Cite

1. Kobayashi A, Shawlot W, Kania A, Behringer RR. Requirement of Lim1 for female reproductive tract development. Development. 2004;131(3):539-49; DOI:10.1242/dev.00951.10.1242/dev.00951Search in Google Scholar

2. Massé J, Watrin T, Laurent A, Deschamps S, Guerrier D, Pellerin I. The developing female genital tract: from genetics to epigenetics. Int J Dev Biol. 2009;53(2-3):411-24; DOI:10.1387/ijdb.082680jm.10.1387/ijdb.082680jmSearch in Google Scholar

3. Yin Y, Ma L. Development of the Mammalian Female Reproductive Tract. J Biochem. 2005;137(6):677-83; DOI:10.1093/jb/mvi087.10.1093/jb/mvi087Search in Google Scholar

4. Mullen RD, Behringer RR. Molecular genetics of Müllerian duct formation, regression and differentiation. Sex Dev. 2014;8(5):281-96; DOI:10.1159/000364935.10.1159/000364935Search in Google Scholar

5. Kurita T. Normal and Abnormal Epithelial Differentiation in the Female Reproductive Tract. Differentiation. 2011;82(3):117-26; DOI:10.1016/j.diff.2011.04.008.10.1016/j.diff.2011.04.008Search in Google Scholar

6. Bernascone I, Hachimi M, Martin-Belmonte F. Signaling Networks in Epithelial Tube Formation. Cold Spring Harb Perspect Biol. 2017;9(12):a027946; DOI:10.1101/cshperspect.a027946.10.1101/cshperspect.a027946Search in Google Scholar

7. Leese HJ. The formation and function of oviduct fluid. J Reprod Fertil. 1988;82(2):843-56; DOI:10.1530/jrf.0.0820843.10.1530/jrf.0.0820843Search in Google Scholar

8. Mondéjar I, Acuña OS, Izquierdo-Rico MJ, Coy P, Avilés M. The Oviduct: Functional Genomic and Proteomic Approach. Reprod Domest Anim. 2012;47(3):22-9; DOI:10.1111/j.1439-0531.2012.02027.x.10.1111/j.1439-0531.2012.02027.xSearch in Google Scholar

9. Li S, Winuthayanon W. Oviduct: roles in fertilization and early embryo development. J Endocrinol. 2017;232(1):R1-R26; DOI:10.1530/JOE-16-0302.10.1530/JOE-16-0302Search in Google Scholar

10. Abe H, Hoshi H. Morphometric and ultrastructural changes in ciliated cells of the oviductal epithelium in prolific Chinese Meishan and Large White pigs during the oestrous cycle. Reprod Domest Anim. 2008;43(1):66-73; DOI:10.1111/j.1439-0531.2007.00856.x.10.1111/j.1439-0531.2007.00856.xSearch in Google Scholar

11. White KL, Hehnke K, Rickords LF, Southern LL, Thompson DL Jr, Wood TC. Early embryonic development in vitro by coculture with oviductal epithelial cells in pigs. Biol Reprod. 1989;41(3):425-30.10.1095/biolreprod41.3.425Search in Google Scholar

12. Kessler M, Hoffmann K, Brinkmann V, Thieck O, Jackisch S, Toelle B, Berger H, Mollenkopf HJ, Mangler M, Sehouli J, Fotopoulou C, Meyer TF. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun. 2015;6:8989; DOI:10.1038/ncomms9989.10.1038/ncomms9989Search in Google Scholar

13. Pollard JW, Plante C, King WA, Hansen PJ, Betteridge KJ, Suarez SS. Fertilizing capacity of bovine sperm may be maintained by binding of oviductal epithelial cells. Biol Reprod. 1991;44(1):102-7.10.1095/biolreprod44.1.102Search in Google Scholar

14. Ren D, Navarro B, Perez G, Jackson AC, Hsu S, Shi Q, Tilly JL, Clapham DE. A sperm ion channel required for sperm motility and male fertility. Nature. 2001;413(6856):603-9; DOI:10.1038/35098027.10.1038/35098027Search in Google Scholar

15. Nagai T, Funahashi H, Yoshioka K, Kikuchi K. Up date of in vitro production of porcine embryos. Front Biosci. 2006;11:2565-73; DOI:10.2741/1991.10.2741/1991Search in Google Scholar

16. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC, Lempicki RA. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35:W169-W175; DOI: 10.1093/nar/gkm415.10.1093/nar/gkm415Search in Google Scholar

17. Walter W, Sánchez-Cabo F, Ricote M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31(17):2912-4; DOI:10.1093/bioinformatics/btv300.10.1093/bioinformatics/btv300Search in Google Scholar

18. von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005;33:D433-7; DOI:10.1093/nar/gki005.10.1093/nar/gki005Search in Google Scholar

19. Chen D, Zhao M, Mundy GR. Bone Morphogenetic Proteins. Growth Factors. 2004;22(4):233-41; DOI:10.1080/08977190412331279890.10.1080/08977190412331279890Search in Google Scholar

20. Lochab AK, Extavour CG. Bone Morphogenetic Protein (BMP) signaling in animal reproductive system development and function. Dev Biol. 2017;427(2):258-269; DOI: 10.1016/j.ydbio.2017.03.002.10.1016/j.ydbio.2017.03.002Search in Google Scholar

21. Erickson GF, Fuqua L, Shimasaki S. Analysis of spatial and temporal expression patterns of bone morphogenetic protein family members in the rat uterus over the estrous cycle. J Endocrinol. 2004;182(2):203-17.10.1677/joe.0.1820203Search in Google Scholar

22. von Schalburg KR, McCarthy SP, Rise ML, Hutson JC, Davidson WS, Koop BF. Expression of morphogenic genes in mature ovarian and testicular tissues: potential stem-cell niche markers and patterning factors. Mol Reeprod Dev. 2006;73(2):142-52.10.1002/mrd.20359Search in Google Scholar

23. Abir R, Ben-Haroush A, Melamed N, Felz C, Krissi H, Fisch B. Expression of bone morphogenetic proteins 4 and 7 and their receptors IA, IB, and II in human ovaries from fetuses and adults. Fertil Steril. 2008;89(5):1430-40; DOI: 10.1016/j.fertnstert.2007.04.064.10.1016/j.fertnstert.2007.04.064Search in Google Scholar

24. Tanwar PS, McFarlane JR. Dynamic expression of bone morphogenetic protein 4 in reproductive organs of female mice. Reproduction. 2011;142(4):573-9; DOI:10.1530/REP-10-0299.10.1530/REP-10-0299Search in Google Scholar

25. Böttcher RT, Niehrs C. Fibroblast growth factor signaling during early vertebrate development. Endocr Rev. 2005;26(1):63-77; DOI:10.1210/er.2003-0040.10.1210/er.2003-0040Search in Google Scholar

26. Deng C, Bedford M, Li C, Xu X, Yang X, Dunmore J, Leder P. Fibroblast Growth Factor Receptor-1 (FGFR-1) Is Essential for Normal Neural Tube and Limb Development. Dev Biol. 1997;185(1):42-54; DOI: 10.1006/dbio.1997.8553.10.1006/dbio.1997.8553Search in Google Scholar

27. Pond AC, Bin X, Batts T, Roarty K, Hilsenbeck S, Rosen JM. Fibroblast growth factor receptor signaling is essential for normal mammary gland development and stem cell function. Stem Cells. 2013;31(1):178-89; DOI:10.1002/stem.1266.10.1002/stem.1266Search in Google Scholar

28. Guerra DM, Giometti IC, Price CA, Andrade PB, Castilho AC, Machado MF, Ripamonte P, Papa PC, Buratini J Jr. Expression of fibroblast growth factor receptors during development and regression of the bovine corpus luteum. Reprod Fertil Dev. 2008;20(6):659-64; DOI:10.1071/RD07114.10.1071/RD07114Search in Google Scholar

29. Edwards AK, van den Heuvel MJ, Wessels JM, Lamarre J, Croy BA, Tayade C. Expression of angiogenic basic fibroblast growth factor, platelet derived growth factor, thrombospondin-1 and their receptors at the porcine maternal-fetal interface. Reprod Biol Endocrinol. 2011;9:5; DOI:10.1186/1477-7827-9-5.10.1186/1477-7827-9-5Search in Google Scholar

30. Midwood KS, Chiquet M, Tucker RP, Orend G. Tenascin-C at a glance. J Cell Sci. 2016;129(23):4321-4327; DOI:10.1242/jcs.190546.10.1242/jcs.190546Search in Google Scholar

31. Naik A, Al-Yahyaee A, Abdullah N, Sam JE, Al-Zeheimi N, Yaish MW, Adham SA. Neuropilin-1 promotes the oncogenic Tenascin-C/integrin β3 pathway and modulates chemoresistance in breast cancer cells. BMC Cancer. 2018;18(1):533; DOI:10.1186/s12885-018-4446-y.10.1186/s12885-018-4446-ySearch in Google Scholar

32. Mok SC, Wong KK, Chan RK, Lau CC, Tsao SW, Knapp RC, Berkowitz RS. Molecular Cloning of Differentially Expressed Genes in Human Epithelial Ovarian Cancer. Gynecol Oncol. 1994;52(2):247-52; DOI:10.1006/gyno.1994.1040.10.1006/gyno.1994.1040Search in Google Scholar

33. Hocevar BA, Smine A, Xu XX, Howe PH. The adaptor molecule Disabled-2 links the transforming growth factor β receptors to the Smad pathway. EMBO J. 2001;20(11):2789-801; DOI: 10.1093/emboj/20.11.2789.10.1093/emboj/20.11.2789Search in Google Scholar

34. Rosenbauer F, Kallies A, Scheller M, Knobeloch KP, Rock CO, Schwieger M, Stocking C, Horak I. Disabled-2 is transcriptionally regulated by ICSBP and augments macrophage spreading and adhesion. EMBO J. 2002;21(3):211-20; DOI:10.1093/emboj/21.3.211.10.1093/emboj/21.3.211Search in Google Scholar

35. Alwosaibai K, Abedini A, Al-Hujaily EM, Tang Y, Garson K, Collins O, Vanderhyden BC. PAX2 maintains the differentiation of mouse oviductal epithelium and inhibits the transition to a stem cell-like state. Oncotarget. 2017;8(44):76881-76897; DOI:10.18632/oncotarget.20173.10.18632/oncotarget.20173Search in Google Scholar

36. Bedford FK, Ashworth A, Enver T, Wiedemann LM. HEX: a novel homeobox gene expressed during haematopoiesis and conserved between mouse and human. Nucleic Acids Res. 1993;21(5):1245-9.10.1093/nar/21.5.1245Search in Google Scholar

37. Tian H, McKnight SL, Russell DW. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 1997;11(1):72-82.10.1101/gad.11.1.72Search in Google Scholar

38. Soufi A, Jayaraman PS. PRH/Hex: an oligomeric transcription factor and multifunctional regulator of cell fate. Biochem J. 2008;412(3):399-413; DOI:10.1042/BJ20080035.10.1042/BJ20080035Search in Google Scholar

39. Kershaw RM, Siddiqui YH, Roberts D, Jayaraman PS, Gaston K. PRH/HHEX inhibits the migration of breast and prostate epithelial cells through direct transcriptional regulation of Endoglin. Oncogene. 2014;33(49):5592-600; DOI:10.1038/onc.2013.496.10.1038/onc.2013.496Search in Google Scholar

40. Hämäläinen ER, Jones TA, Sheer D, Taskinen K, Pihlajaniemi T, Kivirikko KI. Molecular cloning of human lysyl oxidase and assignment of the gene to chromosome 5q23.3-31.2. Genomics. 1991;11(3):508-16.10.1016/0888-7543(91)90057-LSearch in Google Scholar

41. Atsawasuwan P, Mochida Y, Katafuchi M, Kaku M, Fong KS, Csiszar K, Yamauchi M. Lysyl Oxidase Binds Transforming Growth Factor-β and Regulates Its Signaling via Amine Oxidase Activity. J Biol Chem. 2008;283(49):34229-40; DOI:10.1074/jbc.M803142200.10.1074/jbc.M803142200Search in Google Scholar

42. Kasashima H, Yashiro M, Kinoshita H, Fukuoka T, Morisaki T, Masuda G, Sakurai K, Kubo N, Ohira M, Hirakawa K. Lysyl oxidase is associated with the epithelial mesenchymal transition of gastric cancer cells in hypoxia. Gastric Cancer. 2016;19(2):431-42; DOI:10.1007/s10120-015-0510-3.10.1007/s10120-015-0510-3Search in Google Scholar

43. Ruiz LA, Báez-Vega PM, Ruiz A, Peterse DP, Monteiro JB, Bracero N, Beauchamp P, Fazleabas AT, Flores I. Dysregulation of Lysyl Oxidase Expression in Lesions and Endometrium of Women With Endometriosis. Reprod Sci. 2015;22(12):1496-508; DOI:10.1177/1933719115585144.10.1177/1933719115585144Search in Google Scholar

44. Haraguchi Y, Takiguchi M, Amaya Y, Kawamoto S, Matsuda I, Mori M. Molecular cloning and nucleotide sequence of cDNA for human liver arginase. Proc Natl Acad Sci U S A. 1987;84(2):412-5.10.1073/pnas.84.2.412Search in Google Scholar

45. Wei LH, Wu G, Morris SM Jr, Ignarro LJ. Elevated arginase I expression in rat aortic smooth muscle cells increases cell proliferation. Proc Natl Acad Sci U S A. 2001;98(16):9260-4; DOI:10.1073/pnas.161294898.10.1073/pnas.161294898Search in Google Scholar

46. Yu H, Yoo PK, Aguirre CC, Tsoa RW, Kern RM, Grody WW, Cederbaum SD, Iyer RK. Widespread Expression of Arginase I in Mouse Tissues: Biochemical and Physiological Implications. J Histochem Cytochem. 2003;51(9):1151-60; DOI:10.1177/002215540305100905.10.1177/002215540305100905Search in Google Scholar

47. Dickinson RE, Hryhorskyj L, Tremewan H, Hogg K, Thomson AA, McNeilly AS, Duncan WC. Involvement of the SLIT/ROBO pathway in follicle development in the fetal ovary. 2010;139(2):395-407; DOI:10.1530/REP-09-0182.10.1530/REP-09-0182Search in Google Scholar

48. Duncan WC, McDonald SE, Dickinson RE, Shaw JL, Lourenco PC, Wheelhouse N, Lee KF, Critchley HO, Horne AW. Expression of the repulsive SLIT/ROBO pathway in the human endometrium and Fallopian tube. Mol Hum Reprod. 2010;16(12):950-9; DOI:10.1093/molehr/gaq055.10.1093/molehr/gaq055Search in Google Scholar

49. Strickland P, Shin GC, Plump A, Tessier-Lavigne M, Hinck L. SLIT2 and netrin 1 act synergistically as adhesive cues to generate tubular bi-layers during ductal morphogenesis. Development. 2006;133(5):823-32; DOI:10.1242/dev.02261.10.1242/dev.02261Search in Google Scholar

eISSN:
2544-3577
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry