Cite

1. Kranc, W. et al., “The origin, in vitro differentiation, and stemness specificity of progenitor cells.,” J. Biol. Regul. Homeost. Agents, vol. 31, no. 2, pp. 365-369, 2017.Search in Google Scholar

2. Groth, C. G., “The potential advantages of transplanting organs from pig to man: A transplant Surgeon’s view.,” Indian J. Urol., vol. 23, no. 3, pp. 305-9, Jul. 2007.10.4103/0970-1591.33729272161119718335Search in Google Scholar

3. Denner, J., “Xenotransplantation-Progress and Problems: A Review,” J. Transplant. Technol. Res., vol. 4, no. 2, Jul. 2014.10.4172/2161-0991.1000133Search in Google Scholar

4. Kranc, W. et al., “Molecular basis of growth, proliferation, and differentiation of mammalian follicular granulosa cells.,” J. Biol. Regul. Homeost. Agents, vol. 31, no. 1, pp. 1-8, 2017.Search in Google Scholar

5. Kempisty, B. et al., “Association between progesterone and estradiol-17beta treatment and protein expression of pgr and PGRMC1 in porcine luminal epithelial cells: a real-time cell proliferation approach.,” J. Biol. Regul. Homeost. Agents, vol. 29, no. 1, pp. 39-50.Search in Google Scholar

6. Bukowska, D. et al., “Differential expression of epidermal growth factor and transforming growth factor beta isoforms in dog endometrium during different periods of the estrus cycle,” Pol. J. Vet. Sci., vol. 14, no. 2, pp. 259-264, Jan. 2011.10.2478/v10181-011-0039-221721411Search in Google Scholar

7. Ciesiółka, S. et al., “Epithelialization and stromalization of porcine follicular granulosa cells during real-time proliferation – a primary cell culture approach.,” J. Biol. Regul. Homeost. Agents, vol. 30, no. 3, pp. 693-702.Search in Google Scholar

8. Huang, D. W. et al., “DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists.,” Nucleic Acids Res., vol. 35, no. Web Server issue, pp. W169-75, Jul. 2007.10.1093/nar/gkm415193316917576678Search in Google Scholar

9. Luo, W. and Brouwer, C., “Pathview: an R/Bioconductor package for pathway-based data integration and visualization,” Bioinformatics, vol. 29, no. 14, pp. 1830-1831, Jul. 2013.10.1093/bioinformatics/btt285370225623740750Open DOISearch in Google Scholar

10. von Mering, C. et al., “STRING: known and predicted protein-protein associations, integrated and transferred across organisms,” Nucleic Acids Res., vol. 33, no. Database issue, pp. D433-D437, Dec. 2005.10.1093/nar/gki00553995915608232Search in Google Scholar

11. Pectasides, D., Pectasides, E., and Economopoulos, T., “Fallopian tube carcinoma: a review.,” Oncologist, vol. 11, no. 8, pp. 902-12, Sep. 2006.10.1634/theoncologist.11-8-90216951394Open DOISearch in Google Scholar

12. Chen, S., Einspanier, R., and Schoen, J., “Long-term culture of primary porcine oviduct epithelial cells: Validation of a comprehensive invitro model for reproductive science,” Theriogenology, 2013.10.1016/j.theriogenology.2013.07.01123973051Search in Google Scholar

13. Hunter, R. H. F., “Oviduct function in pigs, with particular reference to the pathological condition of polyspermy,” Mol. Reprod. Dev., vol. 29, no. 4, pp. 385-391, Aug. 1991.10.1002/mrd.10802904111888518Search in Google Scholar

14. Jansen, R. P. S., Anderson, J. C., and Sutherland, P. D., “Nonoperative Embryo Transfer to the Fallopian Tube,” N. Engl. J. Med., vol. 319, no. 5, pp. 288-291, Aug. 1988.10.1056/NEJM1988080431905073393184Search in Google Scholar

15. Murray, S. C. and Smith, T. T., “Sperm interaction with fallopian tube apical membrane enhances sperm motility and delays capacitation,” Fertil. Steril., vol. 68, no. 2, pp. 351-357, Aug. 1997.10.1016/S0015-0282(97)81528-2Search in Google Scholar

16. Joshi, M. S., “Isolation, cell culture, and characterization of oviduct epithelial cells of the cow,” Microsc. Res. Tech., vol. 31, no. 6, pp. 507-518, Aug. 1995.10.1002/jemt.1070310607Open DOISearch in Google Scholar

17. Joshi, M. S., “Isolation, cell culture and immunocytochemical characterization of oviduct epithelial cells of the cow.,” J. Reprod. Fertil., vol. 83, no. 1, pp. 249-61, May 1988.10.1530/jrf.0.0830249Search in Google Scholar

18. Walter, I., “Culture of bovine oviduct epithelial cells (BOEC),” Anat. Rec., vol. 243, no. 3, pp. 347-356, Nov. 1995.10.1002/ar.1092430309Search in Google Scholar

19. Aldarmahi, A., “Establishment and characterization of female reproductive tract epithelial cell culture,” J. Microsc. Ultrastruct., vol. 5, no. 2, pp. 105-110, Jun. 2017.10.1016/j.jmau.2016.07.004Search in Google Scholar

20. Rottmayer, R. et al., “A bovine oviduct epithelial cell suspension culture system suitable for studying embryo-maternal interactions: morphological and functional characterization.,” Reproduction, vol. 132, no. 4, pp. 637-48, Oct. 2006.10.1530/rep.1.01136Search in Google Scholar

21. Leese, H. J., Tay, J. I., Reischl, J., and Downing, S. J., “Formation of Fallopian tubal fluid: role of a neglected epithelium.,” Reproduction, vol. 121, no. 3, pp. 339-46, Mar. 2001.10.1530/rep.0.1210339Search in Google Scholar

22. Abe, H. and Oikawa, T., “Observations by scanning electron microscopy of oviductal epithelial cells from cows at follicular and luteal phases,” Anat. Rec., vol. 235, no. 3, pp. 399-410, Mar. 1993.10.1002/ar.1092350309Search in Google Scholar

23. Kress, A. and Morson, G., “Changes in the oviducal epithelium during the estrous cycle in the marsupial Monodelphis domestica.,” J. Anat., vol. 211, no. 4, pp. 503-17, Oct. 2007.10.1111/j.1469-7580.2007.00794.xSearch in Google Scholar

24. Huntar, R. H., “Function and malfunction of the Fallopian tubes in relation to gametes, embryos and hormones.,” Eur. J. Obstet. Gynecol. Reprod. Biol., vol. 7, no. 4, pp. 267-83, 1977.10.1016/0028-2243(77)90081-8Open DOISearch in Google Scholar

25. Kossowska-Tomaszczuk, K. et al., “The Multipotency of Luteinizing Granulosa Cells Collected from Mature Ovarian Follicles,” Stem Cells, vol. 27, no. 1, pp. 210-219, Jan. 2009.10.1634/stemcells.2008-0233Search in Google Scholar

26. Abe, H. and Hoshi, H., “Bovine oviductal epithelial cells: their cell culture and applications in studies for reproductive biology.,” Cytotechnology, vol. 23, no. 1-3, pp. 171-83, Jan. 1997.10.1023/A:1007929826186Search in Google Scholar

27. McGivan, J. D. and Pastor-Anglada, M., “Regulatory and molecular aspects of mammalian amino acid transport.,” Biochem. J., vol. 299 (Pt 2), no. Pt 2, pp. 321-34, Apr. 1994.10.1042/bj2990321Search in Google Scholar

28. Finkelstein, J. D., Martin, J. J., and Harris, B. J., “Methionine metabolism in mammals. The methionine-sparing effect of cystine.,” J. Biol. Chem., vol. 263, no. 24, pp. 11750-4, Aug. 1988.Search in Google Scholar

29. Stadtman, E. R., Van Remmen, H., Richardson, A., Wehr, N. B., and Levine, R. L., “Methionine oxidation and aging,” Biochim. Biophys. Acta – Proteins Proteomics, vol. 1703, no. 2, pp. 135-140, Jan. 2005.Search in Google Scholar

30. Zhang, S., Zeng, X., Ren, M., Mao, X., and Qiao, S., “Novel metabolic and physiological functions of branched chain amino acids: a review.,” J. Anim. Sci. Biotechnol., vol. 8, p. 10, 2017.10.1186/s40104-016-0139-zSearch in Google Scholar

31. Wolfe, R. R., “Branched-chain amino acids and muscle protein synthesis in humans: myth or reality?,” J. Int. Soc. Sports Nutr., vol. 14, p. 30, 2017.10.1186/s12970-017-0184-9Search in Google Scholar

32. Abe, H. et al., “Cloning and sequence analysis of a full length cDNA encoding human mitochodrial 3-oxoacyl-CoA thiolase,” Biochim. Biophys. Acta – Gene Struct. Expr., vol. 1216, no. 2, pp. 304-306, Nov. 1993.Search in Google Scholar

33. Harris, R. A. et al., “Regulation of the branched-chain alpha-ketoacid dehydrogenase and elucidation of a molecular basis for maple syrup urine disease.,” Adv. Enzyme Regul., vol. 30, pp. 245-63, 1990.10.1016/0065-2571(90)90021-SOpen DOISearch in Google Scholar

34. Wynn, R. M. et al., “Molecular Mechanism for Regulation of the Human Mitochondrial Branched-Chain α-Ketoacid Dehydrogenase Complex by Phosphorylation,” Structure, vol. 12, no. 12, pp. 2185-2196, Dec. 2004.Search in Google Scholar

35. Shafqat, N. et al., “A structural mapping of mutations causing succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency,” J. Inherit. Metab. Dis., vol. 36, no. 6, pp. 983-987, Nov. 2013.10.1007/s10545-013-9589-z382552423420214Open DOISearch in Google Scholar

36. Cotter, D. G., Schugar, R. C., and Crawford, P. A., “Ketone body metabolism and cardiovascular disease.,” Am. J. Physiol. Heart Circ. Physiol., vol. 304, no. 8, pp. H1060-76, Apr. 2013.10.1152/ajpheart.00646.2012362590423396451Search in Google Scholar

37. Fukao, T. et al., “Succinyl-CoA:3-Ketoacid CoA Transferase (SCOT): Cloning of the Human SCOT Gene, Tertiary Structural Modeling of the Human SCOT Monomer, and Characterization of Three Pathogenic Mutations,” Genomics, vol. 68, no. 2, pp. 144-151, Sep. 2000.10.1006/geno.2000.628210964512Search in Google Scholar

38. Williamson, D. H., Bates, M. W., Page, M. A., and Krebs, H. A., “Activities of enzymes involved in acetoacetate utilization in adult mammalian tissues.,” Biochem. J., vol. 121, no. 1, pp. 41-7, Jan. 1971.10.1042/bj121004111764845165621Search in Google Scholar

39. Tanaka, H., Kohroki, J., Iguchi, N., Onishi, M., and Nishimune, Y., “Cloning and characterization of a human orthologue of testis-specific succinyl CoA: 3-oxo acid CoA transferase (Scot-t) cDNA,” Mol. Hum. Reprod., vol. 8, no. 1, pp. 16-23, Jan. 2002.10.1093/molehr/8.1.16Search in Google Scholar

40. Matsubara, Y. et al., “Molecular cloning and nucleotide sequence of cDNAs encoding the precursors of rat long chain acyl-coenzyme A, short chain acyl-coenzyme A, and isovaleryl-coenzyme A dehydrogenases. Sequence homology of four enzymes of the acyl-CoA dehydrogenase family.,” J. Biol. Chem., vol. 264, no. 27, pp. 16321-31, Sep. 1989.Search in Google Scholar

41. Bixel, M. G., Shimomura, Y., Hutson, S. M., and Hamprecht, B., “Distribution of Key Enzymes of Branched-chain Amino Acid Metabolism in Glial and Neuronal Cells in Culture,” vol. 49, no. 3, pp. 407-418, 2001.10.1177/002215540104900314Search in Google Scholar

42. Chen, C.-H., Budas, G. R., Churchill, E. N., Disatnik, M.-H., Hurley, T. D., and Mochly-Rosen, D., “Activation of Aldehyde Dehydrogenase-2 Reduces Ischemic Damage to the Heart,” Science (80-. )., vol. 321, no. 5895, pp. 1493-1495, Sep. 2008.Search in Google Scholar

43. Kedishvili, N. Y., Popov, K. M., Rougraff, P. M., Zhao, Y., Crabb, D. W., and Harris, R. A., “CoA-dependent methylmalonate-semialdehyde dehydrogenase, a unique member of the aldehyde dehydrogenase superfamily: cDNA cloning, evolutionary relationships, and tissue distribution,” J. Biol. Chem., vol. 267, no. 27, pp. 19724-19729, 1992.Search in Google Scholar

44. Allahverdiyev, M., A. et al., “Aldehyde Dehydrogenase: Cancer and Stem Cells,” in Dehydrogenases, InTech, 2012.Search in Google Scholar

45. Ohgami, M., Takahashi, N., Yamasaki, M., and Fukui, T., “Expression of acetoacetyl-CoA synthetase, a novel cytosolic ketone body-utilizing enzyme, in human brain.,” Biochem. Pharmacol., vol. 65, no. 6, pp. 989-94, Mar. 2003.10.1016/S0006-2952(02)01656-8Open DOISearch in Google Scholar

46. Minois, N., “Molecular basis of the ‘anti-aging’ effect of spermidine and other natural polyamines – a mini-review.,” Gerontology, vol. 60, no. 4, pp. 319-26, 2014.10.1159/00035674824481223Open DOISearch in Google Scholar

47. Eisenberg, T. et al., “Induction of autophagy by spermidine promotes longevity,” Nat. Cell Biol., vol. 11, no. 11, pp. 1305-1314, Nov. 2009.Search in Google Scholar

48. Zhang, Y. et al., “Cerebral Microvascular Endothelial Cell Apoptosis after Ischemia: Role of Enolase-Phosphatase 1 Activation and Aci-Reductone Dioxygenase 1 Translocation,” Front. Mol. Neurosci., vol. 9, p. 79, Aug. 2016.10.3389/fnmol.2016.00079500540727630541Search in Google Scholar

49. Sen, G. L., Reuter, J. A., Webster, D. E., Zhu, L., and Khavari, P. A., “DNMT1 maintains progenitor function in self-renewing somatic tissue,” Nature, vol. 463, no. 7280, pp. 563-567, Jan. 2010.Search in Google Scholar

50. PAN, G. J., CHANG, Z. Y., SCHÖLER, H. R., and PEI, D., “Stem cell pluripotency and transcription factor Oct4,” Cell Res., vol. 12, no. 5-6, pp. 321-329, Dec. 2002.10.1038/sj.cr.729013412528890Open DOISearch in Google Scholar

51. Shi, G. and Jin, Y., “Role of Oct4 in maintaining and regaining stem cell pluripotency,” Stem Cell Res. Ther., vol. 1, no. 5, p. 39, Dec. 2010.10.1186/scrt39302544121156086Search in Google Scholar

52. Pan, G. and Thomson, J. A., “Nanog and transcriptional networks in embryonic stem cell pluripotency,” Cell Res., vol. 17, no. 1, pp. 42-49, Jan. 2007.10.1038/sj.cr.731012517211451Search in Google Scholar

53. Schwarz, B. A., Bar-Nur, O., Silva, J. C. R., and Hochedlinger, K., “Nanog Is Dispensable for the Generation of Induced Pluripotent Stem Cells,” Curr. Biol., vol. 24, no. 3, pp. 347-350, Feb. 2014.10.1016/j.cub.2013.12.050400702124461999Search in Google Scholar

eISSN:
2544-3577
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry