Open Access

Identification of the initial temperature from the given temperature data at the left end of a rod


Cite

Introduction

In this study, we consider the following optimal control problem:

Choose a control v(x) ∈ L2(0, l) and a corresponding u such that the pair (v, u) minimizes the functional

Jαv=0Tu0,t;vyt2dt+αvxL20,l2 $$\begin{array}{} \displaystyle J_{\alpha }\left(v\right)=\int^T_0{{\left[u\left(0,t;v\right)-y\left(t\right)\right]}^2dt}+\alpha {\left\|v\left(x\right)\right\|}^2_{L_2\left(0,l\right)} \end{array}$$

subject to the parabolic problem;

utk(x)uxx=fx,t,x,tΩ:=0,l×0,Tux,0=vx,x0,lux0,t=0,ul,t=0,t0,T $$\begin{array}{} \displaystyle u_t-{\left(k(x)u_x\right)}_x=f\left(x,t\right),\, \, \, \, \left(x,t\right)\in \Omega :=\left(0,l\right)\times \left(0,T\right] \\\displaystyle u\left(x,0\right)=v\left(x\right),\, \, \, x\in \left(0,l\right) \\\displaystyle u_x\left(0,t\right)=0,\, \, \, u\left(l,t\right)=0\, ,\, \, \, \, t\in \left(0,T\right] \end{array}$$

where yL2(0, T) is a given target function and f is a known function.

L2(0, l) is the Banach space consisting of all measurable functions on (0, l) having the norm

vL20,l=0lvx2dx1/2. $$\begin{array}{} \displaystyle {\left\|v\right\|}_{L_2\left(0,l\right)}={\left(\int^l_0{{\left(v\left(x\right)\right)}^2dx}\right)}^{1/2}. \end{array}$$

With the choice of the functional in (1), we mention the observation of u(0, t; v) in L2(0, T) for the control v(x) ∈ L2(0, l). In (1), α > 0 is the parameter of regularization and it can be found by the Tikhonov regularization method [14].

Let admissible set Vad be closed and convex subset of the space L2(0, l). Let’s denote by u(x, t; v) the solution of the parabolic problem (2), corresponding to the given element vVad.

Many papers have already been published to study the control problems for the parabolic equations. Bushuyev [1] has controlled the function f(x) in the parabolic problem ut + Au = σ(x, t)f(x) with Dirichlet boundary conditions. Munch and Periago [2] have studied the optimal distribution of the support of the internal null control of minimal L2–norm for the 1-D heat equation. In [3], the numerical approximation of an optimal control problem for a linear heat equation have been presented by Munch and Periago. Yu [4] has established the equivalence of minimal time and minimal norm control problems for the semi-linear heat equations. Zheng, Guo and Ali [5] have investigated the stability of the optimization problem for a multidimensional heat equation. Zheng and Yin [6] have studied the optimal time for the time optimal control problem governed by an internally controlled semi-linear heat equation. In [7, 8, 9], the inverse problems with different controls and cost functions have been investigated.

Lions [10] has examined the optimal control problem of the initial condition for the parabolic systems from the measured temperature at the final time. Hasanov and Mukanova [11] have investigated the problem of determining of the initial condition f(x) in the heat equation ut = (k(x)ux)x with boundary conditions u(0, t) = 0 and ux(l, t) = 0 from the measured final data uT(x) = u(x, T).

In this study, we formulate the control problem whose solution implies the minimization of the distance measured in a suitable norm between the solution of the problem at left end and a given target. The aim of this work is to determine the optimal function v in closed and convex set VadL2(0, l) such that

Jαv<Jαv,vVad. $$\begin{array}{} \displaystyle J_{\alpha }\left(v^*\right) \lt J_{\alpha }\left(v\right),\, \, \, \forall v\in V_{ad}. \end{array}$$

The plan of the paper is as follows: In section 2, we give the existence of the unique optimal solution of the problem (1)-(2) by getting the weak lower semi-continuity of the cost functional Jα. In section 3, we find the gradient of the cost functional via adjoint problem approach and constitute the minimizing sequence for the functional (1). Finally, we obtain the approximate optimal control function for a numerical example.

Existence and uniqueness of the optimal solution

It is assumed that

fL2Ω,kxL0,l,0<k1kxk2,x0,l. $$\begin{array}{} \displaystyle f\in L_2\left(\Omega \right),\, \, k\left(x\right)\in L_{\infty }\left(0,l\right),\, \, {0 \lt k}_1\le k\left(x\right)\le k_2,\, \, \forall x\in \left(0,l\right). \end{array}$$

We can define the generalized solution u(x, t) of the problem (2) as a element of 1,0(Ω) satisfying the following identity

0T0luηt+kuxηxdxdt=0T0lfx,tηx,tdxdt+0lv(x)η(x,0)dx $$\begin{array}{} \displaystyle \int^T_0{\int^l_0{\left(-u{\eta }_t+ku_x{\eta }_x\right)dxdt}}=\int^T_0{\int^l_0{f\left(x,t\right)\eta \left(x,t\right)dxdt}}+\int^l_0{v(x)\eta (x,0)dx} \end{array}$$

for all ηĤ1,1(Ω) and η(x, T) = 0 (see [12]). Here H1,1(Ω) is the Sobolev space of functions with the norm [12]

uH1,1Ω=Ωu2+ux2+ut2dxdt1/2 $$\begin{array}{} \displaystyle {\left\|u\right\|}_{H^{1,1}\left(\Omega \right)}={\left(\int_{\Omega }{\left[u^2+u^2_x+u^2_t\right]dxdt}\right)}^{{1}/{2}} \end{array}$$

and Ĥ1,1(Ω) := {ηH1,1(Ω) : η (l, t) = 0, ∀ t ∈ (0, T]}.

Here V1,0(Ω) = C([0, T];L2(0, l)) ∩ L2((0, T); H1(0, l)) and 1,0(Ω) is a subspace of V1,0(Ω) whose elements equal to zero for x = l.

It is known that for every v(x) ∈ L2(0, l), the boundary value problem (2) admits a unique generalized solution uV1,0(Ω) (see [7], [12]).

We give the solvability of the optimal control problem (1)-(2). Let’s give the increment △v to v such that v + △vVad and show the solution of (2) corresponding v + △v by u = u(x, t; v + △v) . Then the function △u = uu will be the solution of the following difference problem:

utkxuxx=0,x,tΩ:=0,l×0,Tux,0=vx,x0,lux0,t=0,ul,t=0,t0,T. $$\begin{array}{} \displaystyle {\triangle u}_t-\ {\left(k\left(x\right){\triangle u}_x\right)}_x=0,\, \, \, \, \left(x,t\right)\in \Omega :=\left(0,l\right)\times \left(0,T\right] \\ \triangle u\left(x,0\right)=\triangle v\left(x\right),\, \, \, x\in \left(0,l\right) \\ \triangle u_x\left(0,t\right)=0,\, \, \triangle u\left(l,t\right)=0,\, \, \, \, t\in \left(0,T\right]. \end{array}$$

Lemma 1

Letu be the solution of the problem (5). Then the following estimate is valid:

u(0,.)L20,Tc1vL20,l $$\begin{array}{} \displaystyle {\left\|\triangle u(0,.)\right\|}_{L_2\left(0,T\right)}\le c_1{\left\|\triangle v\right\|}_{L_2\left(0,l\right)} \end{array}$$

Proof

The proof Lemma 1 can be obtained same as in [7].

We can rewrite the cost functional Jα(v) as

Jαv=πv,v2Lv+b $$\begin{array}{} \displaystyle J_{\alpha }\left(v\right)=\pi \left(v,v\right)-2Lv+b \end{array}$$

for

πv,v=0T[u0,t;vu0,t;0]2dt+α0lv2dx, $$\begin{array}{} \displaystyle \pi \left(v,v\right)=\int^T_0{[{u\left(0,t;v\right)-u\left(0,t;0\right)]}^2}dt+\alpha \int^l_0{v^2}dx, \end{array}$$

Lv=0Tu0,t;vu0,t;0ytu0,t;0dt $$\begin{array}{} \displaystyle Lv=\int^T_0{\left[u\left(0,t;v\right)-u\left(0,t;0\right)\right]\left[y\left(t\right)-u\left(0,t;0\right)\right]dt} \end{array}$$

and

b=0T[ytu0,t;0]2dt $$\begin{array}{} \displaystyle b=\int^T_0{{[y\left(t\right)-u\left(0,t;0\right)]}^2}dt \end{array}$$

The functional π(v, v) defined by (8) is bilinear and symmetric. Further, we can write

πv,vαvL20,l2 $$\begin{array}{} \displaystyle \left|\ \pi \left(v,v\right)\right|\ge \alpha {\left\|v\right\|}^2_{L_2\left(0,l\right)} \end{array}$$

and this implies the coercivity of π(v, v). Using Lemma 1, we can prove that the continuities of the functional π(v, v) in (8) and the functional Lv in (9).

Theorem 2

Let π(v, v) be a continuous symmetric bilinear coercive form and Lv be a continuous linear form. Then there exists a unique element v*Vad such that

Jαv=InfvVadJαv. $$\begin{array}{} \displaystyle J_{\alpha }\left(v^*\right)={\mathop{{\rm Inf}}_{v\, \in \, V_{ad}} J_{\alpha }\left(v\right)\, }. \end{array}$$

Proof

Proof of this theorem can easily be obtained by showing the weak lower semi-continuity of Jα same as in [10].

Theorem 3

Let the assumptions of Theorem 2 remain valid. The minimizing element v of Vad is characterized by

πv,vvLvv $$\begin{array}{} \displaystyle \pi \left(v^*,v-v^*\right)\, \ge L\left(v-v^*\right) \end{array}$$

forvVad [10].

Inequalities of the type given by (11) are termed variational inequalities.

Frechet differential of the cost functional and numerical example

Let us introduce the Lagrangian L(u, v, ψ) given by

Lu,v,ψ=Jαv+ψ,utkxuxxfx,tL2Ω $$\begin{array}{} \displaystyle L\left(u,v,\psi \right)=J_{\alpha }\left(v\right)+{\left\langle \psi ,u_t-{\left(k\left(x\right)u_x\right)}_x-f\left(x,t\right)\right\rangle }_{L_2\left(\Omega \right)} \end{array}$$

where the functional Jα(v) is defined by (1) and the function ψ(x, t) is the Lagrange multiplier.

Using the δL = 0 stationarity condition, we have the following adjoint problem:

ψt+k(x)ψxx=0,x,tΩ:=0,l×0,Tψx,T=0,x0,lk0ψx0,t=2u0,t;vyt,ψl,t=0,t0,T $$\begin{array}{} \displaystyle {\psi }_t+{\left(k(x){\psi }_x\right)}_x=0,\, \, \, \, \left(x,t\right)\in \Omega :=\left(0,l\right)\times \left(0,T\right] \\ \psi \left(x,T\right)=0,\, \, \, \, x\in \left(0,l\right) \\ k\left(0\right){\psi }_x\left(0,t\right)=2\left[u\left(0,t;v\right)-y\left(t\right)\right],\, \, \, \psi \left(l,t\right)=0,\, \, \, t\in \left(0,T\right] \end{array}$$

Now, we investigate the variation of the functional Jα(v). The difference functional

Jα(v) = Jα(v + △v) – Jα(v) is such as

Jαv=0T2u0,t;v2ytu0,tdt+0T[u0,t]2dt+α0l(2v+v)vdx $$\begin{array}{} \triangle J_{\alpha }\left(v\right)=\int^T_0{\left[2u\left(0,t;v\right)-2y\left(t\right)\right]\triangle u\left(0,t\right)dt} \\ \qquad\qquad~ +~ \int^T_0{{[\triangle u\left(0,t\right)]}^2}dt+\alpha \int^l_0{(2v+\triangle v)\triangle vdx} \end{array}$$

Using the identity between the difference problem and the adjoint problem the equation (14) can be rewritten as follows:

Jαv=0lψx,0+2αvvdx+0T[u0,t]2dt+α0l(v)2dx. $$\begin{array}{} \displaystyle \triangle J_{\alpha }\left(v\right)=\int^l_0{\left\{-\psi \left(x,0\right)+2\alpha v\right\}\triangle vdx}+ \int^T_0{{[\triangle u\left(0,t\right)]}^2}dt+\alpha \int^l_0{{(\triangle v)}^2dx}{\rm \, }. \end{array}$$

The Lemma 1 implies that the second integral in (15) is bounded by term o( vL20,l2 $\begin{array}{} \displaystyle {\left\|v\right\|}^2_{L_2\left(0,l\right)} \end{array}$). So Frechet differential at vVad of the cost functional Jα(v) can be defined as follows:

Jαv=ψx,0+2αv. $$\begin{array}{} \displaystyle J'_{\alpha }\left(v\right)=-\psi \left(x,0\right)+2\alpha v. \end{array}$$

We use the conjugate gradient method that is known to be very successful in linear optimization problems in order to compute a numerical approximation of the optimal control. According to this method the minimizing sequence is set by

vk+1=vkβkJαvk,k=0,1,2, $$\begin{array}{} \displaystyle v_{k+1}=v_k-{\beta }_kJ'_{\alpha }\left(v_k\right),\, \, \, \, k=0,1,2,\cdots \end{array}$$

where v0Vad is a given initial iteration and βk is a small enough relaxation parameter and assures that

Jαvk+1<Jαvk. $$\begin{array}{} \displaystyle J_{\alpha }\left(v_{k+1}\right) \lt J_{\alpha }\left(v_k\right). \end{array}$$

Concerning the choice of the parameter βk, there are several possibilities and these can be found in any optimization books.

Lemma 4

The cost functional (1) is strongly convex with the strong convexity constant α.

From the following strongly convex functional definition:

Jαλv1+1λv2λJαv1+1λJαv2χλ1λv1v2L20,l2 $$\begin{array}{} \displaystyle J_{\alpha }\left({\lambda v}_1+\left(1-\lambda \right)v_2\right)\le {\lambda J}_{\alpha }\left(v_1\right)+\left(1-\lambda \right)J_{\alpha }\left(v_2\right)-\chi \lambda \left(1-\lambda \right){\left\|v_1-v_2\right\|}^2_{L_2\left(0,l\right)} \end{array}$$

we can see that the cost functional (1) is strongly convex with the constant χ = α.

Using the strongly convexity of the cost functional, we can write the following inequality

vkv2JαvkJαv,k=0,1,2, $$\begin{array}{} \displaystyle {\left\|v_k-v^*\right\|}^2\le \left(J_{\alpha }\left(v_k\right)-J_{\alpha }\left(v^*\right)\right),\, \, k=0,1,2,\cdots \end{array}$$

This inequality show that the minimizing sequence (16) converges to optimal solution v.

Example 5

Let us assume in the problem (2) that k(x) = 1, l = 1, T = 1 and f(x, t) = et(3 – x2). We use the cost functional Jαv=01u0,t;vet2dt+αvxL20,l2 $\begin{array}{} J_{\alpha }\left(v\right)=\int^1_0{{\left[u\left(0,t;v\right)-e^t\right]}^2dt}+\alpha {\left\|v\left(x\right)\right\|}^2_{L_2\left(0,l\right)} \end{array}$ and want to solve the minimizing problem Jα(v) = inf Jα(v). We solve the direct problem (2) by the Fourier method. Starting with the initial element v0 = 0 and choosing α = 0.1 and using the minimizing sequence (16) for βk = 0.01, then after 100 iterations, we obtain the following approximate solution

v100=+0.884590.88459x0.000017cos32.98672x0.00020cos29.84513x0.00025cos26.70353x0.00033cos23.56194x0.00044cos20.42035x0.00062cos17.27875x0.00092cos14.13716x0.00153cos10.99557x0.00301cos7.85398x0.00834cos4.71238x0.07512cos1.57079x $$\begin{array}{} \displaystyle \begin{array}{l} ~v_{100}=+0.88459-0.88459x-0.000017{\cos \left(32.98672x\right)\, } \\ \qquad\qquad -0.00020{\cos \left(29.84513x\right)\, }-0.00025{\cos \left(26.70353x\right)\, } \\ \qquad\qquad -0.00033{\cos \left(23.56194x\right)\, }-0.00044{\cos \left(20.42035x\right)\, } \\ \qquad\qquad -0.00062{\cos \left(17.27875x\right)\, }-{{\rm 0.00092cos} \left(14.13716x\right)\, } \\ \qquad\qquad -0.00153{\cos \left(10.99557x\right)\, }-0.00301{{\rm c}{\rm os} \left(7.85398x\right)\, } \\ \qquad\qquad -0.00834{\cos \left(4.71238x\right)\, }-0.07512{\cos \left(1.57079x\right)\, } \end{array} \end{array}$$

The values of the cost functional for this element is J0.1(v100) = 0.04794 and the norm of the difference between the approximate solution and the exact solution is v100vL20,12 $\begin{array}{} \displaystyle {\left\|v_{100}-v^*\right\|}^2_{L_2\left(0,1\right)} \end{array}$ = 0.082440.

We give the values of the u0,t;v100etL20,12andv100L20,12 $\begin{array}{} \displaystyle {\left\|u\left(0,t;v_{100}\right)-e^t\right\|}^{\ 2}_{L_2\left(0,1\right)}~~ and ~~{\left\|v_{100}\right\|}^2_{L_2\left(0,1\right)} \end{array}$ for some αs in Table 1.

Some α, u0,t;v100etL20,12andv100L20,12 $\begin{array}{} \displaystyle {\left\|u\left(0,t;v_{100}\right)-e^t\right\|}^{\ 2}_{L_2\left(0,1\right)}~~ and ~~{\left\|v_{100}\right\|}^2_{L_2\left(0,1\right)} \end{array}$ values

α u0,t;;vetL20,12 $\begin{array}{} \displaystyle {\left\|{\mathbf u}\left({\mathbf 0},{\mathbf t};;{\mathbf v}\right){\mathbf -}{{\mathbf e}}^{{\mathbf t}}\right\|}^{{\mathbf \, }{\mathbf 2}}_{{{\mathbf L}}_{{\mathbf 2}}\left({\mathbf 0},{\mathbf 1}\right)} \end{array}$ vL20,12 $\begin{array}{} \displaystyle {\left\|{\mathbf v}\right\|}^{{\mathbf 2}}_{{{\mathbf L}}_{{\mathbf 2}}\left({\mathbf 0},{\mathbf 1}\right)} \end{array}$
0.1 0.02703 0.20904
0.2 0.03356 0.18194
0.3 0.04015 0.16205
0.4 0.04673 0.14153
0.5 0.05348 0.12598
1.0 0.08095 0.07398
2.0 0.11747 0.03282

Conclusions

In this paper, we prove that the initial temperature can be controlled from the target u(0, t) in the heat problem. The Frechet differential of the cost functional considered can be obtained by using the adjoint problem. The minimizing sequence (16) converges to the optimal solution of the optimal control problem considered. We give a numerical example which shows that theoretical results are verified.

eISSN:
2444-8656
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics