Cite

1. Honsawek S, Parkpian V. Tissue engineering for bone regeneration: stem cells and growth factors in biomaterial scaffolds. Asian Biomed. 2007; 1:229-38.Search in Google Scholar

2. Kokich VG. Maxillary lateral incisor implants: planning with the aid of orthodontics. J Oral Maxillofac Surg. 2004; 62:48-56.10.1016/j.joms.2004.05.210Search in Google Scholar

3. Guo H, Su J, Wei J, Kong H, Liu C. Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering. Acta Biomater. 2009; 5:268-78.10.1016/j.actbio.2008.07.018Open DOISearch in Google Scholar

4. Wang Y, Rudym DD, Walsh A, Abrahamsen L, Kim HJ, Kim HS, et al. In vivo degradation of threedimensional silk fibroin scaffolds. Biomaterials. 2008; 29:3415-28.10.1016/j.biomaterials.2008.05.002Open DOISearch in Google Scholar

5. Palmer EM, Beilfuss BA, Nagai T, Semnani RT, Badylak SF, Van Seventer GA. Human helper T cell activation and differentiation is suppressed by porcine small intestinal submucosa. Tissue Eng. 2002; 8: 893-900.10.1089/10763270260424259Search in Google Scholar

6. Allman AJ, McPherson TB, Badylak SF, Merrill LC, Kallakury B, Sheehan C, et al. Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation. 2001; 71:1631-40.10.1097/00007890-200106150-00024Search in Google Scholar

7. Kropp BP. Small-intestinal submucosa for bladder augmentation: a review of preclinical studies. World J Urol. 1998; 16:262-7.10.1007/s003450050064Open DOISearch in Google Scholar

8. Graham MF, Diegelmann RF, Elson CO, Lindblad WJ, Gotschalk N, Gay S, et al. Collagen content and types in the intestinal strictures of Crohn’s disease. Gastroenterology. 1988; 94:257-65.10.1016/0016-5085(88)90411-8Search in Google Scholar

9. Voytik-Harbin SL, Brightman AO, Kraine MR, Waisner B, Badylak SF. Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem. 1997; 67:478-91.10.1002/(SICI)1097-4644(19971215)67:4<478::AID-JCB6>3.0.CO;2-PSearch in Google Scholar

10. Hodde J. Naturally occurring scaffolds for soft tissue repair and regeneration. Tissue Eng. 2002; 8:295-308.10.1089/107632702753725058Search in Google Scholar

11. Bello YM, Falabella AF, Eaglstein WH. Tissueengineered skin. Current status in wound healing. Am J Clin Dermatol. 2001; 2:305-13.10.2165/00128071-200102050-00005Open DOISearch in Google Scholar

12. Zhang Y, Kropp BP, Moore P, Cowan R, Furness PD, Kolligian ME, et al. Coculture of bladder urothelial and smooth muscle cells on small intestinal submucosa: potential applications for tissue engineering technology. J Urol. 2000; 164:928-34.10.1016/S0022-5347(05)67220-5Search in Google Scholar

13. Gastel JA, Muirhead WR, Lifrak JT, Fadale PD, Hulstyn MJ, Labrador DP. Meniscal tissue regeneration using a collagenous biomaterial derived from porcine small intestine submucosa. Arthroscopy. 2001; 17:151-9.10.1053/jars.2001.2095911172244Open DOISearch in Google Scholar

14. Honsawek S, Powers RM, Wolfinbarger L. Extractable bone morphogenetic protein and correlation with induced new bone formation in an in vivo assay in the athymic mouse model. Cell Tissue Bank. 2005; 6: 13-23.10.1007/s10561-005-1445-415735897Open DOISearch in Google Scholar

15. Honsawek S, Dhitiseith D, Phupong V. Gene expression characteristics of osteoblast differentiation in human umbilical cord mesenchymal stem cells induced by demineralized bon ematrix. Asian Biomed. 2007; 1: 383-91.Search in Google Scholar

16. Urist MR. Bone: formation by autoinduction. Science. 1965;150:893-9.10.1126/science.150.3698.8935319761Search in Google Scholar

17. Honsawek S, Dhitiseith D, Phupong V. Effects of demineralized bone matrix on proliferation and osteogenic differentiation of mesenchymal stem cells from human umbilical cord. J Med Assoc Thai. 2006; 89S:S189-95.Search in Google Scholar

18. Badylak S, Arnoczky S, Plouhar P, Haut R, Mendenhall V, Clarke R, et al. Naturally occurring extracellular matrix as a scaffold for musculoskeletal repair. Clin Orthop Relat Res. 1999; 367S:S333-43.10.1097/00003086-199910001-0003210546657Search in Google Scholar

19. Zhang M, Powers RM Jr, Wolfinbarger L Jr. Effect(s) of the demineralization process on the osteoinductivity of demineralized bone matrix. J Periodontol. 1997; 68: 1085-92.10.1902/jop.1997.68.11.10859407401Search in Google Scholar

20. Wolfinbarger L Jr, Zheng Y. An in vitro bioassay to assess biological activity in demineralized bone. In Vitro Cell Dev Biol Anim. 1993; 29A:914-6.10.1007/BF026342288167913Search in Google Scholar

21. Honsawek S, Dhitiseith D. Content of bone morphogenetic protein-4 in human demineralized bone: relationship to donor age and ability to induce new bone formation. J Med Assoc Thai. 2005; 88S:S260-5.Search in Google Scholar

22. MacIntosh AC, Kearns VR, Crawford A, Hatton PV. Skeletal tissue engineering using silk biomaterials. J Tissue Eng Regen Med. 2008; 2:71-80.10.1002/term.6818383453Search in Google Scholar

23. Ahmed TA, Dare EV, Hincke M. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev. 2008; 14:199-215.10.1089/ten.teb.2007.043518544016Open DOISearch in Google Scholar

24. Vert M. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007; 32:762-98.10.1016/j.progpolymsci.2007.05.017Search in Google Scholar

25. Kropp BP, Badylak S, Thor KB. Regenerative bladder augmentation: a review of the initial preclinical studies with porcine small intestinal submucosa. Adv Exp Med Biol. 1995; 385:229-35.10.1007/978-1-4899-1585-6_28Search in Google Scholar

26. Kim MS, Ahn HH, Shin YN, Cho MH, Khang G, Lee HB. An in vivo study of the host tissue response to subcutaneous implantation of PLGA- and/or porcine small intestinal submucosa-based scaffolds. Biomaterials. 2007; 28:5137-43.10.1016/j.biomaterials.2007.08.014Open DOISearch in Google Scholar

27. Kim MS, Lee MS, Hong KD, Song IB, Lee HR, Lee SJ, et al. Preparation of sponge using porcine small intestinal submucosa and their applications as a scaffold and a wound dressing. Adv Exp Med Biol. 2006; 585:209-22.10.1007/978-0-387-34133-0_15Search in Google Scholar

28. Voytik-Harbin SL, Badylak SF. Induction of osteogenic activity by small intestinal submucosa in rat calvaria non-union defects. Trans First SIS Symposium. 1996: 31.Search in Google Scholar

29. Suckow MA, Voytik-Harbin SL, Terril LA, Badylak SF. Enhanced bone regeneration using porcine small intestinal submucosa. J Invest Surg. 1999; 12:277-87.10.1080/089419399272395Open DOISearch in Google Scholar

30. Wada Y, Kataoka H, Yokose S, Ishizuya T, Miyazono K, Gao YH, et al. Changes in osteoblast phenotype during differentiation of enzymatically isolated rat calvaria cells. Bone. 1998; 22:479-85.10.1016/S8756-3282(98)00039-8Open DOISearch in Google Scholar

31. Moore DC, Pedrozo HA, Crisco JJ 3rd, Ehrlich MG. Preformed grafts of porcine small intestine submucosa (SIS) for bridging segmental bone defects. J Biomed Mater Res A. 2004; 69:259-66.10.1002/jbm.a.2012315057998Search in Google Scholar

32. Dejardin LM, Arnoczky SP, Ewers BJ, Haut RC, Clarke RB. Tissue-engineered rotator cuff tendon using porcine small intestine submucosa. Histologic and mechanical evaluation in dogs. Am J Sports Med. 2001; 29:175-84.10.1177/0363546501029002100111292042Open DOISearch in Google Scholar

eISSN:
1875-855X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine