Cite

1. Addepalli V, SV (2018) Catechin attenuates diabetic autonomic neuropathy in streptozotocin induced diabetic rats. Biomedicine & Pharmacotherapy 108:1517-1523.10.1016/j.biopha.2018.09.17930372853Search in Google Scholar

2. Akinmoladun AC, Oladejo CO, Josiah SS, Famusiwa CD, Ojo OB, Olaleye MT, Catechin (2018) quercetin and taxifolin improve redox and biochemical imbalances in rotenone-induced hepatocellular dysfunction: Relevance for therapy in pesticide-induced liver toxicity? Pathophysiology 25(4):365-371.10.1016/j.pathophys.2018.07.00230017742Search in Google Scholar

3. Ajiboye TO, Aliyu M, Isiaka I, Haliru FZ, Ibitoye OB, Uwazie JN, Muritala HF, Bella SA, Yusuf II, Mohammed AO (2016) Contribution of reactive oxygen species to (+)-catechin-mediated bacterial lethality. Chemico-Biological Interaction 258:276-287.10.1016/j.cbi.2016.09.01027634360Search in Google Scholar

4. Baranowska M, Suliborska K, Chrzanowski W, Kusznierewicz B, Namieśnik J, Bartoszek A (2018) The relationship between standard reduction potentials of catechins and biological activities involved in redox control. Redox Biology 17:355-366.10.1016/j.redox.2018.05.005600705129803149Search in Google Scholar

5. Bhatt LK, Addepalli V (2012) Potentiation of aspirin-induced cerebroprotection by minocycline: a therapeutic approach to attenuate exacerbation of transient focal cerebral ischaemia. Diabetes Vasc. Dis. Res. 9:25-34.10.1177/1479164111427753Search in Google Scholar

6. Boyanova L, Ilieva J, Gergova G, Vladimirov B, Nikolov R, Mitov I (2015) Honey and green/black tea consumption may reduce the risk of helicobacter pylori infection. Diagn. Microbiol. Infect. Dis. 82 (1):85-86.10.1016/j.diagmicrobio.2015.03.00125779680Search in Google Scholar

7. Caro AA, Davis A, Fobare S, Horan N, Ryan C, Schwab C (2019) Antioxidant and pro-oxidant mechanisms of (+) catechin in microsomal CYP2E1-dependent oxidative stress. Toxicology in Vitro 54:1-9.10.1016/j.tiv.2018.09.001628178030195042Open DOISearch in Google Scholar

8. Casanova E, Salvado J, Crescenti A, Gilbert-Ramos A (2019) Epigallocatechin gallate modulates muscle homeostasis in type 2 diabetes and obesity by targeting energetic and redox pathways: A narrative review. International Journal of Molecular Sciences 20:532.10.3390/ijms20030532638714330691224Search in Google Scholar

9. Chang EH, Huang J, Lin Z, Brown AC (2019) Catechin-mediated restructuring of a bacterial toxin inhibits activity. BBA - General Subjects 1863:191-198.10.1016/j.bbagen.2018.10.011623571630342156Search in Google Scholar

10. Chunmei D, Jiabo W, Weijun K, Cheng P, Xioache X (2010) Investigation of antimicrobial activity of catechin on Escherichia coli growth by microcalorimetry. Environmental Toxicology and Pharmacology 30:284-288.10.1016/j.etap.2010.08.00221787661Search in Google Scholar

11. Di Leo N, Battaglini M, Berger L, Giannacinni M, Dente L, Hampel S, Vittorio O, Cirillo G, Raffa V (2017) A catehin nanoformulation inhibits WM266 melanoma cell proliferation, migration and associated neo-angiogenesis. European Journal of Pharmaceutics and Biopharmaceutics 114:1-10.10.1016/j.ejpb.2016.12.02428088004Search in Google Scholar

12. Diaz-Gomez R, Lopez-Solis R, Obreque-Slier E, Toledo-Araya H (2013) Comparative antibacterial effect of gallic acid and catechin against Helicobacter pylori. LWT-Food Science and Technology 54:331-335.10.1016/j.lwt.2013.07.012Search in Google Scholar

13. Diaz-Gomez R, Toledo-Araya H, Lopez-Solis R, Obreque-Slier E (2014) Combined effect of gallic acid and catechin against Eschericia coli. LWT-Food Science and Technology 59:896-900.10.1016/j.lwt.2014.06.049Search in Google Scholar

14. Fournier-Larente J, Morin MP, Grenier D (2016) Green tea catechins potentiate the effect of antibiotics and modulate adherence and gene expression in Porphiromonas gingivalis. Archives of Oral Biology 65:35-43.10.1016/j.archoralbio.2016.01.01426849416Open DOISearch in Google Scholar

15. Ganeshpurkar A, Saluj AK (2018) Protective effect of catechin on humoral and cell mediated immunity in rat model. International Immunopharmacology 54:261-266.10.1016/j.intimp.2017.11.02229172063Open DOISearch in Google Scholar

16. Gomes FMS, da Cunha XJ, dos Santos JFS, de Matos YMLS, Tintino SR, de Freitas TS, Coutinho HDM (2018) Evaluation of antibacterial and modifying action of catechin antibiotics in resistant strains. Microbial Pathogenesis 115:175-178.10.1016/j.micpath.2017.12.05829275130Search in Google Scholar

17. Grzesik M, Naparlo K, Bartosz G, Sadowska-Bartosz I (2018) Antioxidant properties of catechins: Comparison with other antioxidants. Food Chemistry 241:480-492.10.1016/j.foodchem.2017.08.11728958556Search in Google Scholar

18. Hashemipour MA, Lotfi S, Torabi M, Sharifi F, Ansari M, Ghassemi A, Sheikhshoaie S (2017) Evaluation of the effects of three plant species (Myrtus Communis L., Camellia Sinensis L., Zataria Multiflora Boiss.) on the healing process of intraoral ulcers in rats. J. Dent. 18 (2):127–135.Search in Google Scholar

19. Ide K, Matsuoka N, Yamada H, Furushima D, Kawakami K (2018) Effects of Tea Catechins on Alzheimer’s Disease: Recent Updates and Perspectives. Molecules 23:2357.10.3390/molecules23092357622514530223480Open DOISearch in Google Scholar

20. Ikeda A, Iso H, Yamagishi K, Iwasaki, M Yamaji T, Miura T, Sawada N, Inoue M, Tsugane S (2018) Plasma tea catechins and risk of cardiovascular disease in middle-aged Japanese subjects: The JPHC study. Atherosclerosis 277:90-97.10.1016/j.atherosclerosis.2018.08.00130176569Search in Google Scholar

21. Kim AR, Kim KM, Byun MR, Hwang JH, Park JI, Oh HT, Kim HK, Jeong MG, Hwang ES, Hong JH (2017) Catechins activate muscle stem cells by Myf5 induction and stimulate muscle regeneration. Biochem Biophys Res Commun. 489(2):142-148.10.1016/j.bbrc.2017.05.11428546002Search in Google Scholar

22. Kimura-Ohba S, Yang Y (2016) Oxidative DNA Damage Mediated by Intranuclear MMP Activity Is Associated with Neuronal Apoptosis in Ischemic Stroke. Oxid. Med. Cell. Longev. http://dx.doi.org/10.1155/2016/692732810.1155/2016/6927328474809426925194Open DOISearch in Google Scholar

23. Koo SI, Noh SK (2007) Green Tea as Inhibitor of the Intestinal Absorption of Lipids: Potential Mechanism for its Lipid-Lowering Effect. J Nutr Biochem. 18(3):179-183.10.1016/j.jnutbio.2006.12.005Open DOISearch in Google Scholar

24. Li F, Jin H, Xiao J, Yin X, Liu X, Li D, Huang Q (2018) The simultaneous loading of catechin and quercetin on chitosan-based nanoparticles as effective antioxidant and antibacterial agent. Food Research International 111:351-360.10.1016/j.foodres.2018.05.038Search in Google Scholar

25. Liao Y, Fu X, Zhou H, Rao W, Zeng L, Yang Z (2019) Visualized analysis of within-tissue spatial distribution of specialized metabolites in tea (Camellia sinensis) using desorption electrospray ionization imaging mass spectrometry. Food Chemistry 292: 204-210.10.1016/j.foodchem.2019.04.055Search in Google Scholar

26. Lill G, Voit S, Schro K, Weber AA (2003) Complex effects of different green tea catechins on human platelets. FEBS Letters. 546:265-270.10.1016/S0014-5793(03)00599-4Search in Google Scholar

27. Manach C, Williamson G, Morand C, Scalbert A, Remesy C (2005) Bioavailability and bioefficacy of polyphenols in humans, I. Review of 97 bioavailability studies. Am J Clin Nutr 81:230-242.10.1093/ajcn/81.1.230S15640486Open DOISearch in Google Scholar

28. Mangels DR, Mohler ER (2017) Catechins as Potential Mediators of Cardiovascular Health. Arterioscler Thromb Vasc Biol. 37(5):757-763.10.1161/ATVBAHA.117.30904828336557Open DOISearch in Google Scholar

29. Matsui T (2015) Condensed catechins and their potential health benefits. European Journal of Pharmacology 795:495-502.10.1016/j.ejphar.2015.09.01726386288Search in Google Scholar

30. Miyamoto T, Zhang X, Ueyama Y, Kitichalermkiat AK, Nakayama M, Suzuki Y, Ozawa T, Mitani A, Shigemune N, Shimatani K, Yui K, Honjoh K (2017) Development of novel monoclonal antibodies directed against catechins for investigation of antibacterial mechanism of catechins. Journal of Microbiological Methods 137:6-13.10.1016/j.mimet.2017.03.01428347725Search in Google Scholar

31. Nakayama M, Shimatani K, Ozawa T, Shigemune N, Tsugukuni T, Tomiyama D, Kurahachi M, Nonaka A, Miyamoto T (2013) A study of the antibacterial mechanism of catechins: Isolation and indentification of Escherichia coli cell surface proteins that interact with epigallocatechin gallate. Food Control 33:433-439.10.1016/j.foodcont.2013.03.016Open DOISearch in Google Scholar

32. Naveeda M, BiBi J, Kamboh AA, Suheryani I, Kakar I, Fazlani SA, Fang XF, Kalhoro SA, Yunjuan L, Kakar MU, El-Hackk MEA, Noreldin AE, Zhixiang S, LiXia C, Hui ZX (2018) Pharmacological values and therapeutic properties of black tea (Camellia sinensis): A comprehensive overview, Biomedicine & Pharmacotherapy 100:521-531.10.1016/j.biopha.2018.02.04829482046Open DOISearch in Google Scholar

33. Pan Z, Zhoua Y, Luoa X, Ruanb Y, Zhoua L, Wanga Q, Yanc Y, Liua Q, Chend J (2018) Against NF-κB/thymic stromal lymphopoietin signaling pathway, catechin alleviates the inflammation in allergic rhinitis. International Immunopharmacology 61:241-248.2989486310.1016/j.intimp.2018.06.01129894863Search in Google Scholar

34. Pastoriza S, Mesías M, Cabrera C, Rufiánhenares JA (2017) Healthy properties of green and white teas: an update. Food Funct. 8:2650-2662.2864030710.1039/C7FO00611JSearch in Google Scholar

35. Rothwell JA, Madrid-Gambin F, Garcia-Aby M, Andres-Lacueva C, Logue C, Gallagher AM, Mack C, Kulling SE, Gao Q, Pratici G, Dragsted LO, Scalbert A (2018) Biomarkers of intake for coffee, tea, and sweetened beverages. Genes&Nutrition doi: 10.1186/s12263-018-0607-510.1186/s12263-018-0607-5603075529997698Open DOISearch in Google Scholar

36. Roychoudhury S, Agarwal A, Virk G, Cho CL (2017) Potential role of geen tea catechins in the management of oxidative stress-associated infertility. Reproductive Biomedicie Online 34:487-498.10.1016/j.rbmo.2017.02.00628285951Search in Google Scholar

37. Saito H, Tamura M, Imai K, Ishigami T, Ochiai K (2013) Catechin inhibits Candida albicansi dimorphism by distructing Cek1 phosphorylation and cAMP synthesis. Microbial Pathogenesis. 56:16-20.10.1016/j.micpath.2013.01.00223337884Open DOISearch in Google Scholar

38. Santos LFS, Stolfo A, Calloni C, Salvador M (2017) Catechin and epicatechin reduce mithochondrial dysfunction and oxidative stress induced by amiodarone in human lung fibroblasts. Journal of Arrythmia 33:220-225.10.1016/j.joa.2016.09.004545941428607618Search in Google Scholar

39. Shahid A, Ali R, Ali N, Hasan SK, Bernwal P, Afzal SM, Vafa A, Sultana S (2016) Modulatory effects of catechin hydrate against genotoxicity, oxidative stress, inflammation and apoptosis induced by benzo(a)pyrene in mice. Food and Chemical Toxicology 92:64-74.10.1016/j.fct.2016.03.02127020533Open DOISearch in Google Scholar

40. Shay J, Elbaz HA, Lee I, Zielske SP, Malek MH, Hüttemann M, Molecular mechanisms and therapeutic effects of (–)-epicatechin and other polyphenols in cancer, inflammation, diabetes, and neurodegeneration. Oxid. Med. Cell. Longev. http://dx.doi.org/10.1155/2015/18126010.1155/2015/181260447709726180580Open DOISearch in Google Scholar

41. Shishikura Y, Khokhar S, Murray BS (2006) Effect of tea polyphenols on emulsificat on of olive oil in a small intestine model system. J Agric Food Chem 54:1906-13.10.1021/jf051988p16506852Search in Google Scholar

42. Suryavanshi SV, Kulkarni YA (2017) NF-κβ: a potential target in the management of vascular complications of diabetes, Front. Pharmacol. 8:1-12.10.3389/fphar.2017.00798Search in Google Scholar

43. Thielecke F, Boschmann M (2009) The potential role of green tea catechins in the prevention of the metabolic syndrome-A review. Phytochemistry 70:11-24.10.1016/j.phytochem.2008.11.01119147161Open DOISearch in Google Scholar

44. Watson RR, Preedy VR, Zibadi S (2014) Polyphenols in Human Health and Disease. Imprint Academic Press https://doi.org/10.1016/C2011-1-09286-X10.1016/C2011-1-09286-XOpen DOISearch in Google Scholar

45. Xiang LP, Wang A, Ye JH, Zheng XQ, Polito C, Lu JL, Li QS, Liang YR (2016) Suppressive effects of tea catechins on breast cancer. Nutrients 8(8) https://doi.org/10.3390/nu8080458.10.3390/nu8080458499737327483305Search in Google Scholar

46. Yang H, Xue X, Li H, Apandi SN, Tay-Chan SC, Ong SP, Tian EF (2018) The relative antioxidant activity and steric structure of green tea catechins-A kinetic approach. Food chemistry 257:399-405.10.1016/j.foodchem.2018.03.04329622228Search in Google Scholar

47. You HL, Huang CC, Chen CJ, Chang CC, Liao PL, Huang ST (2018) Anti-pandemic influenza A (H1N1) virus potential of catechin and gallic acid. Journal of the Chinese Medical Association 81:458-468.10.1016/j.jcma.2017.11.007710504329287704Search in Google Scholar

48. Zhang H, Jung J, Zhao Y (2016) Preparation, characterization and evaluation of antibacterial activity of catechins and catechins-Zn complex loaded β-chitosan nanoparticles of different particle sizes. Carbohydrate Polymers 216:82-91.10.1016/j.carbpol.2015.10.03626686108Search in Google Scholar

eISSN:
2668-5124
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry, Plant Science, Pharmacy, other