Cite

Malinska A, Podemska Z, Perek B, Jemielity M, Buczkowski P, Grzymislawska M, Sujka-Kordowska P, Nowicki M. Preoperative factors predicting saphenous vein graft occlusion in coronary artery bypass grafting: a multivariate analysis. Histochem Cell Biol. 2017;148:417–24; DOI:10.1007/s00418-017-1574-4.MalinskaAPodemskaZPerekBJemielityMBuczkowskiPGrzymislawskaMSujka-KordowskaPNowickiMPreoperative factors predicting saphenous vein graft occlusion in coronary artery bypass grafting: a multivariate analysisHistochem Cell Biol20171484172410.1007/s00418-017-1574-4560205128478589Open DOISearch in Google Scholar

Kappetein AP, van Mieghem NM, Head SJ. Revascularization Options. Heart Fail Clin. 2016;12:135–9; DOI:10.1016/j.hfc.2015.08.011.KappeteinAPvan MieghemNMHeadSJRevascularization OptionsHeart Fail Clin201612135910.1016/j.hfc.2015.08.01126567980Open DOISearch in Google Scholar

Margaritis M, Channon KM, Antoniades C. Statins and vein graft failure in coronary bypass surgery. Curr Opin Pharmacol. 2012;12:172–80; DOI:10.1016/j.coph.2012.01.009.MargaritisMChannonKMAntoniadesCStatins and vein graft failure in coronary bypass surgeryCurr Opin Pharmacol2012121728010.1016/j.coph.2012.01.009337863122326889Open DOISearch in Google Scholar

Davierwala PM, Mohr FW. Bilateral internal mammary artery grafting: Rationale and evidence. Int J Surg. 2015;16:133–9; DOI:10.1016/J. IJSU.2015.01.012.DavierwalaPMMohrFWBilateral internal mammary artery grafting: Rationale and evidenceInt J Surg201516133910.1016/J.IJSU.2015.01.012Open DOISearch in Google Scholar

Al-Sabti HA, Al Kindi A, Al-Rasadi K, Banerjee Y, Al-Hashmi K, Al-Hinai A. Saphenous vein graft vs. radial artery graft searching for the best second coronary artery bypass graft. J Saudi Hear Assoc. 2013;25:247–54; DOI:10.1016/j.jsha.2013.06.001.Al-SabtiHAAl KindiAAl-RasadiKBanerjeeYAl-HashmiKAl-HinaiASaphenous vein graft vs. radial artery graft searching for the best second coronary artery bypass graftJ Saudi Hear Assoc2013252475410.1016/j.jsha.2013.06.001381863224198449Open DOISearch in Google Scholar

Goldman S, Zadina K, Moritz T, Ovitt T, Sethi G, Copeland JG, Thottapurathu L, Krasnicka B, Ellis N, Anderson RJ, Henderson W, VA Cooperative Study Group #207/297/364. Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs Cooperative Study. J Am Coll Cardiol. 2004;44:2149–56; DOI:10.1016/j.jacc.2004.08.064.GoldmanSZadinaKMoritzTOvittTSethiGCopelandJGThottapurathuLKrasnickaBEllisNAndersonRJHendersonWVA Cooperative Study Group #207/297/364. Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs Cooperative StudyJ Am Coll Cardiol20044421495610.1016/j.jacc.2004.08.06415582312Open DOISearch in Google Scholar

Nawrocki MJ, Perek B, Sujka-Kordowska P, Konwerska A, Kałużna S, Zawierucha P, Bruska M, Zabel M, Jemielity M, Nowicki M, Kempisty B, Malińska A. Differences in expression of genes involved in bone development and morphogenesis in the walls of internal thoracic artery and saphenous vein conduits may provide markers useful for evaluation graft patency. Int J Mol Sci. 2019;20; DOI:10.3390/ijms20194890.NawrockiMJPerekBSujka-KordowskaPKonwerskaAKałużnaSZawieruchaPBruskaMZabelMJemielityMNowickiMKempistyBMalińskaADifferences in expression of genes involved in bone development and morphogenesis in the walls of internal thoracic artery and saphenous vein conduits may provide markers useful for evaluation graft patencyInt J Mol Sci20192010.3390/ijms20194890680153331581653Open DOISearch in Google Scholar

Martínez-González B, Reyes-Hernández CG, Quiroga-Garza A, Rodríguez-Rodríguez VE, Esparza-Hernández CN, Elizondo-Omaña RE, Guzmán-López S. Conduits Used in Coronary Artery Bypass Grafting: A Review of Morphological Studies. Ann Thorac Cardiovasc Surg. 2017;23:55–65; DOI:10.5761/atcs.ra.16-00178.Martínez-GonzálezBReyes-HernándezCGQuiroga-GarzaARodríguez-RodríguezVEEsparza-HernándezCNElizondo-OmañaREGuzmán-LópezSConduits Used in Coronary Artery Bypass Grafting: A Review of Morphological StudiesAnn Thorac Cardiovasc Surg201723556510.5761/atcs.ra.16-00178542263028202895Open DOISearch in Google Scholar

Malinska A, Perek B, Buczkowski P, Kowalska K, Ostalska-Nowicka D, Witkiewicz W, Nowicki M. CD68 expression in aortocoronary saphenous vein bypass grafts. Histochem Cell Biol. 2013;140:183–8; DOI:10.1007/s00418-012-1069-2.MalinskaAPerekBBuczkowskiPKowalskaKOstalska-NowickaDWitkiewiczWNowickiMCD68 expression in aortocoronary saphenous vein bypass graftsHistochem Cell Biol2013140183810.1007/s00418-012-1069-223275124Open DOISearch in Google Scholar

Khan SZ, Rivero M, McCraith B, Harris LM, Dryjski ML, Dosluoglu HH. Endoscopic vein harvest does not negatively affect patency of great saphenous vein lower extremity bypass. J Vasc Surg. 2016;63:1546–54; DOI:10.1016/j.jvs.2016.01.032.KhanSZRiveroMMcCraithBHarrisLMDryjskiMLDosluogluHHEndoscopic vein harvest does not negatively affect patency of great saphenous vein lower extremity bypassJ Vasc Surg20166315465410.1016/j.jvs.2016.01.03227005753Open DOISearch in Google Scholar

Bawany FI, Khan MS, Khan A, Kazi AN, Naeem M. Using skeletonised grafts for coronary artery bypass grafting. J Pak Med Assoc. 2014;64:606–10.BawanyFIKhanMSKhanAKaziANNaeemMUsing skeletonised grafts for coronary artery bypass graftingJ Pak Med Assoc20146460610Search in Google Scholar

Tu Q-M, Wang Z-W. Study on mechanism of c-Myc in restenosis after coronary artery bypass grafting. Eur Rev Med Pharmacol Sci. 2016;20:2363–7.TuQ-MWangZ-WStudy on mechanism of c-Myc in restenosis after coronary artery bypass graftingEur Rev Med Pharmacol Sci20162023637Search in Google Scholar

Sanders WG, Morisseau C, Hammock BD, Cheung AK, Terry CM. Soluble epoxide hydrolase expression in a porcine model of arteriovenous graft stenosis and anti-inflammatory effects of a soluble epoxide hydrolase inhibitor. Am J Physiol Physiol. 2012;303:C278–90; DOI:10.1152/ajpcell.00386.2011.SandersWGMorisseauCHammockBDCheungAKTerryCMSoluble epoxide hydrolase expression in a porcine model of arteriovenous graft stenosis and anti-inflammatory effects of a soluble epoxide hydrolase inhibitorAm J Physiol Physiol2012303C2789010.1152/ajpcell.00386.2011Open DOISearch in Google Scholar

Samano N, Geijer H, Liden M, Fremes S, Bodin L, Souza D. The no-touch saphenous vein for coronary artery bypass grafting maintains a patency, after 16 years, comparable to the left internal thoracic artery: A randomized trial. J Thorac Cardiovasc Surg. 2015;150:880–8; DOI:10.1016/j. jtcvs.2015.07.027.SamanoNGeijerHLidenMFremesSBodinLSouzaDThe no-touch saphenous vein for coronary artery bypass grafting maintains a patency, after 16 years, comparable to the left internal thoracic artery: A randomized trialJ Thorac Cardiovasc Surg2015150880810.1016/j.jtcvs.2015.07.027Open DOISearch in Google Scholar

Taggart DP, Webb CM, Desouza A, Yadav R, Channon KM, De Robertis F, Di Mario C. Long-term performance of an external stent for saphenous vein grafts: the VEST IV trial. J Cardiothorac Surg. 2018;13:117; DOI:10.1186/s13019-018-0803-9.TaggartDPWebbCMDesouzaAYadavRChannonKMDe RobertisFDi MarioCLong-term performance of an external stent for saphenous vein grafts: the VEST IV trialJ Cardiothorac Surg20181311710.1186/s13019-018-0803-9Open DOISearch in Google Scholar

Tinica G, Chistol R, Bulgaru Iliescu D, Furnica C. Long‑term graft patency after coronary artery bypass grafting: Effects of surgical technique. Exp Ther Med. 2018;17:359–67; DOI:10.3892/etm.2018.6929.TinicaGChistolRBulgaru IliescuDFurnicaCLong‑term graft patency after coronary artery bypass grafting: Effects of surgical techniqueExp Ther Med2018173596710.3892/etm.2018.6929Open DOISearch in Google Scholar

Sabik JF, Lytle BW, Blackstone EH, Houghtaling PL, Cosgrove DM. Comparison of saphenous vein and internal thoracic artery graft patency by coronary system. Ann Thorac Surg. 2005;79:544–51; DOI:10.1016/j. athoracsur.2004.07.047.SabikJFLytleBWBlackstoneEHHoughtalingPLCosgroveDMComparison of saphenous vein and internal thoracic artery graft patency by coronary systemAnn Thorac Surg2005795445110.1016/j.athoracsur.2004.07.047Open DOISearch in Google Scholar

Taggart DP, D’Amico R, Altman DG. Effect of arterial revascularisation on survival: a systematic review of studies comparing bilateral and single internal mammary arteries. Lancet. 2001;358:870–5; DOI:10.1016/S0140-6736(01)06069-X.TaggartDPD’AmicoRAltmanDGEffect of arterial revascularisation on survival: a systematic review of studies comparing bilateral and single internal mammary arteriesLancet2001358870510.1016/S0140-6736(01)06069-XOpen DOISearch in Google Scholar

Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC, Lempicki RA. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35:W169-75; DOI:10.1093/nar/gkm415.HuangDWShermanBTTanQKirJLiuDBryantDGuoYStephensRBaselerMWLaneHCLempickiRADAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene listsNucleic Acids Res200735W1697510.1093/nar/gkm415193316917576678Open DOISearch in Google Scholar

Walter W, Sánchez-Cabo F, Ricote M. GOplot: an R package for visually combining expression data with functional analysis: Fig. 1. Bioinformatics. 2015;31:2912–4; DOI:10.1093/bioinformatics/btv300.WalterWSánchez-CaboFRicoteMGOplot: an R package for visually combining expression data with functional analysis: Fig. 1Bioinformatics2015312912410.1093/bioinformatics/btv30025964631Open DOISearch in Google Scholar

Tiso N, Majetti M, Stanchi F, Rampazzo A, Zimbello R, Nava A, Danieli GA. Fine Mapping and Genomic Structure of ACTN2, the Human Gene Coding for the Sarcomeric Isoform of α-Actinin-2, Expressed in Skeletal and Cardiac Muscle. Biochem Biophys Res Commun. 1999;265:256–9; DOI:10.1006/bbrc.1999.1661.TisoNMajettiMStanchiFRampazzoAZimbelloRNavaADanieliGAFine Mapping and Genomic Structure of ACTN2, the Human Gene Coding for the Sarcomeric Isoform of α-Actinin-2, Expressed in Skeletal and Cardiac MuscleBiochem Biophys Res Commun1999265256910.1006/bbrc.1999.166110548523Open DOISearch in Google Scholar

Bagnall RD, Molloy LK, Kalman JM, Semsarian C. Exome sequencing identifies a mutation in the ACTN2 gene in a family with idiopathic ventricular fibrillation, left ventricular noncompaction, and sudden death. BMC Med Genet. 2014;15:99; DOI:10.1186/s12881-014-0099-0.BagnallRDMolloyLKKalmanJMSemsarianCExome sequencing identifies a mutation in the ACTN2 gene in a family with idiopathic ventricular fibrillation, left ventricular noncompaction, and sudden deathBMC Med Genet2014159910.1186/s12881-014-0099-0435550025224718Open DOISearch in Google Scholar

Chiu C, Bagnall RD, Ingles J, Yeates L, Kennerson M, Donald JA, Jormakka M, Lind JM, Semsarian C. Mutations in Alpha-Actinin-2 Cause Hypertrophic Cardiomyopathy. J Am Coll Cardiol. 2010;55:1127–35; DOI:10.1016/j.jacc.2009.11.016.ChiuCBagnallRDInglesJYeatesLKennersonMDonaldJAJormakkaMLindJMSemsarianCMutations in Alpha-Actinin-2 Cause Hypertrophic CardiomyopathyJ Am Coll Cardiol20105511273510.1016/j.jacc.2009.11.01620022194Open DOISearch in Google Scholar

Fan L-L, Huang H, Jin J-Y, Li J-J, Chen Y-Q, Xiang R. Whole-Exome Sequencing Identifies a Novel Mutation (p.L320R) of Alpha-Actinin 2 in a Chinese Family with Dilated Cardiomyopathy and Ventricular Tachycardia. Cytogenet Genome Res. 2019;157:148–52; DOI:10.1159/000496077.FanL-LHuangHJinJ-YLiJ-JChenY-QXiangRWhole-Exome Sequencing Identifies a Novel Mutation (p.L320R) of Alpha-Actinin 2 in a Chinese Family with Dilated Cardiomyopathy and Ventricular TachycardiaCytogenet Genome Res20191571485210.1159/00049607730630173Open DOISearch in Google Scholar

Haywood NJ, Wolny M, Rogers B, Trinh CH, Shuping Y, Edwards TA, Peckham M. Hypertrophic cardiomyopathy mutations in the calponin-homology domain of ACTN2 affect actin binding and cardiomyocyte Z-disc incorporation. Biochem J. 2016;473:2485–93; DOI:10.1042/BCJ20160421.HaywoodNJWolnyMRogersBTrinhCHShupingYEdwardsTAPeckhamMHypertrophic cardiomyopathy mutations in the calponin-homology domain of ACTN2 affect actin binding and cardiomyocyte Z-disc incorporationBiochem J201647324859310.1042/BCJ20160421498080927287556Open DOISearch in Google Scholar

Liu W, Zhao Y, Wu J. Gene expression profile analysis of the progression of carotid atherosclerotic plaques. Mol Med Rep. 2018;17:5789–95; DOI:10.3892/mmr.2018.8575.LiuWZhaoYWuJGene expression profile analysis of the progression of carotid atherosclerotic plaquesMol Med Rep20181757899510.3892/mmr.2018.8575586602229436628Open DOISearch in Google Scholar

Notarnicola C, Rouleau C, Le Guen L, Virsolvy A, Richard S, Faure S, De Santa Barbara P. The RNA-binding protein RBPMS2 regulates development of gastrointestinal smooth muscle. Gastroenterology. 2012;143:687-697.e9; DOI:10.1053/j.gastro.2012.05.047.NotarnicolaCRouleauCLe GuenLVirsolvyARichardSFaureSDe Santa BarbaraPThe RNA-binding protein RBPMS2 regulates development of gastrointestinal smooth muscleGastroenterology2012143687697e910.1053/j.gastro.2012.05.04722683258Open DOISearch in Google Scholar

Akerberg AA, Burns CE, Burns CG. Exploring the Activities of RBPMS Proteins in Myocardial Biology. Pediatr Cardiol. 2019;40:1410–8; DOI:10.1007/s00246-019-02180-6.AkerbergAABurnsCEBurnsCGExploring the Activities of RBPMS Proteins in Myocardial BiologyPediatr Cardiol2019401410810.1007/s00246-019-02180-6678695431399780Open DOISearch in Google Scholar

de Bruin RG, Rabelink TJ, van Zonneveld AJ, van der Veer EP. Emerging roles for RNA-binding proteins as effectors and regulators of cardiovascular disease. Eur Heart J. 2017;38:1380–8; DOI:10.1093/eurheartj/ehw567.de BruinRGRabelinkTJvan ZonneveldAJvan der VeerEPEmerging roles for RNA-binding proteins as effectors and regulators of cardiovascular diseaseEur Heart J2017381380810.1093/eurheartj/ehw56728064149Open DOISearch in Google Scholar

Bonta PI, Pols TWH, de Vries CJM. NR4A Nuclear Receptors in Atherosclerosis and Vein-Graft Disease. Trends Cardiovasc Med. 2007;17:105– 11; DOI:10.1016/j.tcm.2007.02.001.BontaPIPolsTWHde VriesCJMNR4A Nuclear Receptors in Atherosclerosis and Vein-Graft DiseaseTrends Cardiovasc Med2007171051110.1016/j.tcm.2007.02.00117418373Open DOISearch in Google Scholar

Martínez-González J, Rius J, Castelló A, Cases-Langhoff C, Badimon L. Neuron-derived orphan receptor-1 (NOR-1) modulates vascular smooth muscle cell proliferation. Circ Res. 2003;92:96–103; DOI:10.1161/01. ES.0000050921.53008.47.Martínez-GonzálezJRiusJCastellóACases-LanghoffCBadimonLNeuron-derived orphan receptor-1 (NOR-1) modulates vascular smooth muscle cell proliferationCirc Res2003929610310.1161/01.ES.0000050921.53008.4712522126Open DOISearch in Google Scholar

Mirchi LF, Chylíková B, Janků M, Šeda O, Liška F. Transcriptomic analysis of left ventricle myocardium in an SHR congenic line with ameliorated cardiac fibrosis. Physiol Res. 2019;68:747–55; DOI:10.33549/physiolres.934127.MirchiLFChylíkováBJankůMŠedaOLiškaFTranscriptomic analysis of left ventricle myocardium in an SHR congenic line with ameliorated cardiac fibrosisPhysiol Res2019687475510.33549/physiolres.93412731424260Open DOISearch in Google Scholar

Takahashi H, Nomiyama T, Terawaki Y, Kawanami T, Hamaguchi Y, Tanaka T, Tanabe M, Bruemmer D, Yanase T. GLP-1 receptor agonist exendin-4 Attenuates NR4A Orphan Nuclear Receptor NOR1 expression in vascular smooth muscle cells. J Atheroscler Thromb. 2019;26:183–97; DOI:10.5551/jat.43414.TakahashiHNomiyamaTTerawakiYKawanamiTHamaguchiYTanakaTTanabeMBruemmerDYanaseTGLP-1 receptor agonist exendin-4 Attenuates NR4A Orphan Nuclear Receptor NOR1 expression in vascular smooth muscle cellsJ Atheroscler Thromb2019261839710.5551/jat.43414Open DOISearch in Google Scholar

Martí-Pàmies I, Cañes L, Alonso J, Rodríguez C, Martínez-González J. The nuclear receptor NOR-1/NR4A3 regulates the multifunctional glycoprotein vitronectin in human vascular smooth muscle cells. FASEB J. 2017;31:4588–99; DOI:10.1096/fj.201700136RR.Martí-PàmiesICañesLAlonsoJRodríguezCMartínez-GonzálezJThe nuclear receptor NOR-1/NR4A3 regulates the multifunctional glycoprotein vitronectin in human vascular smooth muscle cellsFASEB J20173145889910.1096/fj.201700136RROpen DOISearch in Google Scholar

Calvayrac O, Rodríguez-Calvo R, Martí-Pamies I, Alonso J, Ferrán B, Aguiló S, Crespo J, Rodríguez-Sinovas A, Rodríguez C, Martínez-González J. NOR-1 modulates the inflammatory response of vascular smooth muscle cells by preventing NFκB activation. J Mol Cell Cardiol. 2015;80:34–44; DOI:10.1016/j.yjmcc.2014.12.015.CalvayracORodríguez-CalvoRMartí-PamiesIAlonsoJFerránBAguilóSCrespoJRodríguez-SinovasARodríguezCMartínez-GonzálezJNOR-1 modulates the inflammatory response of vascular smooth muscle cells by preventing NFκB activationJ Mol Cell Cardiol201580344410.1016/j.yjmcc.2014.12.015Open DOISearch in Google Scholar

Dehghani-Samani A, Madreseh-Ghahfarokhi S, Dehghani-Samani A. Mutations of voltage-gated ionic channels and risk of severe cardiac arrhythmias. Acta Cardiol Sin. 2019;35:99–110; DOI:10.6515/ACS.201903_35(2).20181028A.Dehghani-SamaniAMadreseh-GhahfarokhiSDehghani-SamaniAMutations of voltage-gated ionic channels and risk of severe cardiac arrhythmiasActa Cardiol Sin2019359911010.6515/ACS.201903_35(2).20181028AOpen DOISearch in Google Scholar

Bonnet S, Paulin R, Sutendra G, Dromparis P, Roy M, Watson KO, Nagendran J, Haromy A, Dyck JRB, Michelakis ED. Dehydroepiandrosterone reverses systemic vascular remodeling through the inhibition of the Akt/GSK3-β/NFAT Axis. Circulation. 2009;120:1231–40; DOI:10.1161/CIRCULATIONAHA.109.848911.BonnetSPaulinRSutendraGDromparisPRoyMWatsonKONagendranJHaromyADyckJRBMichelakisEDDehydroepiandrosterone reverses systemic vascular remodeling through the inhibition of the Akt/GSK3-β/NFAT AxisCirculation200912012314010.1161/CIRCULATIONAHA.109.84891119752325Open DOISearch in Google Scholar

Fancher IS, Butcher JT, Brooks SD, Rottgen TS, Skaff PR, Frisbee JC, Dick GM. Diphenyl Phosphine Oxide-1-Sensitive K+ Channels Contribute to the Vascular Tone and Reactivity of Resistance Arteries From Brain and Skeletal Muscle. Microcirculation. 2015;22:315–25; DOI:10.1111/micc.12201.FancherISButcherJTBrooksSDRottgenTSSkaffPRFrisbeeJCDickGMDiphenyl Phosphine Oxide-1-Sensitive K+ Channels Contribute to the Vascular Tone and Reactivity of Resistance Arteries From Brain and Skeletal MuscleMicrocirculation2015223152510.1111/micc.12201441279825808400Open DOISearch in Google Scholar

Goodwill AG, Noblet JN, Sassoon D, Fu L, Kassab GS, Schepers L, Herring BP, Rottgen TS, Tune JD, Dick GM. Critical contribution of KV1 channels to the regulation of coronary blood flow. Basic Res Cardiol. 2016;111:56; DOI:10.1007/s00395-016-0575-0.GoodwillAGNobletJNSassoonDFuLKassabGSSchepersLHerringBPRottgenTSTuneJDDickGMCritical contribution of KV1 channels to the regulation of coronary blood flowBasic Res Cardiol20161115610.1007/s00395-016-0575-0519322327496159Open DOISearch in Google Scholar

Barrese V, Cidad P, Yeung SY, López-López JR, McNeish AJ, Ohya S, Pérez-García MT, Greenwood IA. Proliferative role of Kv11 channels in murine arteries. Front Physiol. 2017;8:500; DOI:10.3389/fphys.2017.00500.BarreseVCidadPYeungSYLópez-LópezJRMcNeishAJOhyaSPérez-GarcíaMTGreenwoodIAProliferative role of Kv11 channels in murine arteriesFront Physiol2017850010.3389/fphys.2017.00500550620128747891Open DOISearch in Google Scholar

Nori S, Fumagalli L, Bo X, Bogdanov Y, Burnstock G. Coexpression of mRNAs for P2X1, P2X2 and P2X4 receptors in rat vascular smooth muscle: an in situ hybridization and RT-PCR study. J Vasc Res. 1998;35:179–85; DOI:10.1159/000025582.NoriSFumagalliLBoXBogdanovYBurnstockGCoexpression of mRNAs for P2X1, P2X2 and P2X4 receptors in rat vascular smooth muscle: an in situ hybridization and RT-PCR studyJ Vasc Res1998351798510.1159/0000255829647332Open DOISearch in Google Scholar

Hennigs JK, Lüneburg N, Stage A, Schmitz M, Körbelin J, Harbaum L, Matuszcak C, Mienert J, Bokemeyer C, Böger RH, Kiefmann R, Klose H. The P2-receptor-mediated Ca2+ signalosome of the human pulmonary endothelium - implications for pulmonary arterial hypertension. Purinergic Signal. 2019;15:299–311; DOI:10.1007/s11302-019-09674-1.HennigsJKLüneburgNStageASchmitzMKörbelinJHarbaumLMatuszcakCMienertJBokemeyerCBögerRHKiefmannRKloseHThe P2-receptor-mediated Ca2+ signalosome of the human pulmonary endothelium - implications for pulmonary arterial hypertensionPurinergic Signal20191529931110.1007/s11302-019-09674-1673717031396838Open DOISearch in Google Scholar

Patel JJ, Bourne LE, Millán JL, Arnett TR, MacRae VE, Wheeler-Jones CPD, Orriss IR. Inhibition of vascular smooth muscle cell calcification by ATP analogues. Purinergic Signal. 2019;15:315–26; DOI:10.1007/s11302-019-09672-3.PatelJJBourneLEMillánJLArnettTRMacRaeVEWheeler-JonesCPDOrrissIRInhibition of vascular smooth muscle cell calcification by ATP analoguesPurinergic Signal2019153152610.1007/s11302-019-09672-3673716231338672Open DOISearch in Google Scholar

Avila-Smirnow D, Gueneau L, Batonnet-Pichon S, Delort F, Bécane HM, Claeys K, Beuvin M, Goudeau B, Jais JP, Nelson I, Richard P, Ben Yaou R, Romero NB, Wahbi K, Mathis S, Voit T, Furst D, van der Ven P, Gil R, Vicart P, Fardeau M, Bonne G, Behin A. Cardiac arrhythmia and late-onset muscle weakness caused by a myofibrillar myopathy with unusual histopathological features due to a novel missense mutation in FLNC. Rev Neurol (Paris). 2016;172:594–606; DOI:10.1016/j.neurol.2016.07.017.Avila-SmirnowDGueneauLBatonnet-PichonSDelortFBécaneHMClaeysKBeuvinMGoudeauBJaisJPNelsonIRichardPBen YaouRRomeroNBWahbiKMathisSVoitTFurstDvan der VenPGilRVicartPFardeauMBonneGBehinACardiac arrhythmia and late-onset muscle weakness caused by a myofibrillar myopathy with unusual histopathological features due to a novel missense mutation in FLNCRev Neurol (Paris)201617259460610.1016/j.neurol.2016.07.01727633507Open DOISearch in Google Scholar

eISSN:
2544-3577
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry