Cite

Fong CY, Chak LL, Biswas A, Tan JH, Gauthaman K, Chan WK, Bongso A. Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev. 2011;7:1–16; DOI:10.1007/s12015-010-9166-x.FongCYChakLLBiswasATanJHGauthamanKChanWKBongsoAHuman Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cellsStem Cell Rev2011711610.1007/s12015-010-9166-xOpen DOISearch in Google Scholar

Can A, Karahuseyinoglu S. Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells. 2007;25:2886–95; DOI:10.1634/stemcells.2007-0417.CanAKarahuseyinogluSConcise review: human umbilical cord stroma with regard to the source of fetus-derived stem cellsStem Cells20072528869510.1634/stemcells.2007-0417Open DOISearch in Google Scholar

Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet. 2014;383:69–82; DOI:10.1016/S0140-6736(13)60591-7.AtkinsonMAEisenbarthGSMichelsAWType 1 diabetesLancet2014383698210.1016/S0140-6736(13)60591-7Open DOISearch in Google Scholar

Zhao Y, Jiang Z, Zhao T, Ye M, Hu C, Yin Z, Li H, Zhang Y, Diao Y, Li Y, Chen Y, Sun X, Fisk MB, Skidgel R, Holterman M, Prabhakar B, Mazzone T. Reversal of type 1 diabetes via islet β cell regeneration following immune modulation by cord blood-derived multipotent stem cells. BMC Med. 2012;10:3;DOI:10.1186/1741-7015-10-3.ZhaoYJiangZZhaoTYeMHuCYinZLiHZhangYDiaoYLiYChenYSunXFiskMBSkidgelRHoltermanMPrabhakarBMazzoneTReversal of type 1 diabetes via islet β cell regeneration following immune modulation by cord blood-derived multipotent stem cellsBMC Med201210310.1186/1741-7015-10-3332234322233865Open DOISearch in Google Scholar

Zhao Y, Lin B, Dingeldein M, Guo C, Hwang D, Holterman MJ. New type of human blood stem cell: a double-edged sword for the treatment of type 1 diabetes. Transl Res. 2010;155:211–6; DOI:10.1016/j.trsl.2010.01.003.ZhaoYLinBDingeldeinMGuoCHwangDHoltermanMJNew type of human blood stem cell: a double-edged sword for the treatment of type 1 diabetesTransl Res2010155211610.1016/j.trsl.2010.01.00320403575Open DOISearch in Google Scholar

Kang SY, Park DE, Song WJ, Bae BR, Lee JW, Sohn KH, Lee HS, Kang HR, Park HW, Chang YS, Choi SJ, Oh WI, Min KU, Cho SH. Immunologic regulatory effects of human umbilical cord blood-derived mesenchymal stem cells in a murine ovalbumin asthma model. Clin Exp Allergy. 2017;47:937–45; DOI:10.1111/cea.12920.KangSYParkDESongWJBaeBRLeeJWSohnKHLeeHSKangHRParkHWChangYSChoiSJOhWIMinKUChoSHImmunologic regulatory effects of human umbilical cord blood-derived mesenchymal stem cells in a murine ovalbumin asthma modelClin Exp Allergy2017479374510.1111/cea.1292028294434Open DOISearch in Google Scholar

Hu J, Yu X, Wang Z, Wang F, Wang L, Gao H, Chen Y, Zhao W, Jia Z, Yan S, Wang Y. Long term effects of the implantation of Wharton’s jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus. Endocr J. 2013;60:347–57;DOI:10.1507/endocrj. ej12-0343.HuJYuXWangZWangFWangLGaoHChenYZhaoWJiaZYanSWangYLong term effects of the implantation of Wharton’s jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitusEndocr J2013603475710.1507/endocrj.ej12-034323154532Open DOISearch in Google Scholar

Cai J, Wu Z, Xu X, Liao L, Chen J, Huang L, Wu W, Luo F, Wu C, Pugliese A, Pileggi A, Ricordi C, Tan J. Umbilical Cord Mesenchymal Stromal Cell With Autologous Bone Marrow Cell Transplantation in Established Type 1 Diabetes: A Pilot Randomized Controlled Open-Label Clinical Study to Assess Safety and Impact on Insulin Secretion. Diabetes Care. 2016;39:149–57; DOI:10.2337/dc15-0171.CaiJWuZXuXLiaoLChenJHuangLWuWLuoFWuCPuglieseAPileggiARicordiCTanJUmbilical Cord Mesenchymal Stromal Cell With Autologous Bone Marrow Cell Transplantation in Established Type 1 Diabetes: A Pilot Randomized Controlled Open-Label Clinical Study to Assess Safety and Impact on Insulin SecretionDiabetes Care2016391495710.2337/dc15-017126628416Open DOISearch in Google Scholar

Dave SD, Patel CN, Patel JV, Thakkar UG. In vitro Generated Mesenchymal Stem Cells: Suitable Tools to Target Insulin Dependent Diabetes Mellitus? Curr Stem Cell Res Ther. 2017;12:288–99; DOI:10.2174/157488 8X12666161121112553.DaveSDPatelCNPatelJVThakkarUGIn vitro Generated Mesenchymal Stem Cells: Suitable Tools to Target Insulin Dependent Diabetes Mellitus?Curr Stem Cell Res Ther2017122889910.2174/1574888X1266616112111255327903221Open DOISearch in Google Scholar

Prabakar KR, Domínguez-Bendala J, Molano RD, Pileggi A, Villate S, Ricordi C, Inverardi L. Generation of glucose-responsive, insulin-producing cells from human umbilical cord blood-derived mesenchymal stem cells. Cell Transplant. 2012;21:1321–39; DOI:10.3727/096368911X612530.PrabakarKRDomínguez-BendalaJMolanoRDPileggiAVillateSRicordiCInverardiLGeneration of glucose-responsive, insulin-producing cells from human umbilical cord blood-derived mesenchymal stem cellsCell Transplant20122113213910.3727/096368911X61253022195604Open DOISearch in Google Scholar

Peired AJ, Sisti A, Romagnani P. Mesenchymal Stem Cell-Based Therapy for Kidney Disease: A Review of Clinical Evidence. Stem Cells Int. 2016;2016:4798639; DOI:10.1155/2016/4798639.PeiredAJSistiARomagnaniPMesenchymal Stem Cell-Based Therapy for Kidney Disease: A Review of Clinical EvidenceStem Cells Int20162016479863910.1155/2016/4798639504601627721835Open DOISearch in Google Scholar

Kilpinen L, Impola U, Sankkila L, Ritamo I, Aatonen M, Kilpinen S, Tuimala J, Valmu L, Levijoki J, Finckenberg P, Siljander P, Kankuri E, Mervaala E, Laitinen S. Extracellular membrane vesicles from umbilical cord blood-derived MSC protect against ischemic acute kidney injury, a feature that is lost after inflammatory conditioning. J Extracell Vesicles. 2013;2; DOI:10.3402/jev.v2i0.21927.KilpinenLImpolaUSankkilaLRitamoIAatonenMKilpinenSTuimalaJValmuLLevijokiJFinckenbergPSiljanderPKankuriEMervaalaELaitinenSExtracellular membrane vesicles from umbilical cord blood-derived MSC protect against ischemic acute kidney injury, a feature that is lost after inflammatory conditioningJ Extracell Vesicles2013210.3402/jev.v2i0.21927386033424349659Open DOISearch in Google Scholar

Rahyussalim AJ, Saleh I, Kurniawati T, Lutfi APWY. Improvement of renal function after human umbilical cord mesenchymal stem cell treatment on chronic renal failure and thoracic spinal cord entrapment: a case report. J Med Case Rep. 2017;11; DOI:10.1186/s13256-017-1489-7.RahyussalimAJSalehIKurniawatiTLutfiAPWYImprovement of renal function after human umbilical cord mesenchymal stem cell treatment on chronic renal failure and thoracic spinal cord entrapment: a case reportJ Med Case Rep20171110.1186/s13256-017-1489-7570790229187247Open DOISearch in Google Scholar

Ponzio M, Tacchino A, Vaccaro C, Brichetto G, Battaglia MA, Messmer Uccelli M. Disparity between perceived needs and service provision: a cross-sectional study of Italians with multiple sclerosis. Neurol Sci. 2019;40:1137–44; DOI:10.1007/s10072-019-03780-z.PonzioMTacchinoAVaccaroCBrichettoGBattagliaMAMessmer UccelliMDisparity between perceived needs and service provision: a cross-sectional study of Italians with multiple sclerosisNeurol Sci20194011374410.1007/s10072-019-03780-z30810827Open DOISearch in Google Scholar

Katz Sand I. Classification, diagnosis, and differential diagnosis of multiple sclerosis. Curr Opin Neurol. 2015;28:193–205; DOI:10.1097/WCO.0000000000000206.Katz SandIClassification, diagnosis, and differential diagnosis of multiple sclerosisCurr Opin Neurol20152819320510.1097/WCO.000000000000020625887774Open DOISearch in Google Scholar

Martino G, Franklin RJM, Baron Van Evercooren A, Kerr DA. Stem Cells in Multiple Sclerosis (STEMS) Consensus Group. Stem cell transplantation in multiple sclerosis: current status and future prospects. Nat Rev Neurol. 2010;6:247–55; DOI:10.1038/nrneurol.2010.35.MartinoGFranklinRJMBaron Van EvercoorenAKerrDAStem Cells in Multiple Sclerosis (STEMS) Consensus Group. Stem cell transplantation in multiple sclerosis: current status and future prospectsNat Rev Neurol201062475510.1038/nrneurol.2010.3520404843Open DOISearch in Google Scholar

Wang Q, Yang Q, Wang Z, Tong H, Ma L, Zhang Y, Shan F, Meng Y, Yuan Z. Comparative analysis of human mesenchymal stem cells from fetal-bone marrow, adipose tissue, and Warton’s jelly as sources of cell immunomodulatory therapy. Hum Vaccin Immunother. 2016;12:85–96; DOI:10. 1080/21645515.2015.1030549.WangQYangQWangZTongHMaLZhangYShanFMengYYuanZComparative analysis of human mesenchymal stem cells from fetal-bone marrow, adipose tissue, and Warton’s jelly as sources of cell immunomodulatory therapyHum Vaccin Immunother201612859610.1080/21645515.2015.1030549496274926186552Open DOISearch in Google Scholar

Rossi B, Angiari S, Zenaro E, Budui SL, Constantin G. Vascular inflammation in central nervous system diseases: adhesion receptors controlling leukocyte-endothelial interactions. J Leukoc Biol. 2011;89:539–56; DOI:10.1189/jlb.0710432.RossiBAngiariSZenaroEBuduiSLConstantinGVascular inflammation in central nervous system diseases: adhesion receptors controlling leukocyte-endothelial interactionsJ Leukoc Biol2011895395610.1189/jlb.071043221169520Open DOISearch in Google Scholar

Donders R, Bogie JFJ, Ravanidis S, Gervois P, Vanheusden M, Marée R, Schrynemackers M, Smeets HJM, Pinxteren J, Gijbels K, Walbers S, Mays RW, Deans R, Van Den Bosch L, Stinissen P, Lambrichts I, Gyselaers W, Hellings N. Human Wharton’s Jelly-Derived Stem Cells Display a Distinct Immunomodulatory and Proregenerative Transcriptional Signature Compared to Bone Marrow-Derived Stem Cells. Stem Cells Dev. 2018;27:65–84; DOI:10.1089/scd.2017.0029.DondersRBogieJFJRavanidisSGervoisPVanheusdenMMaréeRSchrynemackersMSmeetsHJMPinxterenJGijbelsKWalbersSMaysRWDeansRVanDen Bosch LStinissenPLambrichtsIGyselaersWHellingsNHuman Wharton’s Jelly-Derived Stem Cells Display a Distinct Immunomodulatory and Proregenerative Transcriptional Signature Compared to Bone Marrow-Derived Stem CellsStem Cells Dev201827658410.1089/scd.2017.002929267140Open DOISearch in Google Scholar

Hou ZL, Liu Y, Mao XH, Wei CY, Meng MY, Liu YH, Zhuyun Yang Z, Zhu H, Short M, Bernard C, Xiao ZC. Transplantation of umbilical cord and bone marrow-derived mesenchymal stem cells in a patient with relapsing-remitting multiple sclerosis. Cell Adh Migr. 2013;7:404–7; DOI:10.4161/cam.26941.HouZLLiuYMaoXHWeiCYMengMYLiuYHZhuyun YangZZhuHShortMBernardCXiaoZCTransplantation of umbilical cord and bone marrow-derived mesenchymal stem cells in a patient with relapsing-remitting multiple sclerosisCell Adh Migr20137404710.4161/cam.26941390368324192520Open DOISearch in Google Scholar

Mansoor SR, Zabihi E, Ghasemi-Kasman M. The potential use of mesenchymal stem cells for the treatment of multiple sclerosis. Life Sciences. 2019;235:116830; DOI:10.1016/j.lfs.2019.116830.MansoorSRZabihiEGhasemi-KasmanMThe potential use of mesenchymal stem cells for the treatment of multiple sclerosisLife Sciences201923511683010.1016/j.lfs.2019.11683031487529Open DOISearch in Google Scholar

Akimoto K, Kimura K, Nagano M, Takano S, To’a Salazar G, Yamashita T, Ohneda O. Umbilical cord blood-derived mesenchymal stem cells inhibit, but adipose tissue-derived mesenchymal stem cells promote, glioblastoma multiforme proliferation. Stem Cells Dev. 2013;22:1370–86; DOI:10.1089/scd.2012.0486.AkimotoKKimuraKNaganoMTakanoSTo’aSalazar GYamashitaTOhnedaOUmbilical cord blood-derived mesenchymal stem cells inhibit, but adipose tissue-derived mesenchymal stem cells promote, glioblastoma multiforme proliferationStem Cells Dev20132213708610.1089/scd.2012.0486369692823231075Open DOISearch in Google Scholar

Bongso A, Fong CY. The therapeutic potential, challenges and future clinical directions of stem cells from the Wharton’s jelly of the human umbilical cord. Stem Cell Rev. 2013;9:226–40; DOI:10.1007/s12015-012-9418-z.BongsoAFongCYThe therapeutic potential, challenges and future clinical directions of stem cells from the Wharton’s jelly of the human umbilical cordStem Cell Rev201392264010.1007/s12015-012-9418-z23233233Open DOISearch in Google Scholar

Search of: umbilical cord stem cells | Interventional Studies - List Results - ClinicalTrials.gov n.d. https://clinicaltrials.gov/ct2/results?ter-m=umbilical+cord+stem+cells&Search=Apply&age_v=&gndr=&-type=Intr&rslt= (accessed September 5, 2019).Search of: umbilical cord stem cells | Interventional Studies - List Results -ClinicalTrials.govn.dhttps://clinicaltrials.gov/ct2/results?ter-m=umbilical+cord+stem+cells&Search=Apply&age_v=&gndr=&-type=Intr&rslt=accessed September 52019Search in Google Scholar

eISSN:
2544-3577
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry