Cite

Wang P-H, Huang B-S, Horng H-C, Yeh C-C, Chen Y-J. Wound healing. J Chinese Med Assoc. 2018;81:94–101; DOI:10.1016/j.jcma.2017.11.002.WangP-HHuangB-SHorngH-CYehC-CChenY-JWound healingJ Chinese Med Assoc2018819410110.1016/j.jcma.2017.11.002Open DOISearch in Google Scholar

Üstündağ Okur N, Hökenek N, Okur ME, Ayla Ş, Yoltaş A, Siafaka PI, et al. An alternative approach to wound healing field; new composite films from natural polymers for mupirocin dermal delivery. Saudi Pharm J SPJ Off Publ Saudi Pharm Soc. 2019;27:738–52; DOI:10.1016/j. jsps.2019.04.010.Üstündağ OkurNHökenekNOkurMEAylaŞYoltaşASiafakaPIet alAn alternative approach to wound healing field; new composite films from natural polymers for mupirocin dermal deliverySaudi Pharm J SPJ Off Publ Saudi Pharm Soc2019277385210.1016/j.jsps.2019.04.010Open DOISearch in Google Scholar

Reinke JM, Sorg H. Wound Repair and Regeneration. Eur Surg Res. 2012;49:35–43; DOI:10.1159/000339613.ReinkeJMSorgHWound Repair and RegenerationEur Surg Res201249354310.1159/000339613Open DOISearch in Google Scholar

Khalid A, Khan R, Ul-Islam M, Khan T, Wahid F. Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds. Carbohydr Polym. 2017;164:214–21; DOI:10.1016/j.carbpol.2017.01.061.KhalidAKhanRUl-IslamMKhanTWahidFBacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn woundsCarbohydr Polym20171642142110.1016/j.carbpol.2017.01.061Open DOISearch in Google Scholar

Cambiaso-Daniel J, Gallagher JJ, Norbury WB, Finnerty CC, Culnan DM. Treatment of Infection in Burn Patients. Total Burn Care. 2018:93-113. e4; DOI:10.1016/B978-0-323-47661-4.00011-3.Cambiaso-DanielJGallagherJJNorburyWBFinnertyCCCulnanDMTreatment of Infection in Burn PatientsTotal Burn Care201893113e410.1016/B978-0-323-47661-4.00011-3Open DOISearch in Google Scholar

Zhao R, Liang H, Clarke E, Jackson C, Xue M. Inflammation in Chronic Wounds. Int J Mol Sci. 2016;17DOI:10.3390/ijms17122085.ZhaoRLiangHClarkeEJacksonCXueMInflammation in Chronic WoundsInt J Mol Sci20161710.3390/ijms17122085Open DOISearch in Google Scholar

Potempa M, Jonczyk P, Janerka M, Kucharzewski M, Krawczyk-Krupka A. Determinants and epidemiology of chronic wounds. Leczenie Ran. 2014;11:43–50; DOI:10.15374/LR2014007.PotempaMJonczykPJanerkaMKucharzewskiMKrawczyk-KrupkaADeterminants and epidemiology of chronic woundsLeczenie Ran201411435010.15374/LR2014007Open DOISearch in Google Scholar

You H-J, Han S-K. Cell therapy for wound healing. J Korean Med Sci. 2014;29:311–9; DOI:10.3346/jkms.2014.29.3.311.YouH-JHanS-KCell therapy for wound healingJ Korean Med Sci201429311910.3346/jkms.2014.29.3.311Open DOISearch in Google Scholar

Skórkowska-Telichowska K, Czemplik M, Kulma A, Szopa J. The local treatment and available dressings designed for chronic wounds. J Am Acad Dermatol. 2013;68:e117–26; DOI:10.1016/j.jaad.2011.06.028.Skórkowska-TelichowskaKCzemplikMKulmaASzopaJThe local treatment and available dressings designed for chronic woundsJ Am Acad Dermatol201368e1172610.1016/j.jaad.2011.06.028Open DOISearch in Google Scholar

Abu-Al-Basal MA. Healing potential of Rosmarinus officinalis L. on full-thickness excision cutaneous wounds in alloxan-induced-diabetic BALB/c mice. J Ethnopharmacol. 2010;131:443–50; DOI:10.1016/j. jep.2010.07.007.Abu-Al-BasalMA.Healing potential of Rosmarinus officinalis L. on full-thickness excision cutaneous wounds in alloxan-induced-diabetic BALB/c miceJ Ethnopharmacol20101314435010.1016/j.jep.2010.07.007Open DOISearch in Google Scholar

Otero-Viñas M, Falanga V. Mesenchymal Stem Cells in Chronic Wounds: The Spectrum from Basic to Advanced Therapy. Adv Wound Care. 2016;5:149–63; DOI:10.1089/wound.2015.0627.Otero-ViñasMFalangaVMesenchymal Stem Cells in Chronic Wounds: The Spectrum from Basic to Advanced TherapyAdv Wound Care201651496310.1089/wound.2015.0627Open DOISearch in Google Scholar

Cobelli NJ, Leong DJ, Sun HB. Exosomes: biology, therapeutic potential, and emerging role in musculoskeletal repair and regeneration. Ann NY Acad Sci. 2017;1410:57–67; DOI:10.1111/nyas.13469.CobelliNJLeongDJSunHBExosomes: biology, therapeutic potential, and emerging role in musculoskeletal repair and regenerationAnn NY Acad Sci20171410576710.1111/nyas.13469Open DOISearch in Google Scholar

Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987;262:9412–20.JohnstoneRMAdamMHammondJROrrLTurbideCVesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes)J Biol Chem198726294122010.1016/S0021-9258(18)48095-7Search in Google Scholar

H Rashed M, Bayraktar E, K Helal G, Abd-Ellah MF, Amero P, Chavez-Reyes A, et al. Exosomes: From Garbage Bins to Promising Therapeutic Targets. Int J Mol Sci. 2017;18:538; DOI:10.3390/ijms18030538.Rashed MHBayraktarEHelal GKAbd-EllahMFAmeroPChavez-ReyesAet alExosomes: From Garbage Bins to Promising Therapeutic TargetsInt J Mol Sci20171853810.3390/ijms18030538Open DOISearch in Google Scholar

Lai RC, Arslan F, Lee MM, Sze NSK, Choo A, Chen TS, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010;4:214–22; DOI:10.1016/j.scr.2009.12.003.LaiRCArslanFLeeMMSzeNSKChooAChenTSet alExosome secreted by MSC reduces myocardial ischemia/reperfusion injuryStem Cell Res201042142210.1016/j.scr.2009.12.003Open DOISearch in Google Scholar

Doeppner TR, Herz J, Görgens A, Schlechter J, Ludwig A-K, Radtke S, et al. Extracellular Vesicles Improve Post-Stroke Neuroregeneration and Prevent Postischemic Immunosuppression. Stem Cells Transl Med. 2015;4:1131–43; DOI:10.5966/sctm.2015-0078.DoeppnerTRHerzJGörgensASchlechterJLudwigA-KRadtkeSet alExtracellular Vesicles Improve Post-Stroke Neuroregeneration and Prevent Postischemic ImmunosuppressionStem Cells Transl Med2015411314310.5966/sctm.2015-0078Open DOISearch in Google Scholar

Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol. 2009;20:1053–67; DOI:10.1681/ ASN.2008070798.BrunoSGrangeCDeregibusMCCalogeroRASaviozziSCollinoFet alMesenchymal stem cell-derived microvesicles protect against acute tubular injuryJ Am Soc Nephrol20092010536710.1681/ASN.2008070798Open DOISearch in Google Scholar

Li T, Yan Y, Wang B, Qian H, Zhang X, Shen L, et al. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Alleviate Liver Fibrosis. Stem Cells Dev. 2013;22:845–54; DOI:10.1089/scd.2012.0395.LiTYanYWangBQianHZhangXShenLet alExosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Alleviate Liver FibrosisStem Cells Dev2013228455410.1089/scd.2012.0395Open DOISearch in Google Scholar

Lee J-K, Park S-R, Jung B-K, Jeon Y-K, Lee Y-S, Kim M-K, et al. Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One. 2013;8:e84256; DOI:10.1371/journal.pone.0084256.LeeJ-KParkS-RJungB-KJeonY-KLeeY-SKimM-Ket alExosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cellsPLoS One20138e8425610.1371/journal.pone.0084256Open DOISearch in Google Scholar

Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X, et al. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells. 2012;30:1556–64; DOI:10.1002/stem.1129.XinHLiYBullerBKatakowskiMZhangYWangXet alExosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowthStem Cells20123015566410.1002/stem.1129Open DOISearch in Google Scholar

Yang Y, Otte A, Hass R. Human mesenchymal stroma/stem cells exchange membrane proteins and alter functionality during interaction with different tumor cell lines. Stem Cells Dev. 2015;24:1205–22; DOI:10.1089/ scd.2014.0413.YangYOtteAHassRHuman mesenchymal stroma/stem cells exchange membrane proteins and alter functionality during interaction with different tumor cell linesStem Cells Dev20152412052210.1089/scd.2014.0413Open DOISearch in Google Scholar

Goodarzi P, Larijani B, Alavi-Moghadam S, Tayanloo-Beik A, Mohamadi-Jahani F, Ranjbaran N, et al. Mesenchymal Stem Cells-Derived Exosomes for Wound Regeneration. Adv. Exp. Med. Biol., vol. 1119, 2018, p. 119–31DOI:10.1007/5584_2018_251.GoodarziPLarijaniBAlavi-MoghadamSTayanloo-BeikAMohamadi-JahaniFRanjbaranNet alMesenchymal Stem Cells-Derived Exosomes for Wound RegenerationAdv. Exp. Med. Biolvol. 11192018p1193110.1007/5584_2018_251Open DOISearch in Google Scholar

Rani S, Ritter T. The Exosome - A Naturally Secreted Nanoparticle and its Application to Wound Healing. Adv Mater. 2016;28:5542–52; DOI:10.1002/adma.201504009.RaniSRitterTThe Exosome - A Naturally Secreted Nanoparticle and its Application to Wound HealingAdv Mater20162855425210.1002/adma.201504009Open DOISearch in Google Scholar

Sarko DK, McKinney CE. Exosomes: Origins and Therapeutic Potential for Neurodegenerative Disease. Front Neurosci. 2017;11:82; DOI:10.3389/fnins.2017.00082.SarkoDKMcKinneyCEExosomes: Origins and Therapeutic Potential for Neurodegenerative DiseaseFront Neurosci2017118210.3389/fnins.2017.00082Open DOISearch in Google Scholar

Xitong D, Xiaorong Z. Targeted therapeutic delivery using engineered exosomes and its applications in cardiovascular diseases. Gene. 2016;575:377–84; DOI:10.1016/j.gene.2015.08.067.XitongDXiaorongZTargeted therapeutic delivery using engineered exosomes and its applications in cardiovascular diseasesGene20165753778410.1016/j.gene.2015.08.067Open DOISearch in Google Scholar

Mak K, Manji A, Gallant-Behm C, Wiebe C, Hart DA, Larjava H, et al. Scarless healing of oral mucosa is characterized by faster resolution of inflammation and control of myofibroblast action compared to skin wounds in the red Duroc pig model. J Dermatol Sci. 2009;56:168–80; DOI:10.1016/j.jdermsci.2009.09.005.MakKManjiAGallant-BehmCWiebeCHartDALarjavaHet alScarless healing of oral mucosa is characterized by faster resolution of inflammation and control of myofibroblast action compared to skin wounds in the red Duroc pig modelJ Dermatol Sci2009561688010.1016/j.jdermsci.2009.09.005Open DOISearch in Google Scholar

Board-Davies E, Moses R, Sloan A, Stephens P, Davies LC. Oral Mucosal Lamina Propria-Progenitor Cells Exert Antibacterial Properties via the Secretion of Osteoprotegerin and Haptoglobin. Stem Cells Transl Med. 2015;4:1283–93; DOI:10.5966/sctm.2015-0043.Board-DaviesEMosesRSloanAStephensPDaviesLCOral Mucosal Lamina Propria-Progenitor Cells Exert Antibacterial Properties via the Secretion of Osteoprotegerin and HaptoglobinStem Cells Transl Med2015412839310.5966/sctm.2015-0043Open DOISearch in Google Scholar

Khurshid Z, Naseem M, Sheikh Z, Najeeb S, Shahab S, Zafar MS. Oral antimicrobial peptides: Types and role in the oral cavity. Saudi Pharm J. 2016;24:515–24; DOI:10.1016/j.jsps.2015.02.015.KhurshidZNaseemMSheikhZNajeebSShahabSZafarMSOral antimicrobial peptides: Types and role in the oral cavitySaudi Pharm J2016245152410.1016/j.jsps.2015.02.015Open DOISearch in Google Scholar

Hans M, Madaan Hans V. Epithelial Antimicrobial Peptides: Guardian of the Oral Cavity. Int J Pept. 2014;2014:1–13; DOI:10.1155/2014/370297.HansMMadaan HansVEpithelial Antimicrobial Peptides: Guardian of the Oral CavityInt J Pept2014201411310.1155/2014/370297Open DOISearch in Google Scholar

Morton LM, Phillips TJ. Wound healing and treating wounds. J Am Acad Dermatol. 2016;74:589–605; DOI:10.1016/j.jaad.2015.08.068.MortonLMPhillipsTJWound healing and treating woundsJ Am Acad Dermatol20167458960510.1016/j.jaad.2015.08.068Open DOISearch in Google Scholar

Leavitt T, Hu MS, Marshall CD, Barnes LA, Lorenz HP, Longaker MT. Scarless wound healing: finding the right cells and signals. Cell Tissue Res. 2016;365:483–93; DOI:10.1007/s00441-016-2424-8.LeavittTHuMSMarshallCDBarnesLALorenzHPLongakerMTScarless wound healing: finding the right cells and signalsCell Tissue Res20163654839310.1007/s00441-016-2424-8Open DOISearch in Google Scholar

Cheng J, Nonaka T, Wong DTW. Salivary Exosomes as Nanocarriers for Cancer Biomarker Delivery. Mater (Basel, Switzerland). 2019;12DOI:10.3390/ma12040654.ChengJNonakaTWongDTWSalivary Exosomes as Nanocarriers for Cancer Biomarker DeliveryMater (Basel, Switzerland)20191210.3390/ma12040654Open DOISearch in Google Scholar

Gupta A. A Review of the Use of Maggots in Wound Therapy. Ann Plast Surg. 2008;60:224–7; DOI:10.1097/SAP.0b013e318053eb5e.GuptaAA Review of the Use of Maggots in Wound TherapyAnn Plast Surg200860224710.1097/SAP.0b013e318053eb5eOpen DOISearch in Google Scholar

Choudhary V, Choudhary M, Pandey S, Chauhan VD, Hasnani JJ. Maggot debridement therapy as primary tool to treat chronic wound of animals. Vet World. 2016;9:403–9; DOI:10.14202/vetworld.2016.403-409.ChoudharyVChoudharyMPandeySChauhanVDHasnaniJJMaggot debridement therapy as primary tool to treat chronic wound of animalsVet World20169403910.14202/vetworld.2016.403-409Open DOISearch in Google Scholar

Dissemond J, Fitz G, Goos M. Konditionierung chronischer Wunden mittels Ultraschall. Der Hautarzt. 2003;54:524–9; DOI:10.1007/s00105-003-0520-7.DissemondJFitzGGoosMKonditionierung chronischer Wunden mittels UltraschallDer Hautarzt200354524910.1007/s00105-003-0520-7Open DOISearch in Google Scholar

Wong WL, Wong She R, Mathy JA. Rhinophyma treatment using Versajet hydrosurgery. ANZ J Surg. 2017;87:E331–2; DOI:10.1111/ans.13189.WongWLWongShe RMathyJARhinophyma treatment using Versajet hydrosurgeryANZ J Surg201787E331210.1111/ans.13189Open DOISearch in Google Scholar

Cobelli NJ, Leong DJ, Sun HB. Exosomes: biology, therapeutic potential, and emerging role in musculoskeletal repair and regeneration. Ann N Y Acad Sci. 2017;1410:57–67; DOI:10.1111/nyas.13469.CobelliNJLeongDJSunHBExosomes: biology, therapeutic potential, and emerging role in musculoskeletal repair and regenerationAnn N Y Acad Sci20171410576710.1111/nyas.13469Open DOISearch in Google Scholar

Sullivan TP, Eaglstein WH, Davis SC, Mertz P. The pig as a model for human wound healing. Wound Repair Regen. 2001;9:66–76.SullivanTPEaglsteinWHDavisSCMertzPThe pig as a model for human wound healingWound Repair Regen20019667610.1046/j.1524-475x.2001.00066.xSearch in Google Scholar

eISSN:
2544-3577
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry