Open Access

Dysfunction of mitochondria as the basis of Parkinson’s disease


Cite

1. Mhyre T, Boyd J, Hamill R, Maguire-Zeiss K. Parkinson’s disease. Subcell Biochem. 2012;65:389-455; DOI:10.1007/978-94-007-5416-4_16.10.1007/978-94-007-5416-4_16Search in Google Scholar

2. Kozubski W. Neurologia. Kompendium. PZWL; 2014Search in Google Scholar

3. Kalia L, Lang A. Parkinson’s disease. Lancet. 2015;386(9996):896-912; DOI: 10.1016/S0140-6736(14)61393-3.10.1016/S0140-6736(14)61393-3Search in Google Scholar

4. Thenganatt M, Jankovic J. Parkinson Disease Subtypes. JAMA Neurol. 2014;71(4):499-504; DOI:10.1001/jamaneurol.2013.6233.10.1001/jamaneurol.2013.623324514863Search in Google Scholar

5. Jellinger K. Neuropathology of Sporadic Parkinson’s Disease: Evaluation and Changes of Concepts. Mov Disord. 2012;27(1):8-30; DOI:10.1002/mds.23795.10.1002/mds.2379522081500Search in Google Scholar

6. Driver J, Logroscino G, Gaziano J, Kurth T. Incidence and remaining lifetime risk of Parkinson disease in advanced age. Neurology. 2009;72(5):432-8; DOI:10.1212/01.wnl.0000341769.50075.bb.10.1212/01.wnl.0000341769.50075.bb267672619188574Search in Google Scholar

7. Bentea E, Verbruggen L, Massie A. The Proteasome Inhibition Model of Parkinson’s Disease. J Parkinsons Dis. 2017;7(1):31-63; DOI:10.3233/JPD-160921.10.3233/JPD-160921530204527802243Search in Google Scholar

8. Surmeier D. Determinants of dopaminergic neuron loss in Parkinson’s disease. FEBS J. 2018;285(19):3657-3668; DOI:10.1111/febs.14607.10.1111/febs.14607654642330028088Search in Google Scholar

9. Chung K, Dawson V, Dawson T. New insights into Parkinson’s disease. J Neurol. 2003;250 Suppl 3:III15-24; DOI:10.1007/s00415-003-1304-9.10.1007/s00415-003-1304-914579120Search in Google Scholar

10. Schapira A. Mitochondrial dysfunction in Parkinson’s disease. Cell Death Differ. 2007;14(7):1261-6; DOI:10.1038/sj.cdd.4402160.10.1038/sj.cdd.440216017464321Search in Google Scholar

11. Bolam J, Pissadaki E. Living on the edge with oo many mouths to feed: why dopamineneurons die. Mov Disord. 2012;27(12):1478-83; DOI:10.1002/mds.25135.10.1002/mds.25135350438923008164Search in Google Scholar

12. Smidt M, Asbreuk C, Cox J, Chen H, Johnson R, Burbach J. A second independent pathway for development of mesencephalic dopaminergic neurons requires Lmx1b. Nat Neurosci. 2000;3(4):337-41; DOI:10.1038/73902.10.1038/73902Search in Google Scholar

13. Surmeier D, Guzman J, Sanchez-Padilla J, Schumacker P. The role of calcium and mitochondrial oxidant stress in the lossof substantia nigra pars compacta dopaminergic neurons in Parkinson’s disease. Neuroscience. 2011;198:221-31; DOI:10.1016/j.neuroscience.2011.08.045.10.1016/j.neuroscience.2011.08.045Search in Google Scholar

14. Surmeier D, Schumacker P, Guzman J, Ilijic E, Yang B, Zampese E. Calcium and Parkinson’s disease. Biochem Biophys Res Commun. 2017;483(4):1013-1019; DOI:10.1016/j.bbrc.2016.08.168.10.1016/j.bbrc.2016.08.168Search in Google Scholar

15. Exner N, Lutz A, Haass C, Winklhofer K. Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J. 2012;31(14):3038-62; DOI:10.1038emboj.2012.170.10.1038/emboj.2012.170Search in Google Scholar

16. Pickles S, Vigié P, Youle R. Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance. Curr Biol. 2018;28(4):R170-R185; DOI:10.1016/j.cub.2018.01.004.10.1016/j.cub.2018.01.004Search in Google Scholar

17. Yao Z, Wood N. Cell Death Pathways in Parkinson’s Disease: Role of Mitochondria. Antioxid Redox Signal. 2009;11(9):2135-49; DOI: 10.1089/ARS.2009.2624.10.1089/ars.2009.2624Search in Google Scholar

18. Franco-Iborra S, Vila M, Perier C. The Parkinson Disease Mitochondrial Hypothesis: Where Are We at? Neuroscientist. 2016;22(3):266-77; DOI:10.1177/1073858415574600.10.1177/1073858415574600Search in Google Scholar

19. Hagberg H, Mallard C, Rousset C, Thornton C. Mitochondria: hub of injury responses in the developing brain. Lancet Neurol. 2014;13(2):217-32; DOI:10.1016/S1474-4422(13)70261-8.10.1016/S1474-4422(13)70261-8Search in Google Scholar

20. Luo Y, Hoffer A, Hoffer B, Qi X. Mitochondria: A Therapeutic Target for Parkinson’s Disease? Int J Mol Sci. 2015;16(9):20704-30; DOI:10.3390/ijms160920704.10.3390/ijms160920704461322726340618Search in Google Scholar

21. Bir A, Sen O, Anand S, Khemka VK, Banerjee P, Cappai R, Sahoo A, Chakrabarti S. α-synuclein-induced mitochondrial dysfunction in isolated preparation and intact cells: implications in the pathogenesis of Parkinson’s disease. J Neurochem. 2014;131(6):868-77; DOI:10.1111/jnc.12966.10.1111/jnc.1296625319443Search in Google Scholar

22. Ebrahimi-Fakhari D, Wahlster L, McLean PJ. Protein degradation pathways in Parkinson’s disease: curse or blessing. Acta Neuropathol. 2012;124(2):153-72; DOI:10.1007/s00401-012-1004-6.10.1007/s00401-012-1004-6Search in Google Scholar

23. Subramaniam S, Chesselet M. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol. 2013;106-107:17-32; DOI:10.1016/j.pneurobio.2013.04.004.10.1016/j.pneurobio.2013.04.004Search in Google Scholar

24. Hauser D, Hastings T. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiol Dis. 2013;51:35-42; DOI: 10.1016/j.nbd.2012.10.011.10.1016/j.nbd.2012.10.011Search in Google Scholar

25. Dehay B, Bové J, Rodríguez-Muela N, Perier C, Recasens A, Boya P, Vila M. Pathogenic lysosomal depletion in Parkinson’s disease. J Neurosci. 2010;30(37):12535-44; DOI:10.1523/JNEUROSCI.1920-10.2010.10.1523/JNEUROSCI.1920-10.2010Search in Google Scholar

26. Dauer W, Przedborski S. Parkinson’s Disease: Mechanisms and Models. Neuron. 2003;39(6):889-909; DOI:10.1016/s0896-6273(03)00568-3.10.1016/S0896-6273(03)00568-3Search in Google Scholar

27. Henchcliffe C, Beal M. Mitochondrial biology and oxidative stress in Parkinson diseasepathogenesis. Nat Clin Pract Neurol. 2008;4(11):600-9; DOI:10.1038/ncpneuro0924.10.1038/ncpneuro092418978800Search in Google Scholar

28. Dias V, Junn E, Mouradian M. The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis. 2013;3(4):461-91; DOI:10.3233JPD-130230.10.3233/JPD-130230413531324252804Search in Google Scholar

29. Hwang O. Role of oxidative stress in Parkinson’s disease. Exp Neurobiol. 2013;22(1):11-7; DOI:10.5607/en.2013.22.1.11.10.5607/en.2013.22.1.11362045323585717Search in Google Scholar

30. Chaturvedi R, Beal M. Mitochondrial approaches for neuroprotection. Ann N Y Acad Sci. 2008;1147:395-412; DOI:10.1196/annals.1427.027.10.1196/annals.1427.027260564419076459Search in Google Scholar

31. Lin M, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006 Oct 19;443(7113):787-95; DOI:10.1038/nature05292.10.1038/nature0529217051205Search in Google Scholar

32. Peelaerts W, Bousset L, Van der Perren A, Moskalyuk A, Pulizzi R, Giugliano M, Van den Haute C, Melki R, Baekelandt V. α-Synuclein strains cause distinct synucleinopathies after localand systemic administration. Nature. 2015;522(7556):340-4; DOI:10.1038/nature14547.10.1038/nature1454726061766Search in Google Scholar

33. Sherer T, Richardson J, Testa C, Seo B, Panov A, Yagi T, Matsuno-Yagi A, Miller G, Greenamyre J. Mechanism of oxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson’s disease. J Neurochem. 2007;100(6):1469-79; DOI:10.1111/j.1471-4159.2006.04333.x.10.1111/j.1471-4159.2006.04333.x866983317241123Search in Google Scholar

34. Burbach J, Smits S, Smidt M. Transcription factors in the development of midbrain dopamine neurons. Ann N Y Acad Sci. 2003;991:61-8; DOI:10.1111/j.1749-6632.2003.tb07463.x.10.1111/j.1749-6632.2003.tb07463.x12846974Search in Google Scholar

35. Wallén A, Perlmann T. Transcriptional control of dopamine neuron development. Ann N Y Acad Sci. 2003;991:48-60; DOI:10.1111/j.1749-6632.2003.tb07462.x.10.1111/j.1749-6632.2003.tb07462.x12846973Search in Google Scholar

36. Park J, Lim C, Seo H, Park C, Zhuo M, Kaang B, Lee K. Pain perception in acute model mice of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Mol Pain. 2015;11:28; DOI:10.1186/s12990-015-0026-1.10.1186/s12990-015-0026-1444885425981600Search in Google Scholar

37. Dreyer S, Zhou G, Baldini A, Winterpacht A, Zabel B, Cole W, Johnson R, Lee B. Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome. Nat Genet. 1998;19(1):47-50; DOI:10.1038/ng0598-47.10.1038/ng0598-479590287Search in Google Scholar

38. Lohr K, Masoud S, Salahpour A, Miller G. Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease. Eur J Neurosci. 2017; 45(1):20-33; DOI:10.1111/ejn.13357.10.1111/ejn.13357520927727520881Search in Google Scholar

39. Betarbet R, Sherer T, MacKenzie G, Garcia-Osuna M, Panov A, Greenamyre J. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci. 2000;3(12):1301-6; DOI:10.1038/81834.10.1038/8183411100151Search in Google Scholar

40. Marey-Semper I, Gelman M, Levi-Strauss M. The high sensitivity to rotenone of striatal dopamine uptake suggests the existence of a constitutive metabolic deficiency in dopaminergic neurons from the substantia nigra. Eur. J. Neurosci. 1993; 5, 1029–1034; DOI:10.1111/j.1460-9568.1993.tb00955.x.10.1111/j.1460-9568.1993.tb00955.x7904221Search in Google Scholar

41. Smeyne R, Jackson-Lewis V. The MPTP model of Parkinson’s disease. Brain Res. Mol. Brain Res. 2005; 134, 57–66; DOI: 10.1016/j.molbrainres.2004.09.017.10.1016/j.molbrainres.2004.09.01715790530Search in Google Scholar

42. Testa C, Sherer T, Greenamyre J. Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Brain Res Mol Brain Res. 2005;134(1):109-18; DOI:10.1016/j.molbrainres.2004.11.007.10.1016/j.molbrainres.2004.11.00715790535Search in Google Scholar

43. Jenner P, Olanow C. Understanding cell death in Parkinson’s disease. Ann Neurol. 1998;44(3 Suppl 1):S72-84; DOI:10.1002/ana.410440712.10.1002/ana.4104407129749577Search in Google Scholar

44. Nunes I, Tovmasian L, Silva R, Burke R, Goff S. Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci U S A. 2003;100(7):4245-50; DOI:10.1073/pnas.0230529100.10.1073/pnas.023052910015307812655058Search in Google Scholar

45. Lotharius J, Brundin P. Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci. 2002;3(12):932-42; DOI:10.1038/nrn983.10.1038/nrn98312461550Search in Google Scholar

46. Mosharov E, Larsen K, Kanter E, Phillips K, Wilson K, Schmitz Y, Krantz D, Kobayashi K, Edwards R, Sulzer D. Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron. 2009;62(2):218-29; DOI:10.1016/j.neuron.2009.01.033.10.1016/j.neuron.2009.01.033267756019409267Search in Google Scholar

47. Chinta S, Mallajosyula J, Rane A, Andersen J. Mitochondrial α-synuclein accumulation impairs complex Ifunction in dopaminergic neurons and results in increasedmitophagy in vivo. Neurosci Lett. 2010;486(3):235-9; DOI:10.1016/j.neulet.2010.09.061.10.1016/j.neulet.2010.09.061296767320887775Search in Google Scholar

48. Devi L, Raghavendran V, Prabhu B, Avadhani N, Anandatheerthavarada H. Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem. 2008;283(14):9089-100; DOI:10.1074/jbc.M710012200.10.1074/jbc.M710012200243102118245082Search in Google Scholar

49. Zuo L, Motherwell M. The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson’s disease. Gene. 2013;532(1):18-23; DOI:10.1016/j.gene.2013.07.08510.1016/j.gene.2013.07.08523954870Search in Google Scholar

50. Gu Z, Nakamura T, Lipton SA. Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases. Mol Neurobiol. 2010;41(2-3):55-72; DOI:10.1007/s12035-010-8113-9.10.1007/s12035-010-8113-9458626120333559Search in Google Scholar

51. Nakamura T, Prikhodko O, Pirie E, Nagar S, Akhtar M, Oh C, McKercher S, Ambasudhan R, Okamoto S, Lipton SA. Aberrant protein S-nitrosylation contributes to the pathophysiology of neurodegenerative diseases. Neurobiol Dis. 2015;84:99-108; DOI:10.1016/j.nbd.2015.03.017.10.1016/j.nbd.2015.03.017457523325796565Search in Google Scholar

52. Van Muiswinkel F, Steinbusch H, Drukarch B, De Vente J. Identification of NO-producing and -receptive cells in mesencephalic transplants in a rat model of Parkinson’s disease: A study using NADPH-d enzyme- and NOSc/cGMP immunocytochemistry. Ann N Y Acad Sci. 1994;738:289-304; DOI:10.1111/j.1749-6632.1994.tb21815.x.10.1111/j.1749-6632.1994.tb21815.xSearch in Google Scholar

53. De Lau L, Breteler M. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5(6):525-35; DOI:10.1016/S1474-4422(06)70471-9.10.1016/S1474-4422(06)70471-9Search in Google Scholar

54. Klein C, Westenberger A. Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2(1):a008888; DOI:10.1101/cshperspect.a008888.10.1101/cshperspect.a008888325303322315721Search in Google Scholar

55. Kieburtz K, Wunderle K. Parkinson’s disease: evidence for environmental risk factors. Mov Disord. 2013;28(1):8-13; DOI:10.1002/mds.25150.10.1002/mds.2515023097348Search in Google Scholar

56. Li J, Tan L, Yu J. The role of the LRRK2 gene in Parkinsonism. Mol Neurodegener. 2014;9:47; DOI:10.1186/1750-1326-9-47.10.1186/1750-1326-9-47424646925391693Search in Google Scholar

57. Bose A, Beal M. Mitochondrial dysfunction in Parkinson’s disease. J Neurochem. 2016;139 Suppl 1:216-231; DOI:10.1111/jnc.13731.10.1111/jnc.1373127546335Search in Google Scholar

58. Cookson M. The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson’s disease. Nat Rev Neurosci. 2010;11(12):791-7; DOI:10.1038/nrn2935.10.1038/nrn2935466225621088684Search in Google Scholar

59. West A, Moore D, Biskup S, Bugayenko A, Smith W, Ross C, Dawson V, Dawson T. Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A. 2005;102(46):16842-7; DOI: 10.1073/pnas.0507360102.10.1073/pnas.0507360102128382916269541Search in Google Scholar

60. Chasapis C, Spyroulias G. RING finger E(3) ubiquitin ligases: structure and drug discovery. Curr Pharm Des. 2009;15(31):3716-31; DOI:10.2174/138161209789271825.10.2174/13816120978927182519925422Search in Google Scholar

61. Lee J, Nagano Y, Taylor J, Lim K, Yao T. Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J Cell Biol. 2010;189(4):671-9; DOI:10.1083/jcb.201001039.10.1083/jcb.201001039287290320457763Search in Google Scholar

62. Morrison K. Parkin mutations and early onset parkinsonism. Brain. 2003;126(Pt 6):1250-1; DOI: 10.1093/brain/awg189.10.1093/brain/awg189Search in Google Scholar

63. Riess O, Jakes R, Krüger R. Genetic dissection of familial Parkinson’s disease. Mol Med Today. 1998;4(10):438-44; DOI:10.1016/s1357-4310(98)01343-4.10.1016/S1357-4310(98)01343-4Search in Google Scholar

64. Tan J, Dawson T. Parkin blushed by PINK1. Neuron. 2006;50(4):527-9; DOI:10.1016/j.neuron.2006.05.003.10.1016/j.neuron.2006.05.00316701203Search in Google Scholar

65. Kazlauskaite A, Muqit M. PINK1 and Parkin—mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson’s disease. FEBS J. 2015;282(2):215-23; DOI:10.1111/febs.13127.10.1111/febs.13127436837825345844Search in Google Scholar

66. Song S, Jang S, Park J, Bang S, Choi S, Kwon K, Zhuang X, Kim E, Chung J. Characterization of PINK1 (PTEN-induced putative kinase 1) mutations associated with Parkinson disease in mammalian cells and drosophila. J Biol Chem. 2013;288(8):5660-72, DOI:10.1074/jbc.M112.430801.10.1074/jbc.M112.430801358142323303188Search in Google Scholar

67. Pickrell A, Youle R. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron. 2015;85(2):257-73; DOI:10.1016/j.neuron.2014.12.007.10.1016/j.neuron.2014.12.007476499725611507Search in Google Scholar

68. Bonifati V, Oostra B, Heutink P. Linking DJ-1 to neurodegeneration offers novel insights for understanding the pathogenesis of Parkinson’s disease. J Mol Med (Berl). 2004;82(3):163-74; DOI: 10.1007/s00109-003-0512-1.10.1007/s00109-003-0512-114712351Search in Google Scholar

69. Wang X, Yan M, Fujioka H, Liu J, Wilson-Delfosse A, Chen S, Perry G, Casadesus G, Zhu X. LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum Mol Genet. 2012;21(9):1931-44; DOI:10.1093/hmg/dds003.10.1093/hmg/dds003331520222228096Search in Google Scholar

70. Bender A, Desplats P, Spencer B, Rockenstein E, Adame A, Elstner M, Laub C, Mueller S, Koob A, Mante M, Pham E, Klopstock T, Masliah E. TOM40 mediates mitochondrial dysfunction induced by alpha-synuclein accumulation in Parkinson’s disease. PLoS One. 2013;8(4):e62277; DOI:10.1371/journal.pone.0062277.10.1371/journal.pone.0062277363391723626796Search in Google Scholar

71. Oczkowska A, Kozubski W, Dorszewska J. Alpha-synuclein in Parkinson’s disease. Przegl Lek. 2014;71(1):26-32.Search in Google Scholar

72. Wales P, Pinho R, Lázaro D, Outeiro T. Limelight on alpha-synuclein: pathological and mechanistic implications in neurodegeneration. J Parkinsons Dis. 2013;3(4):415-59; DOI:10.3233/JPD-130216.10.3233/JPD-13021624270242Search in Google Scholar

73. Stefanis L. α-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2(2):a009399; DOI:10.1101/cshperspect.a009399.10.1101/cshperspect.a009399Search in Google Scholar

74. Emmanouilidou E, Stefanis L, Vekrellis K. Cell produced alpha-synuclein oligomers are targeted to, and impair, the 26S proteasome. Neurobiol Aging. 2010;31(6):953-68; DOI:10.1016/j.neurobiolaging.2008.07.008.10.1016/j.neurobiolaging.2008.07.008Search in Google Scholar

75. Xilouri M, Brekk O, Stefanis L. α-Synuclein and protein degradation systems: a reciprocal relationship. Mol Neurobiol. 2013;47(2):537-51; DOI: 10.1007/s12035-012-8341-2.10.1007/s12035-012-8341-2Search in Google Scholar

76. Brundin P, Li J, Holton J, Lindvall O, Revesz T. Research in motion: the enigma of Parkinson’s disease pathology spread. Nat Rev Neurosci. 2008;9(10):741-5; DOI:10.1038/nrn2477.10.1038/nrn2477Search in Google Scholar

77. Martin L, Pan Y, Price A, Sterling W, Copeland N, Jenkins N, Price D, Lee M. Parkinson’s disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci. 2006;26(1):41-50; DOI:10.1523/JNEUROSCI.4308-05.2006.10.1523/JNEUROSCI.4308-05.2006Search in Google Scholar

78. Kim C, Lee S. Controlling the mass action of alpha-synuclein in Parkinson’s disease. J Neurochem. 2008;107(2):303-16; DOI:10.1111/j.1471-4159.2008.05612.x.10.1111/j.1471-4159.2008.05612.xSearch in Google Scholar

79. Peelaerts W, Bousset L, Van der Perren A, Moskalyuk A, Pulizzi R, Giugliano M, Van den Haute C, Melki R, Baekelandt V. α-Synuclein strains cause distinct synucleinopathies after localand systemic administration. Nature. 2015;522(7556):340-4; DOI:10.1038/nature14547.10.1038/nature14547Search in Google Scholar

80. Simon H, Saueressig H, Wurst W, Goulding M, O’Leary D. Fate of midbrain dopaminergic neurons controlled by the engrailed genes. J Neurosci. 2001;21(9):3126-34; DOI:10.1523/jneurosci.21-09-03126.2001.10.1523/JNEUROSCI.21-09-03126.2001Search in Google Scholar

81. Tanner C, Goldman S. Epidemiology of Parkinson’s disease. Neurol Clin. 1996;14(2):317-35; DOI:10.1016/s0733-8619(05)70259-0.10.1016/S0733-8619(05)70259-0Search in Google Scholar

82. Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M, Kösel S, Przuntek H, Epplen J, Schöls L, Riess O. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet. 1998;18(2):106-8; DOI:10.1038/ng0298-106.10.1038/ng0298-1069462735Search in Google Scholar

83. Jin H, Li C. Tanshinone IIA and Cryptotanshinone Prevent Mitochondrial Dysfunction in Hypoxia-Induced H9c2 Cells: Association to Mitochondrial ROS, Intracellular Nitric Oxide, and Calcium Levels. Evid Based Complement Alternat Med. 2013;2013:610694; DOI:10.1155/2013/610694.10.1155/2013/610694360367923533503Search in Google Scholar

84. Morgante L, Rocca W, Di Rosa A, De Domenico P, Grigoletto F, Meneghini F, Reggio A, Savettieri G, Castiglione M, Patti F. Prevalence of Parkinson’s disease and other types of parkinsonism: A door-to-door survey in three Sicilian municipalities. The Sicilian Neuro-Epidemiologic Study (SNES) Group. Neurology. 1992;42(10):1901-7; DOI:10.1038/ng0298-106.10.1038/ng0298-1069462735Search in Google Scholar

85. Berthet A, Margolis E, Zhang J, Hsieh I, Zhang J, Hnasko T, Ahmad J, Edwards R, Sesaki H, Huang E, Nakamura K. Loss of mitochondrial fission depletes axonal mitochondria in midbrain dopamine neurons. J Neurosci. 2014;34(43):14304-17; DOI:10.1523/JNEUROSCI.0930-14.2014.10.1523/JNEUROSCI.0930-14.2014420555425339743Search in Google Scholar

86. Mantegazza A, Marks M.Pink light on mitochondria in autoimmunity and Parkinson Disease. Cell Metab. 2016; 24(1): 11–12; DOI:10.1016/j.cmet.2016.06.022.10.1016/j.cmet.2016.06.022499303927411006Search in Google Scholar

87. Zetterström R, Solomin L, Jansson L, Hoffer B, Olson L, Perlmann T. Dopamine neuron agenesis in Nurr1-deficient mice. Science. 1997;276(5310):248-50; DOI:10.1126/science.276.5310.248.10.1126/science.276.5310.2489092472Search in Google Scholar

88. Bonifati V, Rizzu P, Squitieri F, Krieger E, Vanacore N, Van Swieten J, Brice A, Van Duijn C, Oostra B, Meco G, Heutink P. DJ-1(PARK7), a novel gene for autosomal recessive, early onset parkinsonism. Neurol Sci. 2003;24(3):159-60; DOI: 10.1007/s10072-003-0108-0.10.1007/s10072-003-0108-014598065Search in Google Scholar

89. Wang X, Yan M, Fujioka H, Liu J, Wilson-Delfosse A, Chen S, Perry G, Casadesus G, Zhu X. LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum Mol Genet. 2012;21(9):1931-44; DOI:10.1093/hmg/dds003.10.1093/hmg/dds003331520222228096Search in Google Scholar

90. Yamamoto A, Yue Z. Autophagy and its normal and pathogenic states in the brain. Annu Rev Neurosci. 2014;37:55-78; DOI:10.1146/annurev-neuro-071013-014149.10.1146/annurev-neuro-071013-01414924821313Search in Google Scholar

91. Fass E, Amar N, Elazar Z. Identification of essential residues for the C-terminal cleavage of the mammalian LC3: A lesson from yeast Atg8. Autophagy. 2007;3(1):48-50; DOI:10.4161/auto.3417.10.4161/auto.341717102583Search in Google Scholar

92. Wu F, Xu H, Guan J, Hou Y, Gu J, Zhen X, Qin Z. Rotenone impairs autophagic flux and lysosomal functions in Parkinson’s disease. Neuroscience. 2015;284:900-11; DOI:10.1016/j.neuroscience.2014.11.004.10.1016/j.neuroscience.2014.11.00425446361Search in Google Scholar

93. Narendra D, Youle R. Targeting mitochondrial dysfunction: Role for PINK1 and Parkin in mitochondrial quality control. Antioxid Redox Signal. 2011;14(10):1929-38; DOI:10.1089/ars.2010.3799.10.1089/ars.2010.3799307849021194381Search in Google Scholar

94. Rakovic A, Shurkewitsch K, Seibler P, Grünewald A, Zanon A, Hagenah J, Krainc D, Klein C. Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: Study in human primary fibroblasts and induced pluripotent stem cell-derived neurons. J Biol Chem. 2013;288(4):2223-37; DOI:10.1074/jbc.M112.391680.10.1074/jbc.M112.391680355489523212910Search in Google Scholar

95. Wang X, Petrie T, Liu Y, Liu J, Fujioka H, Zhu X. Parkinson’s disease-associated DJ-1 mutations impair mitochondrial dynamics and cause mitochondrial dysfunction. J Neurochem. 2012;121(5):830-9; DOI:10.1111/j.1471-4159.2012.07734.x.10.1111/j.1471-4159.2012.07734.x374056022428580Search in Google Scholar

96. Gómez-Suaga P, Luzón-Toro B, Churamani D, Zhang L, Bloor-Young D, Patel S, Woodman P, Churchill G, Hilfiker S. Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP. Hum Mol Genet. 2012;21(3):511-25; DOI:10.1093/hmg/ddr481.10.1093/hmg/ddr481325901122012985Search in Google Scholar

97. Bravo-San Pedro J, Niso-Santano M, Gómez-Sánchez R, Pizarro-Estrella E, Aiastui-Pujana A, Gorostidi A, Climent V, López de Maturana R, Sanchez-Pernaute R, López de Munain A, Fuentes J, González-Polo R. The LRRK2 G2019S mutant exacerbates basal autophagy through activation of the MEK/ERK pathway. Cell Mol Life Sci. 2013;70(1):121-36; DOI:10.1007/s00018-012-1061-y.10.1007/s00018-012-1061-y22773119Search in Google Scholar

98. Gómez-Suaga P, Hilfiker S. LRRK2 as a modulator of lysosomal calcium homeostasis with downstream effects on autophagy. Autophagy. 2012;8(4):692-3; DOI: 10.4161/auto.19305.10.4161/auto.1930522441017Search in Google Scholar

99. Orenstein S, Kuo S, Tasset I, Arias E, Koga H, Fernandez-Carasa I, Cortes E, Honig L, Dauer W, Consiglio A, Raya A, Sulzer D, Cuervo A. Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci. 2013;16(4):394-406; DOI: 10.1038/nn.3350.10.1038/nn.3350360987223455607Search in Google Scholar

eISSN:
2544-3577
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry