Open Access

The dark side of the breastfeeding: In the light of endocrine disruptors


Cite

1. Botton J, Kadawathagedara M, de Lauzon-Guillain B. Endocrine disrupting chemicals and growth of children. Ann Endocrinol (Paris). 2017;78(2):108-11; DOI: 10.1016/j.ando.2017.04.009.10.1016/j.ando.2017.04.00928483365Search in Google Scholar

2. Schug TT, Janesick A, Blumberg B, Heindel JJ. Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol. 2011;127(3-5):204-15; DOI: 10.1016/j.jsbmb.2011.08.007.10.1016/j.jsbmb.2011.08.007322078321899826Search in Google Scholar

3. Miller MD, Marty MA, Arcus A, Brown J, Morry D, Sandy M. Differences between children and adults: implications for risk assessment at California EPA. Int J Toxicol. 2002;21(5):403-18; DOI: 10.1080/10915810290096630.10.1080/1091581029009663012396687Search in Google Scholar

4. Nagel SC, Bromfield JJ. Bisphenol a: a model endocrine disrupting chemical with a new potential mechanism of action. Endocrinology. 2013;154(6):1962-4; DOI: 10.1210/en.2013-1370.10.1210/en.2013-1370374048723687111Search in Google Scholar

5. Rochester JR, Bolden AL. Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes. Environ Health Perspect. 2015;123(7):643-50; DOI: 10.1289/ehp.1408989.10.1289/ehp.1408989449227025775505Search in Google Scholar

6. Liao C, Kannan K. Concentrations and profiles of bisphenol A and other bisphenol analogues in foodstuffs from the United States and their implications for human exposure. J Agric Food Chem. 2013;61(19):4655-62; DOI: 10.1021/jf400445n.10.1021/jf400445n23614805Search in Google Scholar

7. Liao C, Liu F, Guo Y, Moon H-B, Nakata H, Wu Q, Kannan K. Occurrence of Eight Bisphenol Analogues in Indoor Dust from the United States and Several Asian Countries: Implications for Human Exposure. Environmental Science & Technology. 2012;46(16):9138-45; DOI: 10.1021/es302004w.10.1021/es302004w22784190Search in Google Scholar

8. Mendonca K, Hauser R, Calafat AM, Arbuckle TE, Duty SM. Bisphenol A concentrations in maternal breast milk and infant urine. Int Arch Occup Environ Health. 2014;87(1):13-20; DOI: 10.1007/s00420-012-0834-9.10.1007/s00420-012-0834-9438187723212895Search in Google Scholar

9. Crisp TM, Clegg ED, Cooper RL, Wood WP, Anderson DG, Baetcke KP, Hoffmann JL, Morrow MS, Rodier DJ, Schaeffer JE, Touart LW, Zeeman MG, Patel YM. Environmental endocrine disruption: an effects assessment and analysis. Environ Health Perspect. 1998;106 Suppl 1:11-56; DOI: 10.1289/ehp.98106s111.10.1289/ehp.98106s11115332919539004Search in Google Scholar

10. McLachlan JA. Synergistic effect of environmental estrogens: report withdrawn. Science. 1997;277(5325):462-3.10.1126/science.277.5325.459d9254413Search in Google Scholar

11. J. Geyer H, Rimkus G, Scheunert I, Kaune A, Schramm K-W, Kettrup A, Zeeman M, C. G. Muir D, Hansen L, Mackay D. Bioaccumulation and Occurrence of Endocrine-Disrupting Chemicals (EDCs), Persistent Organic Pollutants (POPs), and Other Organic Compounds in Fish and Other Organisms Including Humans. 22007:1-166.10.1007/10503050_1Search in Google Scholar

12. Street ME, Angelini S, Bernasconi S, Burgio E, Cassio A, Catellani C, Cirillo F, Deodati A, Fabbrizi E, Fanos V, Gargano G, Grossi E, Iughetti L, Lazzeroni P, Mantovani A, Migliore L, Palanza P, Panzica G, Papini AM, Parmigiani S, Predieri B, Sartori C, Tridenti G, Amarri S. Current Knowledge on Endocrine Disrupting Chemicals (EDCs) from Animal Biology to Humans, from Pregnancy to Adulthood: Highlights from a National Italian Meeting. Int J Mol Sci. 2018;19(6); DOI: 10.3390/ijms19061647.10.3390/ijms19061647Search in Google Scholar

13. Landrigan CP, Srivastava R, Muret-Wagstaff S, Soumerai SB, Ross-Degnan D, Graef JW, Homer CJ, Goldmann DA. Impact of a health maintenance organization hospitalist system in academic pediatrics. Pediatrics. 2002;110(4):720-8; DOI: 10.1542/peds.110.4.720.10.1542/peds.110.4.720Search in Google Scholar

14. LaKind JS, Amina Wilkins A, Berlin CM, Jr. Environmental chemicals in human milk: a review of levels, infant exposures and health, and guidance for future research. Toxicol Appl Pharmacol. 2004;198(2):184-208; DOI: 10.1016/j.taap.2003.08.021.10.1016/j.taap.2003.08.021Search in Google Scholar

15. Breastfeeding and the use of human milk. American Academy of Pediatrics. Work Group on Breastfeeding. Pediatrics. 1997;100(6):1035-9; DOI: 10.1542/peds.100.6.1035.10.1542/peds.100.6.1035Search in Google Scholar

16. Dieterich CM, Felice JP, O’Sullivan E, Rasmussen KM. Breastfeeding and health outcomes for the mother-infant dyad. Pediatr Clin North Am. 2013;60(1):31-48; DOI: 10.1016/j.pcl.2012.09.010.10.1016/j.pcl.2012.09.010Search in Google Scholar

17. Laug EP, Kunze FM, Prickett CS. Occurrence of DDT in human fat and milk. AMA Arch Ind Hyg Occup Med. 1951;3(3):245-6.Search in Google Scholar

18. Landrigan PJ, Goldman LR. Children’s vulnerability to toxic chemicals: a challenge and opportunity to strengthen health and environmental policy. Health Aff (Millwood). 2011;30(5):842-50; DOI: 10.1377/hlthaff.2011.0151.10.1377/hlthaff.2011.0151Search in Google Scholar

19. Massart F, Gherarducci G, Marchi B, Saggese G. Chemical Biomarkers of Human Breast Milk Pollution. Biomark Insights. 2008;3:159-69.10.4137/BMI.S564Search in Google Scholar

20. Ito S, Alcorn J. Xenobiotic transporter expression and function in the human mammary gland. Adv Drug Deliv Rev. 2003;55(5):653-65.10.1016/S0169-409X(03)00031-0Search in Google Scholar

21. McManaman JL, Neville MC. Mammary physiology and milk secretion. Adv Drug Deliv Rev. 2003;55(5):629-41.10.1016/S0169-409X(03)00033-4Search in Google Scholar

22. Gudi SK, K B, Kumar P. EXCRETION OF DRUGS THROUGH BREAST MILK2013. 116-24 p.Search in Google Scholar

23. Tateoka Y. Bisphenol A Concentration in Breast Milk following Consumption of a Canned Coffee Drink. J Hum Lact. 2015;31(3):474-8; DOI: 10.1177/0890334414563732.10.1177/089033441456373225518989Search in Google Scholar

24. McNamara PJ, Abbassi M. Neonatal exposure to drugs in breast milk. Pharm Res. 2004;21(4):555-66.10.1023/B:PHAM.0000022401.14710.c5Search in Google Scholar

25. Schanker LS. Passage of drugs across body membranes. Pharmacol Rev. 1962;14:501-30.Search in Google Scholar

26. Mercogliano R, Santonicola S. Investigation on bisphenol A levels in human milk and dairy supply chain: A review. Food Chem Toxicol. 2018;114:98-107; DOI: 10.1016/j.fct.2018.02.021.10.1016/j.fct.2018.02.02129448092Search in Google Scholar

27. Tsakiris IN, Goumenou M, Tzatzarakis MN, Alegakis AK, Tsitsimpikou C, Ozcagli E, Vynias D, Tsatsakis AM. Risk assessment for children exposed to DDT residues in various milk types from the Greek market. Food Chem Toxicol. 2015;75:156-65; DOI: 10.1016/j.fct.2014.11.012.10.1016/j.fct.2014.11.01225449197Search in Google Scholar

28. Tsakiris IN, Kokkinakis E, Dumanov JM, Tzatzarakis MN, Flouris AD, Vlachou M, Tsatsakis AM. Comparative evaluation of xenobiotics in human and dietary milk: persistent organic pollutants and mycotoxins. Cell Mol Biol (Noisy-le-grand). 2013;59(1):58-66.Search in Google Scholar

29. Rogan WJ, Ragan NB. Evidence of effects of environmental chemicals on the endocrine system in children. Pediatrics. 2003;112(1 Pt 2):247-52.10.1542/peds.112.S1.247Search in Google Scholar

30. Organization WH. Joint FAO/WHO expert meeting to review toxicological and health aspects of bisphenol A: final report, including report of stakeholder meeting on bisphenol A, 1-5 November 2010, Ottawa, Canada. 2011.Search in Google Scholar

31. Volkel W, Colnot T, Csanady GA, Filser JG, Dekant W. Metabolism and kinetics of bisphenol a in humans at low doses following oral administration. Chem Res Toxicol. 2002;15(10):1281-7.10.1021/tx025548t12387626Search in Google Scholar

32. Domoradzki JY, Thornton CM, Pottenger LH, Hansen SC, Card TL, Markham DA, Dryzga MD, Shiotsuka RN, Waechter JM, Jr. Age and dose dependency of the pharmacokinetics and metabolism of bisphenol A in neonatal sprague-dawley rats following oral administration. Toxicol Sci. 2004;77(2):230-42; DOI: 10.1093/toxsci/kfh054.10.1093/toxsci/kfh05414691203Search in Google Scholar

33. Mielke H, Gundert-Remy U. Bisphenol A levels in blood depend on age and exposure. Toxicol Lett. 2009;190(1):32-40; DOI: 10.1016/j.toxlet.2009.06.861.10.1016/j.toxlet.2009.06.86119560527Search in Google Scholar

34. Fabrega F, Nadal M, Schuhmacher M, Domingo JL, Kumar V. Influence of the uncertainty in the validation of PBPK models: A case-study for PFOS and PFOA. Regul Toxicol Pharmacol. 2016;77:230-9; DOI: 10.1016/j.yrtph.2016.03.009.10.1016/j.yrtph.2016.03.00926993749Search in Google Scholar

35. Sharma RP, Schuhmacher M, Kumar V. The development of a pregnancy PBPK Model for Bisphenol A and its evaluation with the available biomonitoring data. Sci Total Environ. 2018;624:55-68; DOI: 10.1016/j.scitotenv.2017.12.023.10.1016/j.scitotenv.2017.12.02329247905Search in Google Scholar

36. Teeguarden JG, Waechter JM, Jr., Clewell HJ, 3rd, Covington TR, Barton HA. Evaluation of oral and intravenous route pharmacokinetics, plasma protein binding, and uterine tissue dose metrics of bisphenol A: a physiologically based pharmacokinetic approach. Toxicol Sci. 2005;85(2):823-38; DOI: 10.1093/toxsci/kfi135.10.1093/toxsci/kfi13515746009Search in Google Scholar

37. Edginton AN, Ritter L. Predicting plasma concentrations of bisphenol A in children younger than 2 years of age after typical feeding schedules, using a physiologically based toxicokinetic model. Environ Health Perspect. 2009;117(4):645-52; DOI: 10.1289/ehp.0800073.10.1289/ehp.0800073267961119440506Search in Google Scholar

38. Migeot V, Dupuis A, Cariot A, Albouy-Llaty M, Pierre F, Rabouan S. Bisphenol a and its chlorinated derivatives in human colostrum. Environ Sci Technol. 2013;47(23):13791-7; DOI: 10.1021/es403071a.10.1021/es403071a24229370Search in Google Scholar

39. Cao X-L, Popovic S, Arbuckle TE, Fraser WD. Determination of free and total bisphenol A in human milk samples from Canadian women using a sensitive and selective GC-MS method. Food Additives & Contaminants: Part A. 2015;32(1):120-5; DOI: 10.1080/19440049.2014.980855.10.1080/19440049.2014.98085525421274Search in Google Scholar

40. Mandrup K, Boberg J, Isling LK, Christiansen S, Hass U. Low-dose effects of bisphenol A on mammary gland development in rats. Andrology. 2016;4(4):673-83; DOI: 10.1111/andr.12193.10.1111/andr.1219327088260Search in Google Scholar

41. Durando M, Kass L, Piva J, Sonnenschein C, Soto AM, Luque EH, Munoz-de-Toro M. Prenatal bisphenol A exposure induces preneoplastic lesions in the mammary gland in Wistar rats. Environ Health Perspect. 2007;115(1):80-6; DOI: 10.1289/ehp.9282.10.1289/ehp.9282179783817366824Search in Google Scholar

42. Acevedo N, Davis B, Schaeberle CM, Sonnenschein C, Soto AM. Perinatally administered bisphenol a as a potential mammary gland carcinogen in rats. Environ Health Perspect. 2013;121(9):1040-6; DOI: 10.1289/ehp.1306734.10.1289/ehp.1306734376409123876597Search in Google Scholar

43. Verner MA, Charbonneau M, Lopez-Carrillo L, Haddad S. Physiologically based pharmacokinetic modeling of persistent organic pollutants for lifetime exposure assessment: a new tool in breast cancer epidemiologic studies. Environ Health Perspect. 2008;116(7):886-92; DOI: 10.1289/ehp.10917.10.1289/ehp.10917245315618629310Search in Google Scholar

44. Yang M, Ryu JH, Jeon R, Kang D, Yoo KY. Effects of bisphenol A on breast cancer and its risk factors. Arch Toxicol. 2009;83(3):281-5; DOI: 10.1007/s00204-008-0364-0.10.1007/s00204-008-0364-018843480Search in Google Scholar

45. Kass L, Altamirano GA, Bosquiazzo VL, Luque EH, Munoz-de-Toro M. Perinatal exposure to xenoestrogens impairs mammary gland differentiation and modifies milk composition in Wistar rats. Reprod Toxicol. 2012;33(3):390-400; DOI: 10.1016/j.reprotox.2012.02.002.10.1016/j.reprotox.2012.02.00222349186Search in Google Scholar

46. Paulose T, Speroni L, Sonnenschein C, Soto AM. Estrogens in the wrong place at the wrong time: Fetal BPA exposure and mammary cancer. Reprod Toxicol. 2015;54:58-65; DOI: 10.1016/j.reprotox.2014.09.012.10.1016/j.reprotox.2014.09.012437913725277313Search in Google Scholar

47. Skledar DG, Schmidt J, Fic A, Klopcic I, Trontelj J, Dolenc MS, Finel M, Masic LP. Influence of metabolism on endocrine activities of bisphenol S. Chemosphere. 2016;157:152-9; DOI: 10.1016/j.chemosphere.2016.05.027.10.1016/j.chemosphere.2016.05.02727213244Search in Google Scholar

48. Deceuninck Y, Bichon E, Marchand P, Boquien CY, Legrand A, Boscher C, Antignac JP, Le Bizec B. Determination of bisphenol A and related substitutes/analogues in human breast milk using gas chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2015;407(9):2485-97; DOI: 10.1007/s00216-015-8469-9.10.1007/s00216-015-8469-925627788Search in Google Scholar

49. Dualde P, Pardo O, S FF, Pastor A, Yusa V. Determination of four parabens and bisphenols A, F and S in human breast milk using QuEChERS and liquid chromatography coupled to mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2019;1114-1115:154-66; DOI: 10.1016/j.jchromb.2019.03.004.10.1016/j.jchromb.2019.03.00430890302Search in Google Scholar

50. Niu Y, Wang B, Zhao Y, Zhang J, Shao B. Highly Sensitive and High-Throughput Method for the Analysis of Bisphenol Analogues and Their Halogenated Derivatives in Breast Milk. J Agric Food Chem. 2017;65(48):10452-63; DOI: 10.1021/acs.jafc.7b04394.10.1021/acs.jafc.7b0439429129061Search in Google Scholar

51. Tuzimski T, Pieniazek D, Buszewicz G, Teresinski G. QuEChERS-Based Extraction Procedures for the Analysis of Bisphenols S and A in Breast Milk Samples by LC-QqQ-MS. J AOAC Int. 2018; DOI: 10.5740/jaoacint.18-0297.10.5740/jaoacint.18-029730333076Search in Google Scholar

52. Rubin BS, Murray MK, Damassa DA, King JC, Soto AM. Perinatal exposure to low doses of bisphenol A affects body weight, patterns of estrous cyclicity, and plasma LH levels. Environ Health Perspect. 2001;109(7):675-80; DOI: 10.1289/ehp.01109675.10.1289/ehp.01109675124037011485865Search in Google Scholar

53. Ivry Del Moral L, Le Corre L, Poirier H, Niot I, Truntzer T, Merlin JF, Rouimi P, Besnard P, Rahmani R, Chagnon MC. Obesogen effects after perinatal exposure of 4,4′-sulfonyldiphenol (Bisphenol S) in C57BL/6 mice. Toxicology. 2016;357-358:11-20; DOI: 10.1016/j.tox.2016.05.023.10.1016/j.tox.2016.05.02327241191Search in Google Scholar

54. Ahmed S, Atlas E. Bisphenol S- and bisphenol A-induced adipogenesis of murine preadipocytes occurs through direct peroxisome proliferator-activated receptor gamma activation. Int J Obes (Lond). 2016;40(10):1566-73; DOI: 10.1038/ijo.2016.95.10.1038/ijo.2016.9527273607Search in Google Scholar

55. Negri-Cesi P. Bisphenol A Interaction With Brain Development and Functions. Dose Response. 2015;13(2):1559325815590394; DOI: 10.1177/1559325815590394.10.1177/1559325815590394467417726672480Search in Google Scholar

56. Palanza P, Gioiosa L, vom Saal FS, Parmigiani S. Effects of developmental exposure to bisphenol A on brain and behavior in mice. Environ Res. 2008;108(2):150-7.10.1016/j.envres.2008.07.02318949834Search in Google Scholar

57. Palanza P, Nagel SC, Parmigiani S, Vom Saal FS. Perinatal exposure to endocrine disruptors: sex, timing and behavioral endpoints. Curr Opin Behav Sci. 2016;7:69-75; DOI: 10.1016/j.cobeha.2015.11.017.10.1016/j.cobeha.2015.11.017480512227019862Search in Google Scholar

58. Palanza P, L Howdeshell K, Parmigiani S, vom Saal F. Exposure to a Low Dose of Bisphenol A during Fetal Life or in Adulthood Alters Maternal Behavior in Mice. 2002:415-22.10.1289/ehp.02110s3415124119212060838Search in Google Scholar

59. Catanese MC, Vandenberg LN. Bisphenol S (BPS) Alters Maternal Behavior and Brain in Mice Exposed During Pregnancy/Lactation and Their Daughters. Endocrinology. 2017;158(3):516-30; DOI: 10.1210/en.2016-1723.10.1210/en.2016-1723546078328005399Search in Google Scholar

60. Inadera H. Neurological Effects of Bisphenol A and its Analogues. Int J Med Sci. 2015;12(12):926-36; DOI: 10.7150/ijms.13267.10.7150/ijms.13267466129026664253Search in Google Scholar

61. Castro B, Sanchez P, Torres JM, Ortega E. Bisphenol A, bisphenol F and bisphenol S affect differently 5alpha-reductase expression and dopamine-serotonin systems in the prefrontal cortex of juvenile female rats. Environ Res. 2015;142:281-7; DOI: 10.1016/j.envres.2015.07.001.10.1016/j.envres.2015.07.00126186136Search in Google Scholar

62. Richter CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, Talsness CE, Vandenbergh JG, Walser-Kuntz DR, vom Saal FS. In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol. 2007;24(2):199-224; DOI: 10.1016/j.reprotox.2007.06.004.10.1016/j.reprotox.2007.06.004215184517683900Search in Google Scholar

63. Christiansen S, Axelstad M, Boberg J, Vinggaard AM, Pedersen GA, Hass U. Low-dose effects of bisphenol A on early sexual development in male and female rats. Reproduction. 2014;147(4):477-87; DOI: 10.1530/rep-13-0377.10.1530/REP-13-037724298045Search in Google Scholar

64. Hass U, Christiansen S, Boberg J, Rasmussen MG, Mandrup K, Axelstad M. Low-dose effect of developmental bisphenol A exposure on sperm count and behaviour in rats. Andrology. 2016;4(4):594-607; DOI: 10.1111/andr.12176.10.1111/andr.1217627089241Search in Google Scholar

65. Quan C, Wang C, Duan P, Huang W, Yang K. Prenatal bisphenol a exposure leads to reproductive hazards on male offspring via the Akt/mTOR and mitochondrial apoptosis pathways: Prenatal Bisphenol a Exposure Leads to Male Reproductive Toxicity. 2016.10.1002/tox.2230027296223Search in Google Scholar

66. Chen Z, Zuo X, He D, Ding S, Xu F, Yang H, Jin X, Fan Y, Ying L, Tian C, Ying C. Long-term exposure to a ‘safe’ dose of bisphenol A reduced protein acetylation in adult rat testes. Sci Rep. 2017;7:40337; DOI: 10.1038/srep40337.10.1038/srep40337522030228067316Search in Google Scholar

67. Mao Z, Xia W, Chang H, Huo W, Li Y, Xu S. Paternal BPA exposure in early life alters Igf2 epigenetic status in sperm and induces pancreatic impairment in rat offspring. Toxicol Lett. 2015;238(3):30-8; DOI: 10.1016/j.toxlet.2015.08.009.10.1016/j.toxlet.2015.08.00926276081Search in Google Scholar

68. Schonfelder G, Flick B, Mayr E, Talsness C, Paul M, Chahoud I. In utero exposure to low doses of bisphenol A lead to long-term deleterious effects in the vagina. Neoplasia. 2002;4(2):98-102; DOI: 10.1038/sj.neo.7900212.10.1038/sj.neo.7900212155031711896564Search in Google Scholar

69. Schonfelder G, Friedrich K, Paul M, Chahoud I. Developmental effects of prenatal exposure to bisphenol a on the uterus of rat offspring. Neoplasia. 2004;6(5):584-94; DOI: 10.1593/neo.04217.10.1593/neo.04217153166315548368Search in Google Scholar

70. Calhoun KC, Padilla-Banks E, Jefferson WN, Liu L, Gerrish KE, Young SL, Wood CE, Hunt PA, Vandevoort CA, Williams CJ. Bisphenol A exposure alters developmental gene expression in the fetal rhesus macaque uterus. PLoS One. 2014;9(1):e85894; DOI: 10.1371/journal.pone.0085894.10.1371/journal.pone.0085894390044224465770Search in Google Scholar

71. Brehm E, Flaws JA. Transgenerational Effects of Endocrine-Disrupting Chemicals on Male and Female Reproduction. Endocrinology. 2019;160(6):1421-35; DOI: 10.1210/en.2019-00034.10.1210/en.2019-00034652558130998239Search in Google Scholar

72. Chen Y, Shu L, Qiu Z, Lee DY, Settle SJ, Que Hee S, Telesca D, Yang X, Allard P. Exposure to the BPA-Substitute Bisphenol S Causes Unique Alterations of Germline Function. PLoS Genet. 2016;12(7):e1006223; DOI: 10.1371/journal.pgen.1006223.10.1371/journal.pgen.1006223496696727472198Search in Google Scholar

73. Shi M, Sekulovski N, MacLean JA, 2nd, Hayashi K. Effects of bisphenol A analogues on reproductive functions in mice. Reprod Toxicol. 2017;73:280-91; DOI: 10.1016/j.reprotox.2017.06.134.10.1016/j.reprotox.2017.06.13428676390Search in Google Scholar

74. Shi M, Sekulovski N, MacLean JA, 2nd, Hayashi K. Prenatal Exposure to Bisphenol A Analogues on Male Reproductive Functions in Mice. Toxicol Sci. 2018;163(2):620-31; DOI: 10.1093/toxsci/kfy061.10.1093/toxsci/kfy06129741722Search in Google Scholar

75. Shi M, Sekulovski N, MacLean JA, Whorton A, Hayashi K. Prenatal Exposure to Bisphenol A Analogues on Female Reproductive Functions in Mice. Toxicol Sci. 2019;168(2):561-71; DOI: 10.1093/toxsci/kfz014.10.1093/toxsci/kfz01430629253Search in Google Scholar

76. Shi M, Whorton AE, Sekulovski N, MacLean JA, Hayashi K. Prenatal exposure to bisphenol A, E and S induces transgenerational effects on female reproductive functions in mice. Toxicol Sci. 2019; DOI: 10.1093/toxsci/kfz124.10.1093/toxsci/kfz12431132128Search in Google Scholar

77. Ahsan N, Ullah H, Ullah W, Jahan S. Comparative effects of Bisphenol S and Bisphenol A on the development of female reproductive system in rats; a neonatal exposure study. Chemosphere. 2018;197:336-43; DOI: 10.1016/j.chemosphere.2017.12.118.10.1016/j.chemosphere.2017.12.11829407803Search in Google Scholar

78. Nevoral J, Kolinko Y, Moravec J, Zalmanova T, Hoskova K, Prokesova S, Klein P, Ghaibour K, Hosek P, Stiavnicka M, Rimnacova H, Tonar Z, Petr J, Kralickova M. Long-term exposure to very low doses of bisphenol S affects female reproduction. Reproduction. 2018;156(1):47-57; DOI: 10.1530/rep-18-0092.10.1530/REP-18-009229748175Search in Google Scholar

79. Zalmanova T, Hoskova K, Nevoral J, Adamkova K, Kott T, Sulc M, Kotikova Z, Prokesova S, Jilek F, Kralickova M, Petr J. Bisphenol S negatively affects the meotic maturation of pig oocytes. Sci Rep. 2017;7(1):485; DOI: 10.1038/s41598-017-00570-5.10.1038/s41598-017-00570-5542870328352085Search in Google Scholar

80. Campen KA, Lavallee M, Combelles C. The impact of bisphenol S on bovine granulosa and theca cells. Reprod Domest Anim. 2018;53(2):450-7; DOI: 10.1111/rda.13130.10.1111/rda.13130584746329330967Search in Google Scholar

eISSN:
2544-3577
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry