Open Access

Cathelicidin – Its Structure, Function and the Role in Autoimmune Diseases


Cite

[1] Bahar AA, Ren D. Antimicrobial Peptides. Pharmaceuticals (Basel) 2013; 6 (12): 1543-1575.10.3390/ph6121543387367624287494Search in Google Scholar

[2] Ballardini N, Johansson C, Lilja G, Lindh M, Linde Y, Scheynius A, Agerberth B. Enhanced expression of the antimicrobial peptide LL-37 in lesional skin of adults with atopic eqzema. Br J Dermatol 2009; 161 (1): 40-7.10.1111/j.1365-2133.2009.09095.x19309368Search in Google Scholar

[3] Boman HG. Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 1995; 13: 61-92.10.1146/annurev.iy.13.040195.0004257612236Search in Google Scholar

[4] Bosch X. Systemic lupus erythematosus and the neutrophil. N Engl J Med 2011; 365 (8): 758-60.10.1056/NEJMcibr110708521864171Search in Google Scholar

[5] Branzk N, Papayannopoulos V. Molecular mechanisms regulating NETosis in infection and disease. Semin Immunopathol. 2013; 35 (4): 513-530.10.1007/s00281-013-0384-6368571123732507Search in Google Scholar

[6] Brinkmann V, Zychlinsky A. Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol 2012; 198 (5): 773-83.10.1083/jcb.201203170343275722945932Search in Google Scholar

[7] [Bucki R, Leszczyńska K, Namiot A, Sokołowski W. Cathelicidin LL-37: A multitask antimicrobial peptide. Arch Immunol Ther Exp, 2010; 58: 15-25.10.1007/s00005-009-0057-220049649Search in Google Scholar

[8] Chamorro Ci, Weber G, Grönberg A, Pivarcsi A, Ståhle M. The human antimicrobial peptide LL-37 suppresses apoptosis in keratinocytes. J Invest Dermatol 2009; 129 (4): 937-44.10.1038/jid.2008.32118923446Search in Google Scholar

[9] Darrah E, Andrade F. NETs: the missing link between cell death and systemic autoimmune diseases? Front Immunol 2013; 3: 428.10.3389/fimmu.2012.00428354728623335928Search in Google Scholar

[10] Dombrowski Y, Schauber J. Cathelicidin LL-37: a defense molecule with a potential role in psoriasis pathogenesis. Exp Dermatol 2012; 21 (5): 327-30.10.1111/j.1600-0625.2012.01459.x22509827Search in Google Scholar

[11] Edström AML, Malm J, Frohm B, Martellini JA, Giwercman A, Mörgelin M, Cole AM, Sørensen OE. The major bactericidal activity of human seminal plasma is zinc-dependent and derived from fragmentation of the semenogelins. J Immunol 2008; 181 (5): 3413-3421.10.4049/jimmunol.181.5.3413258575418714013Search in Google Scholar

[12] Ganguly D, Chamilos G, Lande R, Gregorio J, Meller S, Facchinetti V, Homey B, Barrat FJ, Zal T, Gilliet M. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med 2009; 206 (9): 1983-94.10.1084/jem.20090480273716719703986Search in Google Scholar

[13] Garcia-Romo GS, Caielli S, Vega B, Connolly J, Allantaz F, Xu Z, Punaro M, Baisch J, Guiducci C, Coffman RL, Barrat FJ, Banchereau J, Pascual V. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med 2011; 3 (73): 73ra20.10.1126/scitranslmed.3001201314383721389264Search in Google Scholar

[14] Gaspar D, Salomé Veiga A, Castanho MARB. From antimicrobial to anticancer peptides. A review. Front Microbiol. 2013; 4: 294.Search in Google Scholar

[15] Gilliet M, Lande R. Antimicrobial peptides and self-DNA in autoimmune skin inflammation. Curr Opin Immunol 2008; 20 (4): 401-7.10.1016/j.coi.2008.06.00818611439Search in Google Scholar

[16] Girnita A, Zheng H, Grönberg A, Girnita L, Ståhle M. Identification of the cathelicidin peptide LL-37 as agonist for the type I insulin-like growth factor receptor. Oncogene 2012; 31(3): 352-65.10.1038/onc.2011.239326290021685939Search in Google Scholar

[17] Gupta AK, Joshi MB, Philippova M, Erne P, Hasler P, Hahn S, Resink TJ. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett 2010; 584 (14): 3193-7.10.1016/j.febslet.2010.06.00620541553Search in Google Scholar

[18] Hakkim A, Fürnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, Herrmann M, Voll RE, Zychlinsky A. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci USA 2010; 107 (21): 9813-8.10.1073/pnas.0909927107290683020439745Search in Google Scholar

[19] Hoffmann MH, Bruns H, Bäckdahl L, Neregård P, Niederreiter B, Herrmann M, Catrina AI, Agerberth B, Holmdahl R. The cathelicidins LL-37 and rCRAMP are associated with pathogenic events of arthritis in humans and rats. Ann Rheum Dis 2013; 72 (7): 1239-48.10.1136/annrheumdis-2012-20221823172753Search in Google Scholar

[20] Hu H, Wang CH, Guo X, Li W, Wang Y, He Q. Broad activity against porcine bacterial pathogens displayed by two insect antimicrobial peptides moricin and cecropin. B Mol Cells; 2013; 35 (2): 106-114.10.1007/s10059-013-2132-0388790423456332Search in Google Scholar

[21] Inomata M, Into T, Murakami Y. Suppressive effect of the antimicrobial peptide LL-37 on expression of IL-6, IL-8 and CXCL10 induced by Porphyromonas gingivalis cells and extracts in human gingival fibroblasts. Eur J Oral Sci 2010; 118: 574-58110.1111/j.1600-0722.2010.00775.x21083618Search in Google Scholar

[22] Jo EK. Innate immunity to mycobacteria: vitamin D and autophagy. Cell Microbiol 2010; 12 (8): 1026-35.10.1111/j.1462-5822.2010.01491.x20557314Search in Google Scholar

[23] Jönsson D, Nilsson BO. The antimicrobial peptide LL-37 is anti-inflammatory and proapoptotic in human periodontal ligament cells. J Periodontal Res 2012; 47 (3): 330-5.10.1111/j.1600-0765.2011.01436.x22066867Search in Google Scholar

[24] Kahlenberg JM, Carmona-Rivera C, Smith CK, Kaplan MJ. Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J Immunol 2013; 190 (3): 1217-26.10.4049/jimmunol.1202388355212923267025Search in Google Scholar

[25] Kreuter A, Jaouhar M, Skrygan M, Tigges C, Stücker M, Altmeyer P, Gläser R, Gambichler T. Expression of antimicrobial peptides in different subtypes of cutaneous lupus erythematosus. J Am Acad Dermatol 2011; 65 (1): 125-33.10.1016/j.jaad.2010.12.01221353331Search in Google Scholar

[26] Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J, Meller S, Chamilos G, Sebasigari R, Riccieri V, Bassett R, Amuro H, Fukuhara S, Ito T, Liu YJ, Gilliet M. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med 2011; 3 (73): 73ra19.10.1126/scitranslmed.3001180339952421389263Search in Google Scholar

[27] Leshner M, Wang S, Lewis C, Zheng H, Chen XA, Santy L, Wang Y. PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Front Immunol 2012; 3: 307.10.3389/fimmu.2012.00307346387423060885Search in Google Scholar

[28] Leung TF, Ching KW , Kong AP, Wong GW, Chan JC, Hon KL. Circulating LL-37 is a biomarker for eczema severity in children. J Eur Acad Dermatol. Venereol 2012; 26 (4): 518-22.Search in Google Scholar

[29] Maccari G, Di Luca M, Nifosí R, Cardarelli F, Signore G, Boccardi C, Bifone A. Antimicrobial peptides design by evolutionary multiobjective optimization. PLoS Comput Biol 2013; 9 (9).10.1371/journal.pcbi.1003212376400524039565Search in Google Scholar

[30] Mader S, Ewen C, Hancock RE, Bleackley RC. The human cathelicidin, LL-37, induces granzyme- mediated apoptosis in regulatory T cells. J Immunother 2011; 34 (3): 229-35.10.1097/CJI.0b013e318207ecdf21389875Search in Google Scholar

[31] Méndez-Samperio P. The human cathelicidin hCAP18/LL-37: a multifunctional peptide involved in mycobacterial infections. Peptides 2010; (9): 1791-8.10.1016/j.peptides.2010.06.01620600427Search in Google Scholar

[32] Méndez-Samperio P. Recent advances in the field of antimicrobial peptides in inflammatory diseases. Adv Biomed Res. 2013; 2: 50.10.4103/2277-9175.114192390533724516850Search in Google Scholar

[33] Metzler KD, Fuchs TA , Nauseef WM , Reumaux D, Roesler J, Schulze I, Wahn V, Papayannopoulos V, Zychlinsky A. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood 2011; 117 (3): 953-9.10.1182/blood-2010-06-290171303508320974672Search in Google Scholar

[34] Mookherjee N, Lippert DN, Hamill P, Falsafi R, Nijnik A, Kindrachuk J, Pistolic J, Gardy J, Miri P, Naseer M, Foster LJ, Hancock RE. Intracellular receptor for human host defense peptide LL-37 in monocytes. J Immunol 2009; 183 (4): 2688-96.10.4049/jimmunol.080258619605696Search in Google Scholar

[35] Neeli I, Khan SN, Radic M. Histone deimination as a response to inflammatory stimuli in neutrophils. J Immunol 2008; 180 (3): 1895-902.10.4049/jimmunol.180.3.189518209087Search in Google Scholar

[36] Nishinaka Y, Arai T, Adachi S, Takaori-Kondo A, Yamashita K. Singlet oxygen is essential for neutrophil extracellular trap formation. Biochem Biophys Res Commun 2011; 413 (1): 75-9.10.1016/j.bbrc.2011.08.05221871447Search in Google Scholar

[37] Niyonsaba F, Ushio H, Hara M, Yokoi H, Tominaga M, Takamori K, Kajiwara N, Saito H, Nagaoka I, Ogawa H, Okumura K. Antimicrobial peptides human beta-defensins and cathelicidin LL-37 induce the secretion of a pruritogenic cytokine IL-31 by human mast cells. J Immunol 2010; 184 (7): 3526-34.10.4049/jimmunol.090071220190140Search in Google Scholar

[38] Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 2008; 76 (9): 4176-82.10.1128/IAI.00318-08251944418591225Search in Google Scholar

[39] Park HJ, Cho DH, Kim HJ, Lee JY, Cho BK, Bang SI, Song SY, Yamasaki K, Di Nardo A, Gallo RL. Collagen synthesis is suppressed in dermal fibroblasts by the human antimicrobial peptide LL-37. J Invest Dermatol 2009; 129 (4): 843-50.10.1038/jid.2008.320266519018923445Search in Google Scholar

[40] Pazgier M, Ericksen B, Ling M, Toth E, Shi J, Li X, Galliher-Beckley A, Lan L, Zou G, Zhan G, Yuan W, Pozharski E, Lu W. Structural and functional analysis of the pro-domain of human cathelicidin, LL-37. Biochemistry 2013; 52 (9): 1547-1558 10.1021/bi301008r363432623406372Search in Google Scholar

[41] Ren SX, Cheng AS, To KF, Tong JH, Li MS, Shen J, Wong CC, Zhang L, Chan RL, Wang XJ, Ng SS, Chiu LC, Marquez VE, Gallo RL, Chan FK, Yu J, Sung JJ , Wu WK , Cho CH. Host immune defense peptide LL-37 activates caspase-independent apoptosis and suppresses colon cancer. Cancer Res 2012; 72 (24): 6512-23.10.1158/0008-5472.CAN-12-2359391028423100468Search in Google Scholar

[42] Schittek B. The antimicrobial skin barrier in patients with atopic dermatitis. Curr Probl Dermatol 2011; 41: 54-67.10.1159/00032329621576947Search in Google Scholar

[43] Soehnlein O, Zernecke A, Eriksson EE, Rothfuchs AG, Pham CT, Herwald H, Bidzhekov K, Rottenberg ME, Weber C, Lindbom L. Neutrophil secretion products pave the way for inflammatory monocytes. Blood 2008; 112 (4): 1461-71.10.1182/blood-2008-02-139634340054018490516Search in Google Scholar

[44] SHIN DM, JO EK. Antimicrobial peptides in innate immunity against Mycobacteria. Immune Netw 2011; 11(5): 245-52.10.4110/in.2011.11.5.245324299822194707Search in Google Scholar

[45] Sun CL, Zhang FZ, Li P, Bi LQ. LL-37 expression in the skin in systemic lupus erythematosus. Lupus 2011; 20 (9): 904-11.10.1177/096120331139851521562016Search in Google Scholar

[46] Suphasiriroj W, Mikami M, Shimomura H, Sato S. Specificity of antimicrobial peptide LL-37 to neutralize periodontopathogenic lipopolysaccharide activity in human oral fibroblasts. J Periodontol 2013; 84 (2): 256-64.10.1902/jop.2012.11065222443521Search in Google Scholar

[47] Termén S, Tollin M, Rodriguez E, Sveinsdóttir SH, Jóhannesson B, Cederlund A, Sjövall J, Agerberth B, Gudmundsson GH. PU.1 and bacterial metabolites regulate the human gene CAMP encoding antimicrobial peptide LL-37 in colon epithelial cells. Mol Immunol 2008; 45 (15): 3 947-55.10.1016/j.molimm.2008.06.02018657865Search in Google Scholar

[48] Tomasinsig L, Pizzirani C, Skerlavaj B, Pellegatti P, Gulinelli S, Tossi A, di Virgilio F, Zanetti M. The human cathelicidin LL-37 modulates the activities of the P2X7 receptor in a structure-dependent manner. J Biol Chem 2008; 283 (45): 30471-30481.10.1074/jbc.M802185200266214118765670Search in Google Scholar

[49] Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, Hayama R, Leonelli L, Han H, Grigoryev SA, Allis CD, Coonrod SA. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 2009; 184 (2): 205-13.10.1083/jcb.200806072265429919153223Search in Google Scholar

[50] Witkowska D, Bartyś A, Gamian A. Defensins and cathelicidins as natural peptide antibiotics. Postepy Hig Med Dosw, 2008; 62: 694-707.Search in Google Scholar

[51] Vandamme D, Landuyt B, Luyten W, Schoofs L. A comprehensive summary of LL-37, the factoctum human cathelicidin peptide. Cell Immunol 2012; 280 (1): 22-35.10.1016/j.cellimm.2012.11.00923246832Search in Google Scholar

[52] Villanueva E, Yalavarthi S, Berthier CC, Hodgin JB, Khandpur R, Lin AM, Rubin CJ, Zhao W, Olsen SH, Klinker M, Shealy D, Denny MF, Plumas J, Chaperot L, Kretzler M, Bruce AT , Kaplan MJ. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol 2011; 187 (1): 538-52.10.4049/jimmunol.1100450311976921613614Search in Google Scholar

[53] Yu Y, Su K. Neutrophil Extracellular Traps and Systemic Lupus Erythematosus J Clin Cell Immunol 2013; 4: 139.10.4172/2155-9899.1000139382691624244889Search in Google Scholar

[54] Zawrotniak M, Rapala-Kozik M. Neutrophil extracellular traps (NETs) - formation and implications. Acta Pol Bioch 2013; 60 (3): 277-284.10.18388/abp.2013_1983Search in Google Scholar

[55] Zhang Z, Cherryholmes G, Shively JE. Neutrophil secondary necrosis is induced by LL-37 derived from cathelicidin. J Leukoc Biol 2008; 84 (3): 780-8 10.1189/jlb.0208086251690118524973Search in Google Scholar

eISSN:
2080-2218
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry