1016/j.stem.2015.08.005.KubaczkaCSennerCECierlitzaMAraúzo-BravoMJKuckenbergPPeitzMHembergerMSchorleHDirect Induction of Trophoblast Stem Cells from Murine FibroblastsCell Stem Cell2015175576810.1016/j.stem.2015.08.005Open DOISearch in Google Scholar

Latos PA, Hemberger M. Review: The transcriptional and signalling networks of mouse trophoblast stem cells. Placenta. 2014;35:S81–5; DOI:10.1016/j.placenta.2013.10.013.LatosPAHembergerMReview: The transcriptional and signalling networks of mouse trophoblast stem cellsPlacenta201435S81510.1016/j.placenta.2013.10.013Open DOISearch in Google Scholar

Motomura K, Oikawa M, Hirose M, Honda A, Togayachi S, Miyoshi H, Ohinata Y, Sugimoto M, Abe K, Inoue K, Ogura A. Cellular dynamics of mouse trophoblast stem cells: Identification of a persistent stem cell type. Biol Reprod. 2016;94:1–14; DOI:10.1095/biolreprod.115.137125.MotomuraKOikawaMHiroseMHondaATogayachiSMiyoshiHOhinataYSugimotoMAbeKInoueKOguraACellular dynamics of mouse trophoblast stem cells: Identification of a persistent stem cell typeBiol Reprod20169411410.1095/biolreprod.115.137125Open DOISearch in Google Scholar

Gao H, Gao R, Zhang L, Xiu W, Zang R, Wang H, Zhang Y, Chen J, Gao Y, Gao S. Esrrb plays important roles in maintaining self-renewal of trophoblast stem cells (TSCs) and reprogramming somatic cells to induced TSCs. J Mol Cell Biol. 2019;11:463–73; DOI:10.1093/jmcb/mjy054.GaoHGaoRZhangLXiuWZangRWangHZhangYChenJGaoYGaoSEsrrb plays important roles in maintaining self-renewal of trophoblast stem cells (TSCs) and reprogramming somatic cells to induced TSCsJ Mol Cell Biol2019114637310.1093/jmcb/mjy054Open DOISearch in Google Scholar

Horii M, Li Y, Wakeland AK, Pizzo DP, Nelson KK, Sabatini K, Laurent LC, Liu Y, Parast MM. Human pluripotent stem cells as a model of trophoblast differentiation in both normal development and disease. Proc Natl Acad Sci U S A. 2016;113; DOI:10.1073/pnas.1604747113.HoriiMLiYWakelandAKPizzoDPNelsonKKSabatiniKLaurentLCLiuYParastMMHuman pluripotent stem cells as a model of trophoblast differentiation in both normal development and diseaseProc Natl Acad Sci U S A201611310.1073/pnas.1604747113Open DOISearch in Google Scholar

Prudhomme J, Morey C. Epigenesis and plasticity of mouse trophoblast stem cells. Cell Mol Life Sci. 2016;73:757–74; DOI:10.1007/s00018-015-2086-9.PrudhommeJMoreyCEpigenesis and plasticity of mouse trophoblast stem cellsCell Mol Life Sci2016737577410.1007/s00018-015-2086-9Open DOISearch in Google Scholar

Hong YJ, Hong K, Byun S, Choi HW, Do JT. Reprogramming of Extraembryonic Trophoblast Stem Cells into Embryonic Pluripotent State by Fusion with Embryonic Stem Cells. Stem Cells Dev. 2018;27:1350–9; DOI:10.1089/scd.2018.0034.HongYJHongKByunSChoiHWDoJTReprogramming of Extraembryonic Trophoblast Stem Cells into Embryonic Pluripotent State by Fusion with Embryonic Stem CellsStem Cells Dev2018271350910.1089/scd.2018.0034Open DOISearch in Google Scholar

Lorenz M, Mozdziak P, Kempisty B, Dyszkiewicz-Konwińska M. Application potential and plasticity of human stem cells. Med J Cell Biol. 2019;7; DOI:10.2478/acb-2019-0019.LorenzMMozdziakPKempistyBDyszkiewicz-KonwińskaMApplication potential and plasticity of human stem cellsMed J Cell Biol2019710.2478/acb-2019-0019Open DOISearch in Google Scholar

Cui T, Jiang L, Li T, Teng F, Feng G, Wang X, He Z, Guo L, Xu K, Mao Y, Wang L, Yuan X, Wang L, Li W, Zhou Q. Derivation of Mouse Haploid Trophoblast Stem Cells. Cell Rep. 2019;26; DOI:10.1016/j.celrep.2018.12.067.CuiTJiangLLiTTengFFengGWangXHeZGuoLXuKMaoYWangLYuanXWangLLiWZhouQDerivation of Mouse Haploid Trophoblast Stem CellsCell Rep20192610.1016/j.celrep.2018.12.067Open DOISearch in Google Scholar

Roberts RM, Loh KM, Amita M, Bernardo AS, Adachi K, Alexenko AP, Schust DJ, Schulz LC, Telugu BPVL, Ezashi T, Pedersen RA. Differentiation of trophoblast cells from human embryonic stem cells: To be or not to be? Reproduction. 2014;147; DOI:10.1530/REP-14-0080.RobertsRMLohKMAmitaMBernardoASAdachiKAlexenkoAPSchustDJSchulzLCTeluguBPVLEzashiTPedersenRADifferentiation of trophoblast cells from human embryonic stem cells: To be or not to be?Reproduction201414710.1530/REP-14-0080Open DOISearch in Google Scholar

Hayakawa K, Himeno E, Tanaka S, Kunath T. Isolation and manipulation of mouse trophoblast stem cells. vol. 2015. 2015; DOI:10.1002/9780470151808.sc01e04s32.HayakawaKHimenoETanakaSKunathTIsolation and manipulation of mouse trophoblast stem cellsvol2015201510.1002/9780470151808.sc01e04s32Open DOISearch in Google Scholar

Wang Y, Wang H. Successful derivation of human trophoblast stem cells. Biol Reprod. 2018;99:271–2; DOI:10.1093/biolre/ioy039.WangYWangHSuccessful derivation of human trophoblast stem cellsBiol Reprod201899271210.1093/biolre/ioy039Open DOISearch in Google Scholar

Chiu SY, Maruyama EO, Hsu W. Derivation of mouse Trophoblast stem cells from Blastocysts. J Vis Exp. 2010;2:2–5; DOI:10.3791/1964.ChiuSYMaruyamaEOHsuWDerivation of mouse Trophoblast stem cells from BlastocystsJ Vis Exp201022510.3791/1964Open DOISearch in Google Scholar

Harrison SE, Sozen B, Zernicka-Goetz M. In vitro generation of mouse polarized embryo-like structures from embryonic and trophoblast stem cells. Nat Protoc. 2018;13:1586–602; DOI:10.1038/s41596-018-0005-x.HarrisonSESozenBZernicka-GoetzMIn vitro generation of mouse polarized embryo-like structures from embryonic and trophoblast stem cellsNat Protoc201813158660210.1038/s41596-018-0005-xOpen DOISearch in Google Scholar

Kubaczka C, Senner C, Araúzo-Bravo MJ, Sharma N, Kuckenberg P, Becker A, Zimmer A, Brüstle O, Peitz M, Hemberger M, Schorle H. Derivation and maintenance of murine trophoblast stem cells under defined conditions. Stem Cell Reports. 2014;2; DOI:10.1016/j.stemcr.2013.12.013.KubaczkaCSennerCAraúzo-BravoMJSharmaNKuckenbergPBeckerAZimmerABrüstleOPeitzMHembergerMSchorleHDerivation and maintenance of murine trophoblast stem cells under defined conditionsStem Cell Reports2014210.1016/j.stemcr.2013.12.013Open DOISearch in Google Scholar

Tanaka S, Kunath T, Hadjantonakis AK, Nagy A, Rossant J. Promotion to trophoblast stem cell proliferation by FGF4. Science (80- ). 1998;282; DOI:10.1126/science.282.5396.2072.TanakaSKunathTHadjantonakisAKNagyARossantJPromotion to trophoblast stem cell proliferation by FGF4Science (80- )199828210.1126/science.282.5396.2072Open DOISearch in Google Scholar

Artus J, Hadjantonakis A-K. Troika of the Mouse Blastocyst: Lineage Segregation and Stem Cells. Curr Stem Cell Res Ther. 2012;7; DOI:10.2174/157488812798483403.ArtusJHadjantonakisA-KTroika of the Mouse Blastocyst: Lineage Segregation and Stem CellsCurr Stem Cell Res Ther2012710.2174/157488812798483403Open DOISearch in Google Scholar

Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, Rossant J. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development. 2005;132; DOI:10.1242/dev.01801.StrumpfDMaoCAYamanakaYRalstonAChawengsaksophakKBeckFRossantJCdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocystDevelopment200513210.1242/dev.01801Open DOISearch in Google Scholar

Russ AP, Wattler S, Colledge WH, Aparicio SAJR, Carlton MBL, Pearce JJ, Barton SC, Azim Surani M, Ryan K, Nehls MC, Wilsons V, Evans MJ. Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature. 2000;404; DOI:10.1038/35003601.RussAPWattlerSColledgeWHAparicioSAJRCarltonMBLPearceJJBartonSCAzimSurani MRyanKNehlsMCWilsonsVEvansMJ.Eomesodermin is required for mouse trophoblast development and mesoderm formationNature200040410.1038/35003601Open DOISearch in Google Scholar

Ng RK, Dean W, Dawson C, Lucifero D, Madeja Z, Reik W, Hemberger M. Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat Cell Biol. 2008;10; DOI:10.1038/ncb1786.NgRKDeanWDawsonCLuciferoDMadejaZReikWHembergerMEpigenetic restriction of embryonic cell lineage fate by methylation of Elf5Nat Cell Biol20081010.1038/ncb1786Open DOISearch in Google Scholar

Adachi K, Nikaido I, Ohta H, Ohtsuka S, Ura H, Kadota M, Wakayama T, Ueda HR, Niwa H. Context-Dependent Wiring of Sox2 Regulatory Networks for Self-Renewal of Embryonic and Trophoblast Stem Cells. Mol Cell. 2013;52; DOI:10.1016/j.molcel.2013.09.002.AdachiKNikaidoIOhtaHOhtsukaSUraHKadotaMWakayamaTUedaHRNiwaHContext-Dependent Wiring of Sox2 Regulatory Networks for Self-Renewal of Embryonic and Trophoblast Stem CellsMol Cell20135210.1016/j.molcel.2013.09.002Open DOISearch in Google Scholar

Kuckenberg P, Peitz M, Kubaczka C, Becker A, Egert A, Wardelmann E, Zimmer A, Brustle O, Schorle H. Lineage Conversion of Murine Extraembryonic Trophoblast Stem Cells to Pluripotent Stem Cells. Mol Cell Biol. 2011;31; DOI:10.1128/mcb.01047-10.KuckenbergPPeitzMKubaczkaCBeckerAEgertAWardelmannEZimmerABrustleOSchorleHLineage Conversion of Murine Extraembryonic Trophoblast Stem Cells to Pluripotent Stem CellsMol Cell Biol20113110.1128/mcb.01047-10Open DOISearch in Google Scholar

Rivron NC, Frias-Aldeguer J, Vrij EJ, Boisset JC, Korving J, Vivié J, Truckenmüller RK, Van Oudenaarden A, Van Blitterswijk CA, Geijsen N. Blastocyst-like structures generated solely from stem cells. Nature. 2018;557; DOI:10.1038/s41586-018-0051-0.RivronNCFrias-AldeguerJVrijEJBoissetJCKorvingJViviéJTruckenmüllerRKVanOudenaarden AVanBlitterswijk CAGeijsenNBlastocyst-like structures generated solely from stem cellsNature201855710.1038/s41586-018-0051-0Open DOISearch in Google Scholar

Harrison SE, Sozen B, Christodoulou N, Kyprianou C, Zernicka-Goetz M. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science (80- ). 2017;356; DOI:10.1126/science.aal1810.HarrisonSESozenBChristodoulouNKyprianouCZernicka-GoetzMAssembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitroScience (80- )201735610.1126/science.aal1810Open DOISearch in Google Scholar

Hsu YC, Li L, Fuchs E. Emerging interactions between skin stem cells and their niches. Nat Med. 2014;20; DOI:10.1038/nm.3643.HsuYCLiLFuchsEEmerging interactions between skin stem cells and their nichesNat Med20142010.1038/nm.3643Open DOISearch in Google Scholar

Hannan NJ, Paiva P, Dimitriadis E, Salamonsen LA. Models for study of human embryo implantation: choice of cell lines? Biol Reprod. 2010;82; DOI:10.1095/biolreprod.109.077800.HannanNJPaivaPDimitriadisESalamonsenLAModels for study of human embryo implantation: choice of cell lines?Biol Reprod20108210.1095/biolreprod.109.077800Open DOISearch in Google Scholar

Blakeley P, Fogarty NME, Del Valle I, Wamaitha SE, Hu TX, Elder K, Snell P, Christie L, Robson P, Niakan KK. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Dev. 2015;142; DOI:10.1242/dev.123547.BlakeleyPFogartyNMEDelValle IWamaithaSEHuTXElderKSnellPChristieLRobsonPNiakanKK.Defining the three cell lineages of the human blastocyst by single-cell RNA-seqDev201514210.1242/dev.123547Open DOISearch in Google Scholar

Nandi P, Lim H, Torres-Garcia EJ, Lala PK. Human trophoblast stem cell self-renewal and differentiation: Role of decorin. Sci Rep. 2018;8; DOI:10.1038/s41598-018-27119-4.NandiPLimHTorres-GarciaEJLalaPKHuman trophoblast stem cell self-renewal and differentiation: Role of decorinSci Rep2018810.1038/s41598-018-27119-4Open DOISearch in Google Scholar

eISSN:
2544-3577
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry