Cite

1. Mermillod P, Oussaid B, Cognié Y. Aspects of follicular and oocyte maturation that affect the developmental potential of embryos. J Reprod Fertil Suppl. 1999;54:449–60.Search in Google Scholar

2. Yang MY, Rajamahendran R. Expression of Bcl-2 and Bax proteins in relation to quality of bovine oocytes and embryos produced in vitro. Anim Reprod Sci. 2002;70(3–4):159–69.10.1016/S0378-4320(01)00186-5Search in Google Scholar

3. Hyttel P, Fair T, Callesen H, Greve T. Oocyte growth, capacitation and final maturation in cattle. Theriogenology. 1997;47(1):23–32; DOI:10.1016/S0093-691X(96)00336-6.10.1016/S0093-691X(96)00336-6Search in Google Scholar

4. Bachvarova R, De Leon V, Johnson A, Kaplan G, Paynton B V. Changes in total RNA, polyadenylated RNA, and actin mRNA during meiotic maturation of mouse oocytes. Dev Biol. 1985;108(2):325–31.10.1016/0012-1606(85)90036-3Search in Google Scholar

5. Humblot P, Holm P, Lonergan P, Wrenzycki C, Lequarré A-S, Joly CG, et al. Effect of stage of follicular growth during superovulation on developmental competence of bovine oocytes. Theriogenology. 2005;63(4):1149–66; DOI:10.1016/j.theriogenology.2004.06.002.10.1016/j.theriogenology.2004.06.002Search in Google Scholar

6. Hashimoto N, Kishimoto T. Regulation of meiotic metaphase by a cytoplasmic maturation-promoting factor during mouse oocyte maturation. Dev Biol. 1988;126(2):242–52.10.1016/0012-1606(88)90135-2Search in Google Scholar

7. Kishimoto T, Kuriyama R, Kondo H, Kanatani H. Generality of the action of various maturation-promoting factors. Exp Cell Res. 1982;137(1):121–6; DOI:10.1016/0014-4827(82)90014-3.10.1016/0014-4827(82)90014-3Search in Google Scholar

8. Abeydeera LR. In vitro production of embryos in swine. Theriogenology. 2002;57(1):256–73.10.1016/S0093-691X(01)00670-7Search in Google Scholar

9. Zhang W, Yi K, Yan H, Zhou X. Advances on in vitro production and cryopreservation of porcine embryos. Anim Reprod Sci. 2012;132(3–4):115–22; DOI:10.1016/j.anireprosci.2012.05.008.10.1016/j.anireprosci.2012.05.00822698497Search in Google Scholar

10. Kątska-Książkiewicz Lucyna. Pig embryo production by in vitro maturation and fertilization of ovarian oocytes. A review. J Anim Feed Sci. 2006;15(4):525–42.10.22358/jafs/66923/2006Search in Google Scholar

11. Ożegowska K, Dyszkiewicz-Konwińska M, Celichowski P, Nawrocki MJ, Bryja A, Jankowski M, et al. Expression pattern of new genes regulating female sex differentiation and in vitro maturational status of oocytes in pigs. Theriogenology. 2018;121:122–33; DOI:10.1016/j.theriogenology.2018.08.019.10.1016/j.theriogenology.2018.08.01930145542Search in Google Scholar

12. Al-aghbari AM, Menino AR. Survival of oocytes recovered from vitrified sheep ovarian tissues. Anim Reprod Sci. 2002;71(1–2):101–10.10.1016/S0378-4320(02)00011-8Search in Google Scholar

13. Nascimento A, Albornoz M, Che L, Visintin J, Bordignon V. Synergistic Effect of Porcine Follicular Fluid and Dibutyryl Cyclic Adenosine Monophosphate on Development of Parthenogenetically Activated Oocytes from Pre-Pubertal Gilts. Reprod Domest Anim. 2009;45(5):851–9; DOI:10.1111/j.1439-0531.2009.01368.x.10.1111/j.1439-0531.2009.01368.xSearch in Google Scholar

14. Le Guienne B. Small atlas of bovine oocyte. Atlas Bov Oocyte. 1998;288(1):24–30.Search in Google Scholar

15. Pujol M, López-Béjar M, Paramio M-T. Developmental competence of heifer oocytes selected using the brilliant cresyl blue (BCB) test. Theriogenology. 2004;61(4):735–44; DOI:10.1016/S0093-691X(03)00250-4.10.1016/S0093-691X(03)00250-4Search in Google Scholar

16. Ericsson SA, Boice ML, Funahashi H, Day BN. Assessment of porcine oocytes using brilliant cresyl blue. Theriogenology. 1993;39(1):214; DOI:10.1016/0093-691X(93)90069-H.10.1016/0093-691X(93)90069-HSearch in Google Scholar

17. Budna J, Celichowski P, Bryja A, Dyszkiewicz-Konwińska M, Jeseta M, Bukowska D, Antosik P, Brüssow KP, Bruska M, Nowicki M, Zabel M, Kempisty B. Significant Down-Regulation of “Biological Adhesion” Genes in Porcine Oocytes after IVM. Int J Mol Sci. 2017;18(12):2685; DOI:10.3390/ijms18122685.10.3390/ijms18122685575128729232894Search in Google Scholar

18. Budna J, Bryja A, Celichowski P, Kranc W, Ciesiółka S, Borys S, Rybska M, Kolecka-Bednarczyk A, Jeseta M, Bukowska D, Antosik P, Brüssow KP, Bruska M, Nowicki M, Zabel M, Kempisty B. “Bone Development” Is an Ontology Group Upregulated in Porcine Oocytes Before In Vitro Maturation: A Microarray Approach. DNA Cell Biol. 2017;36(8):638–46; DOI:10.1089/dna.2017.367Search in Google Scholar

19. Walter W, Sánchez-Cabo F, Ricote M. GOplot: an R package for visually combining expression data with functional analysis: Fig. 1. Bioinformatics. 2015;31(17):2912–4; DOI:10.1093/bioinformatics/btv300.10.1093/bioinformatics/btv30025964631Search in Google Scholar

20. De Bock M, Kerrebrouck M, Wang N, Leybaert L. Neurological manifestations of oculodentodigital dysplasia: a Cx43 channelopathy of the central nervous system? Front Pharmacol. 2013;4:120; DOI:10.3389/fphar.2013.00120.10.3389/fphar.2013.00120378384024133447Search in Google Scholar

21. Richard S, Baltz JM. Prophase I Arrest of Mouse Oocytes Mediated by Natriuretic Peptide Precursor C Requires GJA1 (connexin-43) and GJA4 (connexin-37) Gap Junctions in the Antral Follicle and Cumulus-Oocyte Complex1. Biol Reprod. 2014;90(6):137; DOI:10.1095/biolreprod.114.118505.10.1095/biolreprod.114.11850524804968Search in Google Scholar

22. Li SH, Lin MH, Hwu YM, Lu CH, Yeh LY, Chen YJ, et al. Correlation of cumulus gene expression of GJA1, PRSS35, PTX3, and SERPINE2 with oocyte maturation, fertilization, and embryo development. Reprod Biol Endocrinol. 2015;13(1); DOI:10.1186/s12958-015-0091-3.10.1186/s12958-015-0091-3453756626276571Search in Google Scholar

23. Guinea-Viniegra J, Zenz R, Scheuch H, Jiménez M, Bakiri L, Petzelbauer P, et al. Differentiation-induced skin cancer suppression by FOS, p53, and TACE/ADAM17. J Clin Invest. 2012;122(8):2898–910; DOI:10.1172/JCI63103.10.1172/JCI63103340874522772468Search in Google Scholar

24. Spiegelman BM, Distel RJ, Ro H-S, Rosen BS, Satterberg B. Mini-Review fos Protooncogene and the Regulation of Gene Expression in Adipocyte Differentiation. n.d.Search in Google Scholar

25. Zhou H, Gao J, Lu ZY, Lu L, Dai W, Xu M. Role of c-Fos/JunD in protecting stress-induced cell death. Cell Prolif. 2007;40(3):431–44; DOI:10.1111/j.1365-2184.2007.00444.x.10.1111/j.1365-2184.2007.00444.xSearch in Google Scholar

26. Schlesinger TK, Bonvin C, Jarpe MB, Fanger GR, Cardinaux J-R, Johnson GL, et al. Apoptosis stimulated by the 91-kDa caspase cleavage MEKK1 fragment requires translocation to soluble cellular compartments. J Biol Chem. 2002;277(12):10283–91; DOI:10.1074/jbc.M106885200.10.1074/jbc.M106885200Search in Google Scholar

27. Kranc W, Budna J, Chachuła A, Borys S, Bryja A, Rybska M, et al. “Cell Migration” Is the Ontology Group Differentially Expressed in Porcine Oocytes Before and After In Vitro Maturation: A Microarray Approach. DNA Cell Biol. 2017;36(4):273–82; DOI:10.1089/dna.2016.3425.10.1089/dna.2016.3425Search in Google Scholar

28. De Miguel MP, Cheng L, Holland EC, Federspiel MJ, Donovan PJ. Dissection of the c-Kit signaling pathway in mouse primordial germ cells by retroviral-mediated gene transfer. Proc Natl Acad Sci U S A. 2002;99(16):10458–63; DOI:10.1073/pnas.122249399.10.1073/pnas.122249399Search in Google Scholar

29. Driancourt MA, Reynaud K, Cortvrindt R, Smitz J. Roles of KIT and KIT LIGAND in ovarian function. Rev Reprod. 2000;5(3):143–52.10.1530/ror.0.0050143Search in Google Scholar

30. Curry TE, Osteen KG. Cyclic Changes in the Matrix Metalloproteinase System in the Ovary and Uterus1. Biol Reprod. 2001;64(5):1285–96; DOI:10.1095/biolreprod64.5.1285.10.1095/biolreprod64.5.1285Search in Google Scholar

31. Joyce IM, Pendola FL, Wigglesworth K, Eppig JJ. Oocyte Regulation of Kit Ligand Expression in Mouse Ovarian Follicles. Dev Biol. 1999;214(2):342–53; DOI:10.1006/DBIO.1999.9437.10.1006/dbio.1999.9437Search in Google Scholar

32. Ikegawa S, Nakamura Y. Structure of the gene encoding human colligin-2 (CBP2). Gene. 1997;194(2):301–3.10.1016/S0378-1119(97)00209-6Search in Google Scholar

33. Hammond SM, Altshuller YM, Sung TC, Rudge SA, Rose K, Engebrecht J, et al. Human ADP-ribosylation factor-activated phosphatidylcholine-specific phospholipase D defines a new and highly conserved gene family. J Biol Chem. 1995;270(50):29640–3.10.1074/jbc.270.50.296408530346Search in Google Scholar

eISSN:
2544-3577
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry