Cite

1. Özen A, ERTUǦRUL T. Histomorphology of the porcine oviduct. Ankara Üniversitesi Vet Fakültesi Derg. 2013;60:7–13; DOI:10.1501/Vetfak_0000002546.10.1501/Vetfak_0000002546Search in Google Scholar

2. Killian G. Evidence for the role of oviduct secretions in sperm function, fertilization and embryo development. Anim Reprod Sci. 2004;82–83:141–53; DOI:10.1016/j.anireprosci.2004.04.028.10.1016/j.anireprosci.2004.04.028Search in Google Scholar

3. Chen S, Einspanier R, Schoen J. Long-term culture of primary porcine oviduct epithelial cells: Validation of a comprehensive in vitro model for reproductive science. Theriogenology. 2013;80:862–9; DOI:10.1016/j.theriogenology.2013.07.011.10.1016/j.theriogenology.2013.07.011Search in Google Scholar

4. Aldarmahi A. Establishment and characterization of female reproductive tract epithelial cell culture. J Microsc Ultrastruct. 2017;5:105; DOI:10.1016/j.jmau.2016.07.004.10.1016/j.jmau.2016.07.004Search in Google Scholar

5. Jung JG, Park TS, Kim JN, Han BK, Lee SD, Song G, Han JY. Characterization and Application of Oviductal Epithelial Cells In vitro in Gallus domesticus1. Biol Reprod. 2011;85:798–807; DOI:10.1095/biolreprod.111.092023.10.1095/biolreprod.111.092023Search in Google Scholar

6. Slavík T, Fulka J. Oviduct secretion contributes to the establishment of species specific barrier preventing penetration of oocytes with foreign spermatozoa. Folia Biol (Praha). 1999;45:53–8;Search in Google Scholar

7. Mugnier S, Kervella M, Douet C, Canepa S, Pascal G, Deleuze S, Duchamp G, Monget P, Goudet G. The secretions of oviduct epithelial cells increase the equine in vitro fertilization rate: are osteopontin, atrial natriuretic peptide A and oviductin involved? Reprod Biol Endocrinol. 2009;7:129; DOI:10.1186/1477-7827-7-129.10.1186/1477-7827-7-129Search in Google Scholar

8. Gervasi MG, Marczylo TH, Lam PM, Rana S, Franchi AM, Konje JC, Perez-Martinez S. Anandamide Levels Fluctuate in the Bovine Oviduct during the Oestrous Cycle. PLoS One. 2013;8:e72521; DOI:10.1371/journal.pone.0072521.10.1371/journal.pone.0072521Search in Google Scholar

9. Coy P, García-Vázquez FA, Visconti PE, Avilés M. Roles of the oviduct in mammalian fertilization. REPRODUCTION. 2012;144:649–60; DOI:10.1530/REP-12-0279.10.1530/REP-12-0279Search in Google Scholar

10. Shirley B, Reeder RL. Cyclic changes in the ampulla of the rat oviduct. J Exp Zool. 1996;276:164–73; DOI:10.1002/(SICI)1097-010X(19961001)276:2<164::AID-JEZ10>3.0.CO;2-K.10.1002/(SICI)1097-010X(19961001)276:2<164::AID-JEZ10>3.0.CO;2-KSearch in Google Scholar

11. Areekijseree M, Vejaratpimol R. In vivo and in vitro study of porcine oviductal epithelial cells, cumulus oocyte complexes and granulosa cells: A scanning electron microscopy and inverted microscopy study. Micron. 2006;37:707–16; DOI:10.1016/j.micron.2006.03.004.10.1016/j.micron.2006.03.004Search in Google Scholar

12. Acuña OS, Avilés M, López-Úbeda R, Guillén-Martínez A, Soriano-Úbeda C, Torrecillas A, Coy P, Izquierdo-Rico MJ. Differential gene expression in porcine oviduct during the oestrous cycle. Reprod Fertil Dev. 2017;29:2387–99; DOI:10.1071/RD16457.10.1071/RD16457Search in Google Scholar

13. Miessen K, Sharbati S, Einspanier R, Schoen J. Modelling the porcine oviduct epithelium: A polarized in vitro system suitable for long-term cultivation. Theriogenology. 2011;76:900–10; DOI:10.1016/j.theriogenology.2011.04.021.10.1016/j.theriogenology.2011.04.021Search in Google Scholar

14. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC, Lempicki RA. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35:W169–75; DOI:10.1093/nar/gkm415.10.1093/nar/gkm415Search in Google Scholar

15. Walter W, Sánchez-Cabo F, Ricote M. GOplot: an R package for visually combining expression data with functional analysis: Fig. 1. Bioinformatics. 2015;31:2912–4; DOI:10.1093/bioinformatics/btv300.10.1093/bioinformatics/btv300Search in Google Scholar

16. von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P. STRING: Known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005; DOI:10.1093/nar/gki005.10.1093/nar/gki005Search in Google Scholar

17. Park K, Kim J, Choi C-Y, Bae J, Kim S-H, Kim Y-H, Molecular Cloning and Expression Analysis of Pig Cd90. Anim Biotechnol. 2016;27:133–9; DOI :10.1080/10495398.2015.1129630.10.1080/10495398.2015.1129630Search in Google Scholar

18. Morris R. Thy-1 in Developing Nervous Tissue (Part 1 of 2). Dev Neurosci. 1985;7:133–46; DOI:10.1159/000112283.10.1159/000112283Search in Google Scholar

19. Lee W-S, Jain MK, Arkonac BM, Zhang D, Shaw S-Y, Kashiki S, Maemura K, Lee SL, Hollenberg NK, Lee M, Haber E. Thy-1, a Novel Marker for Angiogenesis Upregulated by Inflammatory Cytokines. Circ Res. 1998;82:845–51; DOI:10.1161/01.RES.82.8.845.10.1161/01.RES.82.8.845Search in Google Scholar

20. Meidtner K, Schwarzenbacher H, Scharfe M, Severitt S, Blöcker H, Fries R. Haplotypes of the porcine peroxisome proliferator-activated receptor delta gene are associated with backfat thickness. BMC Genet. 2009;10:76; DOI:10.1186/1471-2156-10-76.10.1186/1471-2156-10-76Search in Google Scholar

21. Bader BL, Rayburn H, Crowley D, Hynes RO. Extensive Vasculogenesis, Angiogenesis, and Organogenesis Precede Lethality in Mice Lacking All αv Integrins. Cell. 1998;95:507–19; DOI:10.1016/S0092-8674(00)81618-9.10.1016/S0092-8674(00)81618-9Search in Google Scholar

22. Lacy-Hulbert A, Smith AM, Tissire H, Barry M, Crowley D, Bronson RT, Roes JT, Savill JS, Hynes RO. Ulcerative colitis and autoimmunity induced by loss of myeloid v integrins. Proc Natl Acad Sci. 2007;104:15823–8; DOI:10.1073/pnas.0707421104.10.1073/pnas.0707421104199413517895374Search in Google Scholar

23. Tian H, McKnight SL, Russell DW. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 1997;11:72–82; DOI:10.1101/gad.11.1.72.10.1101/gad.11.1.729000051Search in Google Scholar

24. Sood R, Zehnder JL, Druzin ML, Brown PO. Gene expression patterns in human placenta. Proc Natl Acad Sci. 2006;103:5478–83; DOI:10.1073/pnas.0508035103.10.1073/pnas.0508035103141463216567644Search in Google Scholar

25. Foley AC, Mercola M. Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex. Genes Dev. 2005;19:387–96; DOI:10.1101/gad.1279405.10.1101/gad.127940554651615687261Search in Google Scholar

26. Paz H, Lynch MR, Bogue CW, Gasson JC. The homeobox gene Hhex regulates the earliest stages of definitive hematopoiesis. Blood. 2010;116:1254–62; DOI:10.1182/blood-2009-11-254383.10.1182/blood-2009-11-254383293823620472829Search in Google Scholar

27. Diaz PS, Solar PA, Juica NE, Orihuela PA, Cardenas H, Christodoulides M, Vargas R, Velasquez LA. Differential expression of extracellular matrix components in the Fallopian tubes throughout the menstrual cycle. Reprod Biol Endocrinol. 2012;10:56; DOI:10.1186/1477-7827-10-56.10.1186/1477-7827-10-56348977822897899Search in Google Scholar

28. Talbot P, Shur BD, Myles DG. Cell Adhesion and Fertilization: Steps in Oocyte Transport, Sperm-Zona Pellucida Interactions, and Sperm-Egg Fusion1. Biol Reprod. 2003;68:1–9; DOI:10.1095/biolreprod.102.007856.10.1095/biolreprod.102.00785612493688Search in Google Scholar

29. Chen D, Wang X, Liang D, Gordon J, Mittal A, Manley N, Degenhardt K, Astrof S. Fibronectin signals through integrin α5β1 to regulate cardiovascular development in a cell type-specific manner. Dev Biol. 2015;407:195–210; DOI:10.1016/j.ydbio.2015.09.016.10.1016/j.ydbio.2015.09.016531269726434918Search in Google Scholar

30. Wang J, Karra R, Dickson AL, Poss KD. Fibronectin is deposited by injury-activated epicardial cells and is necessary for zebrafish heart regeneration. Dev Biol. 2013;382:427–35; DOI:10.1016/j.ydbio.2013.08.012.10.1016/j.ydbio.2013.08.012385276523988577Search in Google Scholar

31. Lin H, Wang X, Liu G, Fu J, Wang A. Expression of αV and β3 integrin subunits during implantation in pig. Mol Reprod Dev. 2007;74:1379–85; DOI:10.1002/mrd.20732.10.1002/mrd.2073217440962Search in Google Scholar

32. Lessey BA. Adhesion molecules and implantation. J Reprod Immunol. 2002;55:101–12; DOI:10.1016/S0165-0378(01)00139-5.10.1016/S0165-0378(01)00139-5Search in Google Scholar

33. Bowen J a, Bazer FW, Burghardt RC. Spatial and Temporal Analyses of Integrin and Muc-1 Expression in Porcine Uterine Epithelium and Trophectoderm in vitro1. Biol Reprod. 1997;56:409–15; DOI:10.1095/biolreprod56.2.409.10.1095/biolreprod56.2.409Search in Google Scholar

34. Illera MJ, Cullinan E, Gui Y, Yuan L, Beyler SA, Lessey BA. Blockade of the αvβ3 Integrin Adversely Affects Implantation in the Mouse1. Biol Reprod. 2000;62:1285–90; DOI:10.1095/biolreprod62.5.1285.10.1095/biolreprod62.5.1285Search in Google Scholar

35. Lessey BA, Castelbaum AJ, Sawin SW, Sun J. Integrins as markers of uterine receptivity in women with primary unexplained infertility**Supported by the National Institutes of Health grants HD-29449 and HD-30476 1 (B.A.L.), Bethesa, Maryland.††Presented at the 40th Annual Meeting of the Society of G. Fertil Steril. 1995;63:535–42; DOI:10.1016/S0015-0282(16)57422-6.10.1016/S0015-0282(16)57422-6Search in Google Scholar

36. Zhang J, Wang J, Gao N, Chen Z, Tian Y, An J. Up-regulated expression of β3 integrin induced by dengue virus serotype 2 infection associated with virus entry into human dermal microvascular endothelial cells. Biochem Biophys Res Commun. 2007;356:763–8; DOI:10.1016/j.bbrc.2007.03.051.10.1016/j.bbrc.2007.03.05117382900Search in Google Scholar

37. Rajaram RD, Dissard R, Jaquet V, de Seigneux S. Potential benefits and harms of NADPH oxidase type 4 in the kidneys and cardiovascular system. Nephrol Dial Transplant. 2018DOI:10.1093/ndt/gfy161.10.1093/ndt/gfy16129931336Search in Google Scholar

38. Hakami NY, Ranjan AK, Hardikar AA, Dusting GJ, Peshavariya HM. Role of NADPH Oxidase-4 in Human Endothelial Progenitor Cells. Front Physiol. 2017;8:1–10; DOI:10.3389/fphys.2017.00150.10.3389/fphys.2017.00150536264528386230Search in Google Scholar

39. Ponticos M, Abraham D, Alexakis C, Lu Q-L, Black C, Partridge T, Bou-Gharios G. Col1a2 enhancer regulates collagen activity during development and in adult tissue repair. Matrix Biol. 2004;22:619–28; DOI:10.1016/j.matbio.2003.12.002.10.1016/j.matbio.2003.12.00215062855Search in Google Scholar

40. Marini JC, Forlino A, Cabral WA, Barnes AM, San Antonio JD, Milgrom S, Hyland JC, Körkkö J, Prockop DJ, De Paepe A, Coucke P, Symoens S, Glorieux FH, Roughley PJ, Lund AM, Kuurila-Svahn K, Hartikka H, Cohn DH, Krakow D, Mottes M, Schwarze U, Chen D, Yang K, Kuslich C, Troendle J, Dalgleish R, Byers PH. Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum Mutat. 2007;28:209–21; DOI:10.1002/humu.20429.10.1002/humu.20429414434917078022Search in Google Scholar

41. Knisely AS, Richardson A, Abuelo D, Casey S, Singer DB. Lethal osteogenesis imperfecta associated with 46,XY,inv(7)(p13q22) karyotype. J Med Genet. 1988;25:352–5; DOI:10.1136/jmg.25.5.352.10.1136/jmg.25.5.35210504663385745Search in Google Scholar

42. Sharma-Bhandari A, Park S-H, Kim J-Y, Oh J, Kim Y. Lysyl oxidase modulates the osteoblast differentiation of primary mouse calvaria cells. Int J Mol Med. 2015;36:1664–70; DOI:10.3892/ijmm.2015.2384.10.3892/ijmm.2015.2384Search in Google Scholar

43. Oxlund H, Sekilde L, Ørtoft G. Reduced concentration of collagen reducible cross links in human trabecular bone with respect to age and osteoporosis. Bone. 1996;19:479–84; DOI:10.1016/S8756-3282(96)00283-9.10.1016/S8756-3282(96)00283-9Search in Google Scholar

44. Bailey AJ, Wotton SF, Sims TJ, Thompson PW. Biochemical changes in the collagen of human osteoporotic bone matrix. Connect Tissue Res. 1993;29:119–32; DOI:10.3109/03008209309014239.10.3109/030082093090142398403893Search in Google Scholar

45. Talas U, Dunlop J, Khalaf S, Leigh IM, Kelsell DP. Human Elastase 1: Evidence for Expression in the Skin and the Identification of a Frequent Frameshift Polymorphism. J Invest Dermatol. 2000;114:165–70; DOI:10.1046/j.1523-1747.2000.00825.x.10.1046/j.1523-1747.2000.00825.x10620133Search in Google Scholar

46. Liu S, Young SM, Varisco BM. Dynamic expression of chymotrypsin-like elastase 1 over the course of murine lung development. Am J Physiol Cell Mol Physiol. 2014;306:L1104–16; DOI:10.1152/ajplung.00126.2013.10.1152/ajplung.00126.2013406000824793170Search in Google Scholar

47. Petrovic N, Schacke W, Gahagan JR, O’Conor CA, Winnicka B, Conway RE, Mina-Osorio P, Shapiro LH. CD13/APN regulates endothelial invasion and filopodia formation. Blood. 2007;110:142–50; DOI:10.1182/blood-2006-02-002931.10.1182/blood-2006-02-002931189610817363739Search in Google Scholar

48. Rangel R, Sun Y, Guzman-Rojas L, Ozawa MG, Sun J, Giordano RJ, Van Pelt CS, Tinkey PT, Behringer RR, Sidman RL, Arap W, Pasqualini R. Impaired angiogenesis in aminopeptidase N-null mice. Proc Natl Acad Sci. 2007;104:4588–93; DOI:10.1073/pnas.0611653104.10.1073/pnas.0611653104181546917360568Search in Google Scholar

49. Angiolillo AL. Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J Exp Med. 1995;182:155–62; DOI:10.1084/jem.182.1.155.10.1084/jem.182.1.15521921087540647Search in Google Scholar

50. Gouagna LC, Bancone G, Yao F, Yameogo B, Dabiré KR, Costantini C, Simporé J, Ouedraogo JB, Modiano D. Genetic variation in human HBB is associated with Plasmodium falciparum transmission. Nat Genet. 2010;42:328–31; DOI:10.1038/ng.554.10.1038/ng.55420305663Search in Google Scholar

51. Pérez-Mancera PA, Bermejo-Rodríguez C, González-Herrero I, Herranz M, Flores T, Jiménez R, Sánchez-García I. Adipose tissue mass is modulated by SLUG (SNAI2). Hum Mol Genet. 2007;16:2972–86; DOI:10.1093/hmg/ddm278.10.1093/hmg/ddm27817905753Search in Google Scholar

52. Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002;3:155–66; DOI:10.1038/nrm757.10.1038/nrm75711994736Search in Google Scholar

53. Narkis G, Ofir R, Landau D, Manor E, Volokita M, Hershkowitz R, Elbedour K, Birk OS. Lethal Contractural Syndrome Type 3 (LCCS3) Is Caused by a Mutation in PIP5K1C, Which Encodes PIPKIγ of the Phophatidylinsitol Pathway. Am J Hum Genet. 2007;81:530–9; DOI:10.1086/520771.10.1086/520771195084017701898Search in Google Scholar

54. Makinodan M, Rosen KM, Ito S, Corfas G. A Critical Period for Social Experience-Dependent Oligodendrocyte Maturation and Myelination. Science (80- ). 2012;337:1357–60; DOI:10.1126/science.1220845.10.1126/science.1220845416561322984073Search in Google Scholar

55. Boeckel J-N, Derlet A, Glaser SF, Luczak A, Lucas T, Heumüller AW, Krüger M, Zehendner CM, Kaluza D, Doddaballapur A, Ohtani K, Treguer K, Dimmeler S. JMJD8 Regulates Angiogenic Sprouting and Cellular Metabolism by Interacting With Pyruvate Kinase M2 in Endothelial Cells. Arterioscler Thromb Vasc Biol. 2016;36:1425–33; DOI:10.1161/ATVBAHA.116.307695.10.1161/ATVBAHA.116.30769527199445Search in Google Scholar

56. Agger K, Cloos PAC, Christensen J, Pasini D, Rose S, Rappsilber J, Issaeva I, Canaani E, Salcini AE, Helin K. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature. 2007;449:731–4; DOI:10.1038/nature06145.10.1038/nature0614517713478Search in Google Scholar

57. Lan F, Bayliss PE, Rinn JL, Whetstine JR, Wang JK, Chen S, Iwase S, Alpatov R, Issaeva I, Canaani E, Roberts TM, Chang HY, Shi Y. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature. 2007;449:689–94; DOI:10.1038/nature06192.10.1038/nature0619217851529Search in Google Scholar

58. Zhang P, Andrianakos R, Yang Y, Liu C, Lu W. Kruppel-like Factor 4 (Klf4) Prevents Embryonic Stem (ES) Cell Differentiation by Regulating Nanog Gene Expression. J Biol Chem. 2010;285:9180–9; DOI:10.1074/jbc.M109.077958.10.1074/jbc.M109.077958283833720071344Search in Google Scholar

59. Zheng X, Li A, Zhao L, Zhou T, Shen Q, Cui Q, Qin X. Key role of microRNA-15a in the KLF4 suppressions of proliferation and angiogenesis in endothelial and vascular smooth muscle cells. Biochem Biophys Res Commun. 2013;437:625–31; DOI:10.1016/j.bbrc.2013.07.017.10.1016/j.bbrc.2013.07.01723867820Search in Google Scholar

60. Tang M, Wang G, Lu P, Karas RH, Aronovitz M, Heximer SP, Kaltenbronn KM, Blumer KJ, Siderovski DP, Zhu Y, Mendelsohn ME. Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nat Med. 2003;9:1506–12; DOI:10.1038/nm958.10.1038/nm95814608379Search in Google Scholar

61. Heximer SP, Knutsen RH, Sun X, Kaltenbronn KM, Rhee M-H, Peng N, Oliveira-dos-Santos A, Penninger JM, Muslin AJ, Steinberg TH, Wyss JM, Mecham RP, Blumer KJ. Hypertension and prolonged vasoconstrictor signaling in RGS2-deficient mice. J Clin Invest. 2003;111:445–52; DOI:10.1172/JCI15598.10.1172/JCI1559815191812588882Search in Google Scholar

eISSN:
2544-3577
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry