Cite

Introduction

J. P. King [7] introduced a modification of the well known Bernstein polynomials which preserve constant and the x2 test function. This modification provide better approximation over the usual Bernstein polynomials. In addition, a modification of Szászirakyan operators is presented that reproduces the functions 1 and e2ax, a > 0 fixed and also are proved uniform convergence, order of approximation via a certain weighted modulus of continuity, and a quantitative Voronovskaya-type theorem by T. Acar [13]. Many different applications of similar type of operators have studied in [7]-[9].

In [1], Jakimovski and Leviatan constructed a new type of operators Pn by using Appell polynomials given as below; g(u)=n=0anun,g(1)1 $\begin{array}{} \displaystyle g(u)=\sum_{n=0}^\infty a_{n}u^n, g(1)\neq 1 \end{array} $ be an analytic function in the disk pk(x)=i=0kaixki(ki)!, $\begin{array}{} \displaystyle p_{k}(x)=\sum_{i=0}^k a_{i}\frac{x^{k-i}}{(k-i)!}, \end{array} $ k ∈ ℕ be the Appell polynomials defined by the identity

g(u)eux=k=0pk(x)uk. $$\begin{array}{} \displaystyle g(u)e^{ux}=\sum_{k=0}^\infty p_{k}(x)u^k. \end{array}$$

Let E[0, ∞) indicate the class of functions of exponential type on [0, ∞) which satisfy the property |f(x)| ≤ β eαx for some finite constants α, β > 0.

In [1], the authors considered the operator Pn:EC[0, ∞)

Pn(f;x)=enxg(1)k=0pknxfkn. $$\begin{array}{} \displaystyle P_{n}(f;x)=\frac{e^{-nx}}{g(1)}\sum_{k=0}^{\infty}p_{k}\left(nx\right)f\left(\frac{k}{n}\right). \end{array}$$

Remark 1

If g(1) = 1 in (1), we obtain pk(x)=xkk! $\begin{array}{} \displaystyle p_{k}(x)=\frac{x^k}{k!} \end{array}$ and we get classical Szász-Mirakjan operator which is given by

Sn(f;x)=enxk=0nxkk!fkn. $$\begin{array}{} \displaystyle S_{n}(f;x)=e^{-nx}\sum_{k=0}^{\infty}\frac{\left(nx\right)^k}{k!}f\left(\frac{k}{n}\right). \end{array}$$

B. Wood in [6] proved that the operators Pn are positive if and only if ang(1)0 $\begin{array}{} \displaystyle \frac{a_{n}}{g(1)}\geq 0 \end{array} $ for n ∈ ℕ. In [5], Ciupa studied the rate of convergence of these operators. The convergence of these operators in a weighted space of functions on a positive semi-axis and estimate the approximation by using a new type of weighted modulus of continuity introduced by A.D. Gadjiev and A. Aral in [8] were studied in [3].

Main Results

In this section, we consider the following modified form of generalization of Jakimovski-Leviatan operators

En(f;x)=enan(x)g(1)k=0aknan(x)kk!fkn $$\begin{array}{} \displaystyle E_{n}(f;x)=\frac{e^{-na_{n}(x)}}{g(1)}\sum_{k=0}^{\infty}a_{k}\frac{\left(na_{n}(x)\right)^k}{k!}f\left(\frac{k}{n}\right) \end{array}$$

x ≥ 0, n ∈ ℕ such that the conditions

En(et;x)=ex $$\begin{array}{} \displaystyle E_{n}(e^{-t};x)=e^{-x} \end{array}$$

are satisfied for all x and all n. Therefore by simple computation, we get

ex=enan(x)e1/n1. $$\begin{array}{} \displaystyle e^{-x}=e^{na_{n}(x)\left[e^{-1/n}-1\right]}. \end{array} $$

This implies

an(x)=xn(e1/n1) $$\begin{array}{} \displaystyle a_{n}(x)=\frac{-x}{n(e^{-1/n}-1)} \end{array} $$

in other words we can write as

an(x)=xe1/nn(e1/n1). $$\begin{array}{} \displaystyle a_{n}(x)=\frac{xe^{1/n}}{n(e^{1/n}-1)}. \end{array} $$

Thus the operator (3) can be rewritten the following form:

En(f;x)=exe1/n(1e1/n)g(1)k=0ak(1)kk!xe1/n(e1/n1)kfkn $$\begin{array}{} \displaystyle E_{n}(f;x)=\frac{e^{\frac{xe^{1/n}}{(1-e^{1/n})}}}{g(1)}\sum_{k=0}^{\infty}a_{k}\frac{(-1)^k}{k!}\left(\frac{xe^{1/n}}{(e^{1/n}-1)}\right)^kf\left(\frac{k}{n}\right) \end{array} $$

Lemma 1

The moment for the operator (3) may be given as

EneAt;x=enan(x)e A / n1. $$\begin{array}{} \displaystyle E_{n}\left(e^{At};x\right)=e^{na_{n}(x)\left[e^{A/n}-1\right]}. \end{array} $$

Proof

From (5), we have

EneAt;x=enan(x)g(1)k=0aknan(x)kk!eAkn=1g(1)k=0akenan(x)nan(x)eA/nkk!=enan(x)eA/n1 $$\begin{array}{} \begin{split} \displaystyle E_{n}\left(e^{At};x\right)=&\frac{e^{-na_{n}(x)}}{g(1)}\sum_{k=0}^{\infty}a_{k}\frac{\left(na_{n}(x)\right)^k}{k!}e^{A\frac{k}{n}}\\ \displaystyle=&\frac{1}{g(1)}\sum_{k=0}^{\infty}a_{k}\frac{e^{-na_{n}(x)}\left(na_{n}(x)e^{A/n}\right)^k}{k!}\\ \displaystyle=&e^{na_{n}(x)\left[e^{A/n}-1\right]} \end{split} \end{array}$$

Lemma 2

If the operator En is defined by (3), then with er(t) = tr, r = 0, 1, 2... the moments as follows;

Ene0;x=1Ene1;x=an(x)Ene2;x=an2(x)+an(x)/n $$\begin{array}{} \begin{split} \displaystyle E_{n}\left(e_{0};x\right)=&1\\ \displaystyle E_{n}\left(e_{1};x\right)=&a_{n}(x)\\ \displaystyle E_{n}\left(e_{2};x\right)=&a_{n}^2(x)+a_{n}(x)/n\\ \end{split} \end{array} $$

Lemma 3

By Lemma (2) the central moments for En operator

Enϕxm(t);x=En(tx)m;x,m=0,1,2 $$\begin{array}{} \displaystyle E_{n}\left(\phi_{x}^m(t);x\right)=E_{n}\left((t-x)^m;x\right), m=0,1,2 \end{array} $$

are given by

Enϕx0(t);x=1Enϕx1(t);x=an(x)xEnϕx2(t);x=(an(x)x)2+an(x)/n. $$\begin{array}{} \begin{split} \displaystyle E_{n}\left(\phi_{x}^0(t);x\right)=&1\\ \displaystyle E_{n}\left(\phi_{x}^1(t);x\right)=&a_{n}(x)-x\\ \displaystyle E_{n}\left(\phi_{x}^2(t);x\right)=&(a_{n}(x)-x)^2+a_{n}(x)/n. \end{split} \end{array}$$

Furthermore,

limnnxn(e1/n1)x=x2, $$\begin{array}{} \displaystyle \lim_{n\rightarrow \infty}n\left(-x{n(e^{-1/n}-1)}-x\right)=\frac{x}{2}, \end{array}$$

limnn(an(x)x)2+an(x)n=x. $$\begin{array}{} \displaystyle \lim_{n\rightarrow \infty}n\left((a_{n}(x)-x)^2+\frac{a_{n}(x)}{n}\right)=x. \end{array}$$

A Quantitative Result

In this section, we represent the rate of uniform convergence for the En operators. In [12], the uniform convergence estimate for any sequence of positive linear operators were established by Boyanov and Veselinov. In [11], Holhoş presented the following theorem:

Theorem 1

([11]) If a sequence of linear positive operators Ln:C*[0, ∞) → C*[0, ∞) satisfy the equalities

Lne01[0,)=αnLn(et)ex[0,)=βnLn(e2t)e2x[0,)=γn $$\begin{array}{c} \begin{split} \displaystyle \left\|L_{n}e_{0}-1\right\|_{[0,\infty)}=&\alpha_{n}\\ \displaystyle\left\|L_{n}(e^{-t})-e^{-x}\right\|_{[0,\infty)}=&\beta_{n}\\ \displaystyle\left\|L_{n}(e^{-2t})-e^{-2x}\right\|_{[0,\infty)}=&\gamma_{n}\\ \end{split} \end{array} $$

then, for fC*[0, ∞), we have

Lnff[0,)αnf[0,)+(2+αn)ω(f,αn+2βn+γn), $$\begin{array}{} \displaystyle \left\|L_{n}f-f\right\|_{[0,\infty)}\leq \alpha_{n}\left\|f\right\|_{[0,\infty)}+(2+\alpha_{n})\omega^*(f,\sqrt{\alpha_{n}+2\beta_{n}+\gamma_{n}}), \end{array}$$

where the modulus of continuity is defined as:

ω(f,δ)=supexetδx,t>0f(t)f(x). $$\begin{array}{} \displaystyle \omega^*(f,\delta)=\sup_{\left|e^{-x}-e^{-t}\right|\leq \delta \atop x,t \gt0}\left|f(t)-f(x)\right|. \end{array}$$

Now, we will proof the quantitative estimate for En operators defined by (3) which preserve e–x function:

Theorem 2

For fC*[0, ∞), we get

Enff[0,)2ωf;2βn+γn, $$\begin{array}{} \displaystyle \left\|E_{n}f-f\right\|_{[0,\infty)}\leq 2\omega^*\left(f;\sqrt{2\beta_{n}+\gamma_{n}}\right), \end{array} $$

where

βn=En(et)ex[0,),γn=En(e2t)e2x[0,). $$\begin{array}{} \begin{split} \displaystyle \beta_{n}=& \left\|E_{n}(e^{-t})-e^{-x}\right\|_{[0,\infty)},\\ \displaystyle\gamma_{n}=& \left\|E_{n}(e^{-2t})-e^{-2x}\right\|_{[0,\infty)}. \end{split} \end{array}$$

Here, βn and γn tend to zero as n goes to infinity, therefore En converges uniformly to f.

Proof

By using the equalities (3) and (5), we get

Eneλt;x=enan(x)g(1)k=0aknan(x)kk!eλkn=enan(x)enan(x)eλ/n=enan(x)eλ/n1=exeλ/neλ/n1e1/n1. $$\begin{array}{} \begin{split} \displaystyle E_{n}\left(e^{-\lambda t};x\right)=&\frac{e^{-na_{n}(x)}}{g(1)}\sum_{k=0}^{\infty}a_{k}\frac{\left(na_{n}(x)\right)^k}{k!}e^{-\lambda \frac{k}{n}}\\ \displaystyle=&e^{-na_{n}(x)}e^{na_{n}(x)e^{-\lambda /n}}\\ \displaystyle=&e^{na_{n}(x)\left(e^{-\lambda /n}-1\right)}\\ \displaystyle=&e^{\frac{x}{e^{\lambda/n}}\left(\frac{e^{\lambda /n}-1}{e^{-1/n}-1}\right)}. \end{split} \end{array} $$

Firstly, let take λ = 1. Using the inequality

uvlnulnv<u+v2 $$\begin{array}{} \displaystyle \frac{u-v}{\ln u-\ln v}\lt\frac{u+v}{2} \end{array}$$

for 0 < v < u, we get

exunex<1un2xexun+xex. $$\begin{array}{} \displaystyle e^{-xu_{n}}-e^{-x}\lt\frac{1-u_{n}}{2}\left(xe^{-xu_{n}}+xe^{-x}\right). \end{array}$$

On the other hand, since

maxx>0xebx=1eb $$\begin{array}{} \displaystyle \max_{x\gt0}xe^{-bx}=\frac{1}{eb} \end{array}$$

for every b > 0, we can write as

exunex<1un21eun+1e=1un22eun $$\begin{array}{} \begin{split} \displaystyle e^{-xu_{n}}-e^{-x}\lt&\frac{1-u_{n}}{2}\left(\frac{1}{eu_{n}}+\frac{1}{e}\right)\\ =&\frac{1-u_{n}^2}{2eu_{n}} \end{split} \end{array} $$

where un=1e1/ne1/n1e1/n1. $\begin{array}{} \displaystyle u_{n}=-\frac{1}{e^{1/n}}\left(\frac{e^{1/n}-1}{e^{-1/n}-1}\right). \end{array} $ Thus

En(et;x)e x [0,)=βn<1un22eun0, $$\begin{array}{} \displaystyle \left\|E_{n}(e^{-t};x)-e^{-x}\right\|_{[0,\infty)}=\beta_{n}\lt \frac{1-u_{n}^2}{2eu_{n}}\rightarrow 0, \end{array}$$

as n → ∞.

For λ = 2, we have

exvne2x<2vn2xexvn+xe2x<2vn21evn+12e=4vn24evn $$\begin{array}{} \begin{split} \displaystyle e^{-xv_{n}}-e^{-2x}\lt&\frac{2-v_{n}}{2}\left(xe^{-xv_{n}}+xe^{-2x}\right)\\ \displaystyle\lt&\frac{2-v_{n}}{2}\left(\frac{1}{ev_{n}}+\frac{1}{2e}\right)\\ \displaystyle=&\frac{4-v_{n}^2}{4ev_{n}} \end{split} \end{array} $$

where vn=1e2/ne2/n1e2/n1. $\begin{array}{} \displaystyle v_{n}=-\frac{1}{e^{2/n}}\left(\frac{e^{2/n}-1}{e^{-2/n}-1}\right). \end{array}$ Therefore

En(e2t;x)e2x[0,)=γn<4vn24evn0, $$\begin{array}{} \displaystyle \left\|E_{n}(e^{-2t};x)-e^{-2x}\right\|_{[0,\infty)}=\gamma_{n}\lt \frac{4-v_{n}^2}{4ev_{n}}\rightarrow 0, \end{array}$$

as n → ∞. Hence the proof is complete.□

A Quantitative Voronovskaya type theorem

Now, we will proof a Quantitative Voronovskaya type theorem for En operators.

Theorem 3

Let f', f˝C*[0, ∞). Then, we have

n[En(f;x)f(x)]x2f(x)x2f(x)rn(x)f(x)+qn(x)f(x)+22gn(x)+x+sn(x)ω(f;1/n) $$\begin{array}{} \displaystyle \left|n[E_{n}(f;x)-f(x)]-\frac{x}{2}f'(x)-\frac{x}{2}f''(x)\right| \leq \left|r_{n}(x)\right|\left|f'(x)\right|+\left|q_{n}(x)\right|\left|f''(x)\right|+2\left(2g_{n}(x)+x+s_{n}(x)\right)\omega^*(f'';1/ \sqrt{n}) \end{array}$$

where

rn(x)=nEn(ϕx1(t);x)x2qn(x)=12nEn(ϕx2(t);x)xsn(x)=n2En(exet)4;xn2En(tx)4;x. $$\begin{array}{} \begin{split} \displaystyle r_{n}(x)=&nE_{n}(\phi_{x}^1(t);x)-\frac{x}{2} \\ q_{n}(x)=&\frac{1}{2}\left(nE_{n}(\phi_{x}^2(t);x)-x\right) \\ \displaystyle s_{n}(x)=&\sqrt{n^2E_{n}\left((e^{-x}-e^{-t})^4;x\right)}\sqrt{n^2E_{n}\left((t-x)^4;x\right)}. \end{split} \end{array}$$

Proof

By the Taylor’s expansion of f, we have

f(t)=f(x)+f(x)(tx)+f(x)2(tx)2+h(t,x)(tx)2, $$\begin{array}{} \displaystyle f(t)=f(x)+f'(x)(t-x)+\frac{f''(x)}{2}(t-x)^2+h(t,x)(t-x)^2, \end{array} $$

where

h(t,x)=f(η)f(x)2 $$\begin{array}{} \displaystyle h(t,x)=\frac{f''(\eta)-f''(x)}{2} \end{array} $$

is a continous function and η is a number between x and t. Applying the En operator to both sides of equality (18), we get

En(f;x)f(x)f(x)En(ϕx1(t);x)f(x)2En(ϕx2(t);x)En(h(t,x)ϕx2(t);x). $$\begin{array}{} \displaystyle \left|E_{n}(f;x)-f(x)-f'(x)E_{n}(\phi_{x}^1(t);x)-\frac{f''(x)}{2}E_{n}(\phi_{x}^2(t);x)\right| \leq \left|E_{n}(h(t,x)\phi_{x}^2(t);x)\right|. \end{array} $$

n[En(f;x)f(x)]x2f(x)x2f(x)nEn(ϕx1(t);x)x2f(x)+12nEn(ϕx2(t);x)xf(x)+nEn(h(t,x)ϕx2(t);x). $$\begin{array}{} \begin{split} \displaystyle \left|n[E_{n}(f;x)-f(x)]-\frac{x}{2}f'(x)-\frac{x}{2}f''(x)\right|\leq& \left|nE_{n}(\phi_{x}^1(t);x)-\frac{x}{2}\right|\left|f'(x)\right|\\ \displaystyle+&\frac{1}{2}\left|nE_{n}(\phi_{x}^2(t);x)-x\right|\left|f''(x)\right|+\left|nE_{n}(h(t,x)\phi_{x}^2(t);x)\right|. \end{split} \end{array}$$

Take rn(x)=nEn(ϕx1(t);x)x2 $\begin{array}{} \displaystyle r_{n}(x)=nE_{n}(\phi_{x}^1(t);x)-\frac{x}{2} \end{array} $ and qn(x)=12nEn(ϕx2(t);x)x. $\begin{array}{} \displaystyle q_{n}(x)=\frac{1}{2}\left(nE_{n}(\phi_{x}^2(t);x)-x\right). \end{array}$ Thus, we get

n[En(f;x)f(x)]x2f(x)x2f(x)rn(x)f(x)+qn(x)f(x)+nEn(h(t,x)ϕx2(t);x) $$\begin{array}{} \displaystyle \left|n[E_{n}(f;x)-f(x)]-\frac{x}{2}f'(x)-\frac{x}{2}f''(x)\right| \leq \left|r_{n}(x)\right|\left|f'(x)\right|+\left|q_{n}(x)\right|\left|f''(x)\right|+\left|nE_{n}(h(t,x)\phi_{x}^2(t);x)\right| \end{array}$$

In order to complete the proof of the theorem, we must find the last term of the inequality (19). Here, we also know that the equalities given in (12) and (13) rn(x)→ 0, qn(x)→ 0 as n → ∞ at any point x ∈ [0, ∞).

Using the property

f(t)f(x)1+(etex)2δ2ω(f;δ),δ>0 $$\begin{array}{} \displaystyle \left|f(t)-f(x)\right|\leq\left(1+\frac{(e^{-t}-e^{-x})^2}{\delta^2}\right)\omega^*(f;\delta), \delta\gt0 \end{array} $$

we have

h(t,x)1+(etex)2δ2ω(f;δ). $$\begin{array}{} \displaystyle \left|h(t,x)\right|\leq\left(1+\frac{(e^{-t}-e^{-x})^2}{\delta^2}\right)\omega^*(f'';\delta). \end{array}$$

If |exet| ≤ δ, then |h(t,x)| ≤ 2ω*(;δ). In case |exet|> δ, then we get |h(t, x)| ≤ 2(etex)2δ2ω(f;δ). $\begin{array}{} \displaystyle 2\frac{(e^{-t}-e^{-x})^2}{\delta^2}\omega^*(f'';\delta). \end{array}$ Hence

h(t,x)21+(etex)2δ2ω(f;δ). $$\begin{array}{} \displaystyle \left|h(t,x)\right|\leq2\left(1+\frac{(e^{-t}-e^{-x})^2}{\delta^2}\omega^*(f'';\delta)\right). \end{array}$$

By using this inequality and applying Cauchy-Schwarz inequality, we get

n.Enh(t,x)ϕx2(t);x2nω(f;δ)Enϕx2(t);x+2nδ2ω(f;δ)En(exet)4;xEn(tx)4;x. $$\begin{array}{} \begin{split} \displaystyle n.E_{n}\left(\left|h(t,x)\right|\phi_{x}^2(t);x\right)\leq& 2n\omega^*(f'';\delta)E_{n}\left(\phi_{x}^2(t);x\right)\\ \displaystyle+&\frac{2n}{\delta^2}\omega^*(f'';\delta)\sqrt{E_{n}\left((e^{-x}-e^{-t})^4;x\right)}\sqrt{E_{n}\left((t-x)^4;x\right)}. \end{split} \end{array}$$

Choosing δ=1/n $\begin{array}{} \displaystyle \delta=1/\sqrt{n} \end{array}$ and letting

sn(x)=n2En(exet)4;xn2En(tx)4;x, $$\begin{array}{} \displaystyle s_{n}(x)=\sqrt{n^2E_{n}\left((e^{-x}-e^{-t})^4;x\right)}\sqrt{n^2E_{n}\left((t-x)^4;x\right)}, \end{array} $$

we obtain our result which was claim in the theorem.□

Corollary 1

Let f, f˝C*[0, ∞). Then we get

limnn[En(f;x)f(x)]=x2[f(x)+f(x)] $$\begin{array}{} \displaystyle \lim_{n\rightarrow \infty}n[E_{n}(f;x)-f(x)]=\frac{x}{2}[f'(x)+f''(x)] \end{array}$$

for any x ∈ [0, ∞).

Conclusion

In this paper, it is studied the theoretical aspects of Jakimovski-Leviatan operators which reproduce constant and ex functions. A theorem for determining uniform convergence order of a quantitative estimate for the modified operators are presented. We also prove a quantitative Voronovskya type theorem. For the following studies, the convergence of the operators by illustrative graphics in Maple to certain functions are investigated.

eISSN:
2444-8656
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics