Open Access

Fully discrete convergence analysis of non-linear hyperbolic equations based on finite element analysis

   | Nov 08, 2019

Cite

Introduction

With the rapid development of science and technology, a variety of differential equation mathematical models have been pouring out [1, 2]. The hyperbolic equation (group) model is one of the most important ones. It has a wide application background in natural science. It belongs to one-dimensional wave equation describing string vibration. Similarly, two-dimensional or three-dimensional wave equation can be derived from the vibration of elastic film or three-dimensional elastomer [4]. In addition, the three-dimensional wave equation can also be derived for the propagation of acoustic wave or electromagnetic wave. For example, the Maxwell equations describing electromagnetic fields are curled to simplify the standard vector wave equations [5]. When studying the propagation of high-frequency electromagnetic waves along transmission lines in time and space, the concepts of current intensity and voltage between coaxial and double lines of transmission lines can be introduced. They can be used as physical quantities to characterise the propagation process of such electromagnetic waves, and the concepts of resistance and inductance per unit transmission line can be used to describe the characteristics of dielectrics. According to the law, a set of telegraph equations can be established, which can be simplified to a standard wave equation without loss [6]. In addition, hydrodynamic problems in aviation, meteorology, ocean, petroleum exploration and other fields are reduced to solving non-linear hyperbolic partial differential equations (PDEs; known as conservation laws in foreign literature). The basic difficulty of this kind of equation is that the solution appears discontinuity. When the solution is solved by high-precision explicit scheme, the oscillation will occur at the discontinuity [7]. Hyperbolic equations (systems) are widely used in many fields of mathematical physics and have profound physical background, such as wave equation. Therefore, they have been paid more attention by mathematicians and engineering technicians. It is necessary to study them comprehensively and thoroughly both theoretically and numerically [8, 9]. In this paper, the full discrete convergence analysis of the non-linear hyperbolic equation based on finite element analysis is presented. The full discrete convergence of the non-linear hyperbolic equation is analysed comprehensively [10].

Application Theory of Algorithm
Full Discrete and Convergence Analysis of Second-Order Non-linear Hyperbolic Equations
Question Description

The following mixed problems are considered:

hx,uutti,j=1dxiaijx,uuxji=1dbix.uuxi=fx,ux,tK×0,Tux,0=0,utx,0=0ux,t=0x,tK×0,T $$\begin{array}{} \displaystyle \left\{ {\begin{array}{*{20}{c}} {h\left( {x,u} \right){u_{tt}} - \sum\limits_{i,j = 1}^d {\frac{\partial }{{\partial {x_i}}}\left( {{a_{ij}}\left( {x,u} \right)\frac{{\partial u}}{{\partial {x_j}}}} \right) - \sum\limits_{i = 1}^d {{b_i}\left( {x.u} \right)u{x_i} = } f\left( {x,u} \right)\left( {x,t} \right) \in K \times \left[ {0,T} \right]} }\\ {u\left( {x,0} \right) = 0,{u_t}\left( {x,0} \right) = 0}\\ {u\left( {x,t} \right) = 0_{}^{}\left( {x,t} \right) \in \partial K \times \left[ {0,T} \right]} \end{array}} \right. \end{array}$$

where utt=2ut2,uxi=uxi; $\begin{array}{} {u_{tt}} = \frac{{{\partial ^2}u}}{{\partial {t^2}}}, u{x_i} = \frac{{\partial u}}{{\partial {x_i}}}; \end{array}$ K is a fully smooth bounded open domain in Rd, and the boundary ∂ K is smooth [11].

For the semi-discrete or fully discrete finite element method of the non-linear hyperbolic equation with only x or h(x, u) ≡ 1 in h(x, u), there are some research results [12, 13]. If u is included in h(x, u), the error estimation will suffer or fail to reach the convergence order [14] when defining the non-linear or predictor–corrector scheme, and the error equation cannot be obtained by direct weighting method. In this paper, the finite element scheme of second-order nonsexual hyperbolic equation [15] is defined when h contains u. Question (1) is assumed as the following: for (x, p) ∈ K × R,

aij(⋅, ⋅) ∈ C2(K × R); |aij(x, p)| ≤ C1, [aij(x, p)] p, [aij(x, p)]p2 , it is bounded to P. aij (x, p) = aji(x, p), i,h=1daijx,prirjC0i=1dri2, $\begin{array}{} \displaystyle \sum\limits_{i,h = 1}^d {{a_{ij}}\left( {x,p} \right){r_i}{r_j} \ge {C_0}} \sum\limits_{i = 1}^d {{{\left| {{r_i}} \right|}^2}}, \end{array}$ among them, ∀ r = (r1, r2, …, rd) ∈ Rd.

C2h(x, p) ≤ C3, h(x, p) is Lipschitz continuous with respect to p.

bi(x, p) and [bi(x, p)] p are bounded [16]. (i = 1, 2, …, d), bi(∘, ∘) ∈ C1(K × R).

f(x, p) is Lipschitz continuous with respect to p, f(x, 0) ∈ L2(K).

u, ut, uttL([0, T]; Hm+1W1,∞) ∩ L2([0, T]; Hm+1), ut3L([0, T]; H1), ut4L([0, T]; L2), m + 1 > d2 $\begin{array}{} \frac{d}{2} \end{array}$, m ≥ 1.

Let w = ut, then the original question (1) becomes:

hx,uwti,j=1dxiaijx,uuxji=1dbix.uuxi=fx,ux,tK×0,Twx,0=0,xKwx,t=0x,tK×0,T $$\begin{array}{} \displaystyle \left\{ {\begin{array}{*{20}{}} {h\left( {x,u} \right){w_t} - \sum\limits_{i,j = 1}^d {\frac{\partial }{{\partial {x_i}}}\left( {{a_{ij}}\left( {x,u} \right)\frac{{\partial u}}{{\partial {x_j}}}} \right) - \sum\limits_{i = 1}^d {{b_i}\left( {x.u} \right)u{x_i} = } f\left( {x,u} \right)\left( {x,t} \right) \in K \times \left[ {0,T} \right]} }\\ \qquad\qquad\qquad\qquad\qquad\qquad\qquad~~{w\left( {x,0} \right) = 0,x \in K}\\ \qquad\qquad\qquad\qquad\qquad\qquad{w\left( {x,t} \right) = 0_{}^{}\left( {x,t} \right) \in \partial K \times \left[ {0,T} \right]} \end{array}} \right. \end{array}$$

The variational equations corresponding to question equation (1) and question equation (2) are:

huutt,V+au5u,5V=bu5u,5V+fu,VVH01K,t0,Tu0,V=ut0,V=0xKu,tH01K0,T $$\begin{array}{} \displaystyle \left\{ {\begin{array}{*{20}{c}} {\left( {h\left( u \right){u_{tt}},V} \right) + \left( {a\left( u \right)5u,5V} \right) = \left( {b\left( u \right)5u,5V} \right) + \left( {f\left( u \right),V} \right)\forall V \in H_0^1\left( K \right),t \in \left[ {0,T} \right]}\\ {\left( {u\left( 0 \right),V} \right) = \left( {{u_t}\left( 0 \right),V} \right) = 0\mathop {}\nolimits_{}^{} x \in K}\\ {u\left( { \cdot ,t} \right) \in H_0^1\left( K \right)\mathop {}\nolimits_{}^{} \left[ {0,T} \right]} \end{array}} \right. \end{array}$$

huwtt,V+au5u,5V=bu5u,5V+fu,VVH01K,t0,Tw0,V=0xKw,tH01Kt0,T $$\begin{array}{} \displaystyle \left\{ {\begin{array}{*{20}{c}} {\left( {h\left( u \right){w_{tt}},V} \right) + \left( {a\left( u \right)5u,5V} \right) = \left( {b\left( u \right)5u,5V} \right) + \left( {f\left( u \right),V} \right)\forall V \in H_0^1\left( K \right),t \in \left[ {0,T} \right]}\\ {\left( {w\left( 0 \right),V} \right) = 0\mathop {}\nolimits_{}^{} x \in K}\\ {w\left( { \cdot ,t} \right) \in H_0^1\left( K \right)\mathop {}\nolimits_{}^{} t \in \left[ {0,T} \right]} \end{array}} \right. \end{array}$$

where f,g=Kfxgxdx;ap5f,5g=i,h=1dKaijx,pfxigxjdx,bp5f,g=i=1dbix,pfxi,g. $\begin{array}{} \left( {f,g} \right) = \int_K {f\left( x \right)g\left( x \right)dx} ; \left( {a\left( p \right)5f,5g} \right) = \sum\limits_{i,h = 1}^d {\int_K {{a_{ij}}\left( {x,p} \right)\frac{{\partial f}}{{\partial {x_i}}}} } \frac{{\partial g}}{{\partial {x_j}}}dx, \left( {b\left( p \right)5f,g} \right) = \sum\limits_{i = 1}^d {\left( {{b_i}\left( {x,p} \right)\frac{{\partial f}}{{\partial {x_i}}},g} \right)} . \end{array}$ For the convenience of calculation, x appearing in the function is omitted, and the intervals [0, T] and region K appearing in the space are also omitted. Also, f2=f,f,f12=i=1dfxi2,f12=f2+f121 $\begin{array}{} {\left\| f \right\|^2} = \left( {f,f} \right), \left| f \right|_1^2 = {\sum\limits_{i = 1}^d {\left\| {\frac{{\partial f}}{{\partial {x_i}}}} \right\|} ^2}, \left\| f \right\|_1^2 = {\left\| f \right\|^2} + \left| f \right|_1^2 {\left\| \cdot \right\|_1} \end{array}$ and |⋅|1 on H01 $\begin{array}{} H_0^1 \end{array}$(K) are norms of the same order.

Let Sh H01 $\begin{array}{} H_0^1 \end{array}$ be a finite dimensional subspace with an approximation order of m + 1. For ∀ VSh, it satisfies the usual approximation properties and inverse estimates of VLC4hd2V $\begin{array}{} \left\| V \right\|{L^\infty } \le {C_4}{h^{ - \frac{d}{2}}}\left\| V \right\| \end{array}$ and ∥V1Ch−1V∥. Elliptic projection is considered: ũ(x, t) ∈ Sh and t ∈ [0, T] are solved to satisfy:

au5u,5V=au5u~,5VVSh $$\begin{array}{} \displaystyle \left( {a\left( u \right)5u,5V} \right) = \left( {a\left( u \right)5\tilde u,5V} \right)\mathop {}\nolimits_{}^{} \forall V \in {S_h} \end{array}$$

For the projection function ũ(x, t), we assume that [3] ∥ũL, ∥5ũL and 5u~tL $\begin{array}{} \left\| {5\frac{{\partial \tilde u}}{{\partial t}}} \right\|{L^\infty } \end{array}$ are uniformly bounded. At the same time, the regularity results of elliptic equation and the properties of Sh can be obtained [4, 6, 7].

Lemma: if the above assumptions are satisfied, then for p = 2, ∞, s = 0, 1 there are:

uu~LpHS+uu~tLpHS+uu~ttLpHSChm+1s $$\begin{array}{} \displaystyle {\left\| {\left( {u - \tilde u} \right)} \right\|_{{L^p}\left( {{H^S}} \right)}} + {\left\| {{{\left( {u - \tilde u} \right)}_t}} \right\|_{{L^p}\left( {{H^S}} \right)}} + {\left\| {{{\left( {u - \tilde u} \right)}_{tt}}} \right\|_{{L^p}\left( {{H^S}} \right)}} \le C{h^{m + 1 - s}} \end{array}$$

The interval [0, T] is divided into N equal subintervals: 0 = t0 < t1 < … < tN−1 < tN = Ttn+1tn = Δ t, Un = U(tn), for the sake of simplicity of writing, the following marks are introduced:

Un+12=12Un+1+Un,5fn,5V=i=1dfnxi,Vxi $$\begin{array}{} \displaystyle {U^{n + \frac{1}{2}}} = \frac{1}{2}\left( {{U^{n + 1}} + {U^n}} \right),\left( {5{f^n},5V} \right) = \sum\limits_{i = 1}^d {\left( {\frac{{\partial {f^n}}}{{\partial {x_i}}},\frac{{\partial V}}{{\partial {x_i}}}} \right)} \end{array}$$

dtUn=1ΔtUn+1Un,Un=Un+1Un=ΔtdtUn $$\begin{array}{} \displaystyle {d_t}{U^n} = \frac{1}{{\Delta t}}\left( {{U^{n + 1}} - {U^n}} \right),\partial {U^n} = {U^{n + 1}} - {U^n} = \Delta t{d_t}{U^n} \end{array}$$

t2Un=1Δt2Un+12Un+Un+1,hnU=hUn $$\begin{array}{} \displaystyle \partial _t^2{U^n} = \frac{1}{{{{\left( {\Delta t} \right)}^2}}}\left( {{U^{n + 1}} - 2U{}^n + {U^{n + 1}}} \right),{h^n}\left( U \right) = h\left( {U{}^n} \right) \end{array}$$

hn+12U=12hn+1U+hnU,EUn+1=2UnUn1 $$\begin{array}{} \displaystyle {h^{n + \frac{1}{2}}}\left( U \right) = \frac{1}{2}\left( {{h^{n + 1}}\left( U \right) + {h^n}\left( U \right)} \right),E{U^{n + 1}} = 2{U^n} - {U^{n - 1}} \end{array}$$

hn+1U=hEUn+1,hn+12U=12hn+1U+hnu $$\begin{array}{} \displaystyle {{{{h\!\!\!^{^{\frown}}}} } ^{n + 1}}\left( U \right) = h\left( {E{U^{n + 1}}} \right),{{{{h\!\!\!^{^{\frown}}}} } ^{n + \frac{1}{2}}}\left( U \right) = \frac{1}{2}\left( {{{{{{h\!\!\!^{^{\frown}}}} } }^{n + 1}}\left( U \right) + {h^n}\left( u \right)} \right) \end{array}$$

Also, let Uu = Uũ + ũu = a + Z, a = Uũ, Z = ũu, w = ut, = ũt, Ww = W + w = θ + d, θ = W, d = w.

Question (1) is defined as:

hUnt2+aUn5Un,5V+λ5Un+12Un+Un1,5V=bUn5Un,V+fUn,VVSh $$\begin{array}{} \displaystyle \left( {h{{\left( U \right)}^n}} \right)\partial _t^2 + \left( {a\left( {{U^n}} \right)5{U^n},5V} \right) + \lambda \left( {5\left( {{U^{n + 1}} - 2{U^n} + {U^{n - 1}}} \right),5V} \right) = \left( {b\left( {{U^n}} \right)5{U^n},V} \right) + \left( {f\left( {{U^n}} \right),V} \right)\forall V \in {S_h} \end{array}$$

Fully Discrete Convergence Analysis of Second-Order Non-linear Hyperbolic Equations based on Finite Element Analysis

It is known that the solution of the equation (12) is unique. The error equation is obtained from equations (12), (10), (8) and (6):

hUnt2an,V+aUn5an,5V+λ5an+12an+an1,5V=An,VBn,5VCn,5V+Dn,V $$\begin{array}{} \displaystyle \left( {h\left( {{U^n}} \right)\partial _t^2{a^n},V} \right) + \left( {a\left( {{U^n}} \right)5{a^n},5V} \right) + \lambda \left( {5\left( {{a^{n + 1}} - 2{a^n} + {a^{n - 1}}} \right),5V} \right) = \left( {{A^n},V} \right) - \left( {{B^n},5V} \right) - \left( {{C^n},5V} \right) + \left( {{D^n},V} \right) \end{array}$$

where

An=hUnuttn0t2un+uttnhunhUnt2Zn+fUnfun $$\begin{array}{} \displaystyle {A^n} = h\left( {{U^n}} \right)\left( {u_{tt}^n0 - \partial _t^2{u^n}} \right) + u_{tt}^n\left[ {h\left( {{u^n}} \right) - h\left( {{U^n}} \right)\partial _t^2{Z_n} + f\left( {{U^n}} \right) - f\left( {{u^n}} \right)} \right] \end{array}$$

Bn=aUnaun5u~n $$\begin{array}{} \displaystyle {B^n} = \left[ {a\left( {{U^n}} \right) - a\left( {{u^n}} \right)} \right]5{\tilde u^n} \end{array}$$

Cn=λ5Zn+12Zn+Zn1+λ5un+12un+un1 $$\begin{array}{} \displaystyle {C^n} = \lambda 5\left( {{Z^{n + 1}} - 2{Z^n} + {Z^{n - 1}}} \right) + \lambda 5\left( {{u^{n + 1}} - 2{u^n} + {u^{n - 1}}} \right) \end{array}$$

Dn=bUn5an+bUnbun5u~n+bun5Zn=D1n+D2n $$\begin{array}{} \displaystyle {D^n} = \left[ {b\left( {{U^n}} \right)5{a^n} + \left( {b\left( {{U^n}} \right) - b\left( {{u^n}} \right)} \right)5{{\tilde u}^n}} \right] + b\left( {{u^n}} \right)5{Z^n} = D_1^n + D_2^n \end{array}$$

Let Q=u~tLL+1,Δt,h $\begin{array}{} Q = \left\| {\frac{{\partial \tilde u}}{{\partial t}}} \right\|{L^\infty }\left( {{L^\infty }} \right) + 1, \Delta t,h \end{array}$ are taken to satisfy C4C5Δt2hd2Q. $\begin{array}{} {C_4}{C_5}{\left( {\Delta t} \right)^2}{h^{ - \frac{d}{2}}} \le Q. \end{array}$ According to (1.10) and inverse estimates, it can be seen that ∥dta0LQ, ∥dtU0L ≤ 2Q.

If inductive assumption max0nM2dtanLQ, $\begin{array}{} \displaystyle \mathop {\max }\limits_{0 \le n \le M - 2} {\left\| {dt{a^n}} \right\|_{{L^\infty }}} \le Q, \end{array}$ then max0nM2dtUnL2Q. $\begin{array}{} \displaystyle \mathop {\max }\limits_{0 \le n \le M - 2} {\left\| {dt{U^n}} \right\|_{{L^\infty }}} \le 2Q. \end{array}$

Taking the test function V=an+1an1=t2an+t2an1=Δtdtan+dtan1, $\begin{array}{} V = {a^{n + 1}} - {a^{n - 1}} = \partial _t^2{a^n} + \partial _t^2{a^{n - 1}} = \Delta t\left( {dt{a^n} + dt{a^{n - 1}}} \right), \end{array}$ it can rewrite or estimate the two ends of the error equation.

hUnt2an,V=hUndtan,dtanhUndtan1,dtan1=hUndtan1,dtan1hUn1dtan1,dtan1hUnhUn1dtan1,dtan1 $$\begin{array}{} \displaystyle \left( {h\left( {{U^n}} \right)\partial _t^2{a^n},V} \right) = \left( {h\left( {{U^n}} \right)dt{a^n},dt{a^n}} \right) - \left( {h\left( {{U^n}} \right)dt{a^{n - 1}},dt{a^{n - 1}}} \right) = \left[ {\left( {h\left( {{U^n}} \right)dt{a^{n - 1}},dt{a^{n - 1}}} \right)} \right.\\ \left. { - \left( {h\left( {{U^{n - 1}}} \right)dt{a^{n - 1}},dt{a^{n - 1}}} \right)} \right] - \left( {h\left( {{U^n}} \right) - h\left( {{U^{n - 1}}} \right)dt{a^{n - 1}},dt{a^{n - 1}}} \right) \end{array}$$

It is known

|An+D1n|CΔt(||an||12+||Zn||2)+|||dtan||2+||dtan1||2+||t2Zn||2 $$\begin{array}{} \displaystyle | A^n + D_1^n | \leq C \Delta t ( || a^n ||_1^2 + || Z^n ||^2 ) + |||dta^n ||^2 + ||dta^{n-1}||^2 + || \partial_t^2 Z^n ||^2 \end{array}$$

The following estimates are highlighted:

B=aUnaun5u~n.5an+1an1 $$\begin{array}{} \displaystyle B = \left( {\left[ {a\left( {{U^n}} \right) - a\left( {{u^n}} \right)} \right]5{{\tilde u}^n}.5\left( {{a^{n + 1}} - {a^{n - 1}}} \right)} \right) \end{array}$$

Be aware:

n=1M1B11=aUMauM5u~M,5aMaU1au15u~1,5a1 $$\begin{array}{} \displaystyle \sum\limits_{n = 1}^{M - 1} {B_1^{\left( 1 \right)}} = \left( {\left[ {a\left( {{U^M}} \right) - a\left( {{u^M}} \right)} \right]5{{\tilde u}^M},5{a^M}} \right) - \left( {\left[ {a\left( {{U^1}} \right) - a\left( {{u^1}} \right)} \right]5{{\tilde u}^1},5{a^1}} \right) \end{array}$$

And UMuM=a1+Z1+Δtn=1M1dtan+dtZn. $\begin{array}{} \displaystyle {U^M} - {u^M} = {a^1} + {Z^1} + \Delta t\sum\limits_{n = 1}^{M - 1} {\left( {dt{a^n} + dt{Z^n}} \right)} . \end{array}$ We can get:

n=1M1B11CΔtn=1M1dtan2+dtZn2+XaM12+CZ12+a112 $$\begin{array}{} \displaystyle \left| {\sum\limits_{n = 1}^{M - 1} {B_1^{\left( 1 \right)}} } \right| \le C\Delta t\sum\limits_{n = 1}^{M - 1} {\left( {{{\left\| {dt{a^n}} \right\|}^2} + {{\left\| {dt{Z^n}} \right\|}^2}} \right)} + X\left\| {{a^M}} \right\|_1^2 + C\left( {\left\| {{Z^1}} \right\|_{}^2 + \left\| {{a^1}} \right\|_1^2} \right) \end{array}$$

Similar estimates can be obtained as follows:

n=1M1B11CΔtn=1M1dtan2+dtZn2+an12+an+112+Zn2+Zn+12+XaM12+Ca12+Z12 $$\begin{array}{} \displaystyle \left| {\sum\limits_{n = 1}^{M - 1} {B_1^{\left( 1 \right)}} } \right| \le C\Delta t\sum\limits_{n = 1}^{M - 1} {\left( {{{\left\| {dt{a^n}} \right\|}^2} + {{\left\| {dt{Z^n}} \right\|}^2} + \left\| {{a^n}} \right\|_1^2 + \left\| {{a^{n + 1}}} \right\|_1^2 + \left\| {{Z^n}} \right\|_{}^2 + \left\| {{Z^{n + 1}}} \right\|_{}^2} \right)} + X\left\| {{a^M}} \right\|_1^2 + C\left( {\left\| {{a^1}} \right\|_{}^2 + \left\| {{Z^1}} \right\|_{}^2} \right) \end{array}$$

Using inverse estimation and distribution integral, it can get:

Cn,5an+1an+1CΔtΔt4h2t2Zn12+Δt4+dtan2+dtan1n=1MbiunZxn,an+1an1n=1MbiunZxn,an+1an1+2biuM1ZM1,axM12biu1Z1,ax12Δtn=2M1biunZnZn1Δt+Zn1btunbtun1Δt,axn12CΔtn=1MZn2+dtan2+dtan12+XaM12+aM112+CZM12+Z12+a1212+CΔtn=2M1dtZn12+Zn12+a1212 $$\begin{array}{} \displaystyle \left| {\left( {{C^n},5\left( {{a^{n + 1}} - {a^{n + 1}}} \right)} \right)} \right| \le C\Delta t\left[ {{{\left( {\Delta t} \right)}^4}{h^{ - 2}}} \right]\left\| {\partial _t^2{Z^n}} \right\|_1^2 + {\left( {\Delta t} \right)^4} + {\left\| {dt{a^n}} \right\|^2} + \left\| {dt{a^{n - 1}}} \right\|\\ \left| {\sum\limits_{n = 1}^M {\left( {{b_i}\left( {{u^n}} \right)Z_x^n,{a^{n + 1}} - {a^{n - 1}}} \right)} } \right| \le \left| {\sum\limits_{n = 1}^M {\left( {{b_i}\left( {{u^n}} \right)Z_x^n,{a^{n + 1}} - {a^{n - 1}}} \right)} } \right| + 2\left| {\left( {{b_i}\left( {{u^{M - 1}}} \right){Z^{M - 1}},a_x^{M - \frac{1}{2}}} \right)} \right.\\ \left. { - \left( {{b_i}\left( {{u^1}} \right){Z^1},a_x^{\frac{1}{2}}} \right) - \Delta t\sum\limits_{n = 2}^{M - 1} {\left( {{b_i}\left( {{u^n}} \right)\frac{{{Z^n} - {Z^{n - 1}}}}{{\Delta t}}} \right)} } \right| + {Z^{n - 1}}\frac{{bt\left( {{u^n}} \right) - bt\left( {{u^{n - 1}}} \right)}}{{\Delta t}},\left. {a_x^{n - \frac{1}{2}}} \right|\\ \le C\Delta t\sum\limits_{n = 1}^M {\left( {{{\left\| {{Z^n}} \right\|}^2} + {{\left\| {dt{a^n}} \right\|}^2} + {{\left\| {dt{a^{n - 1}}} \right\|}^2} + X\left( {\left\| {{a^M}} \right\|_1^2 + \left\| {{a^{M - 1}}} \right\|_1^2} \right)} \right)} \\ + C\left( {{{\left\| {{Z^{M - 1}}} \right\|}^2} + {{\left\| {{Z^1}} \right\|}^2} + \left\| {{a^{\frac{1}{2}}}} \right\|_1^2 + C\Delta t\sum\limits_{n = 2}^{M - 1} {\left( {{{\left\| {dt{Z^{n - 1}}} \right\|}^2}} \right) + {{\left\| {{Z^{n - 1}}} \right\|}^2} + \left\| {{a^{\frac{1}{2}}}} \right\|_1^2} } \right) \end{array}$$

It is noticed that m ≥ 1, (Δ t)2 = O(hm+1), the lemma shows that:

ZM12+ZM2+CΔtn=1M1Zn2+Zn+12+dtZn2+Zn12+Δt4h2t2Zn12Ch2m+2 $$\begin{array}{} \displaystyle {\left\| {{Z^{M - 1}}} \right\|^2} + {\left\| {{Z^M}} \right\|^2} + C\Delta t\sum\limits_{n = 1}^{M - 1} {\left( {{{\left\| {{Z^n}} \right\|}^2} + {{\left\| {{Z^{n + 1}}} \right\|}^2} + {{\left\| {dt{Z^n}} \right\|}^2} + {{\left\| {{Z^{n - 1}}} \right\|}^2} + {{\left( {\Delta t} \right)}^4}{h^{ - 2}}\left\| {\partial _t^2{Z^n}} \right\|_1^2} \right) \le C{h^{2m + 2}}} \end{array}$$

For error equation, the sum can be solved from n = 1, 2, …, M − 1, and it is noted that ∥a01 = 0, ∥a11 + ∥dta0∥ ≤ Ct)2. Using inductive hypothesis and the above estimates, we can get:

C2dtaM12+aUM15aM1,5aM+λaMaM112Ch2m+2+Δt4+2XaM2+aM12+CΔtn=1M1dtan2+an12+an+112 $$\begin{array}{} \displaystyle {C_2}{\left\| {dt{a^{M - 1}}} \right\|^2} + \left( {a\left( {{U^{M - 1}}} \right)5{a^{M - 1}},5{a^M}} \right) + \lambda \left| {{a^M} - {a^{M - 1}}} \right|_1^2 \le C\left( {{h^{2m + 2}} + {{\left( {\Delta t} \right)}^4}} \right)\\ + 2X\left( {{{\left\| {{a^M}} \right\|}^2} + {{\left\| {{a^{M - 1}}} \right\|}^2}} \right) + C\Delta t\sum\limits_{n = 1}^{M - 1} {\left( {{{\left\| {dt{a^n}} \right\|}^2} + \left\| {{a^n}} \right\|_1^2 + \left\| {{a^{n + 1}}} \right\|_1^2} \right)} \end{array}$$

If λ>dC14,V=minλdC14,C04>0, $\begin{array}{} \lambda \gt \frac{{d{C_1}}}{4}, V = \min \left\{ {\lambda - \frac{{d{C_1}}}{4},\frac{{{C_0}}}{4}} \right\} \gt 0, \end{array}$ so:

λaMaM112+aUM15aMVaMaM112+aM+aM112CaM12+aM112 $$\begin{array}{} \displaystyle \lambda \left| {{a^M} - {a^{M - 1}}} \right|_1^2 + \left( {a\left( {{U^{M - 1}}} \right)5{a^M}} \right) \ge V\left( {\left| {{a^M} - {a^{M - 1}}} \right|_1^2 + \left| {{a^M} + {a^{M - 1}}} \right|_1^2} \right) \ge C\left( {\left\| {{a^M}} \right\|_1^2 + \left\| {{a^{M - 1}}} \right\|_1^2} \right) \end{array}$$

If Δ t, X is appropriately small, the Gronwall inequality can be applied to equation (27):

dtaM12+aM12+aM112CΔt4+h2m+2 $$\begin{array}{} \displaystyle {\left\| {dt{a^{M - 1}}} \right\|^2} + \left\| {{a^M}} \right\|_1^2 + \left\| {{a^{M - 1}}} \right\|_1^2 \le C\left( {{{\left( {\Delta t} \right)}^4} + {h^{2m + 2}}} \right) \end{array}$$

It can be seen immediately that h, Δ t is sufficiently small and max0nM1dtanLQ, $\begin{array}{} \displaystyle \mathop {\max }\limits_{0 \le n \le M - 1} {\left\| {dt{a^n}} \right\|_{{L^\infty }}} \le Q, \end{array}$ so the inductive hypothesis holds for m = N − 1 [18].

Theorem: If aij, bi, f, h and u satisfy the above conditions, m+1>d2,m1,λdC14, $\begin{array}{} m + 1 \gt \frac{d}{2}, m \ge 1, \lambda \ge \frac{{d{C_1}}}{4}, \end{array}$ then when h, Δ t are sufficiently small:

max0nM1dtUun1+Uun12+hUun121Chm+1+Δt2 $$\begin{array}{} \displaystyle \mathop {\max }\limits_{0 \le n \le M - 1} \left\{ {\left\| {dt{{\left( {U - u} \right)}^{n - 1}}} \right\| + \left\| {{{\left( {U - u} \right)}^{n - \frac{1}{2}}}} \right\| + h{{\left\| {{{\left( {U - u} \right)}^{n - \frac{1}{2}}}} \right\|}_1}} \right\} \le C\left( {{h^{m + 1}} + {{\left( {\Delta t} \right)}^2}} \right) \end{array}$$

If the super-convergence analysis is completed by V = Un+1Un−1 in the question (1), then the question (1) is stable.

Fully Discrete Convergence Analysis of Fourth-Order Non-linear Hyperbolic Equations
Question Description

The following fourth-order non-linear hyperbolic equations are considered:

utt+γΔ2uΔut+fu=0,X,tΩ×0,TuX,t=ΔuX,t=0,X,tΩ×0,TuX,0=u0X,utX,0=u1X,XΩ $$\begin{array}{} \displaystyle \left\{ {\begin{array}{*{20}{c}} {{u_{tt}} + \gamma {\Delta ^2}u - \Delta {u_t} + f\left( u \right) = 0,\left( {X,t} \right) \in \Omega \times \left( {0,T} \right]}\\ {u\left( {X,t} \right) = \Delta u\left( {X,t} \right) = 0,\left( {X,t} \right) \in \partial \Omega \times \left( {0,T} \right]}\\ {u\left( {X,0} \right) = {u_0}\left( X \right),{u_t}\left( {X,0} \right) = {u_1}\left( X \right),X \in \Omega } \end{array}} \right. \end{array}$$

where Ω ∈ R2 is a bounded convex polygon region with Lipschitz continuous boundary, Ω is the boundary of Ω, T ∈ (0, + ∞), γ is a positive fixed value, X = (x, y), f(u) is a global Lipschitz continuous about u, that is, there exists a constant C greater than 0. Let

fu1fu2Cu1u2 $$\begin{array}{} \displaystyle \left| {f\left( {{u_1}} \right) - f\left( {{u_2}} \right)} \right| \le C\left| {{u_1} - {u_2}} \right| \end{array}$$

In this paper, Wm,p is used to denote the usual Sobolev spaces, whose norms and seminorms are denoted as ∥⋅∥m,p and |⋅|m,p, respectively. Especially when p = 2, Wm,p is denoted as Hm(Ω), and the corresponding norms and seminorms are denoted as ∥⋅∥m and |⋅|m.

φL0,Y;HKΩφHKΩ,φL20,Y;HKΩ0tφ2HKΩds12 $$\begin{array}{} \displaystyle \left\| \varphi \right\|{}_{{L^\infty }\left( {0,Y;{H^K}\left( \Omega \right)} \right)} \triangleleft {\left\| \varphi \right\|_{{H^K}\left( \Omega \right)}},{\left\| \varphi \right\|_{{L^2}\left( {0,Y;{H^K}\left( \Omega \right)} \right)}} \triangleleft {\left( {\int_0^t {{{\left\| \varphi \right\|}^2}_{{H^K}\left( \Omega \right)}ds} } \right)^{\frac{1}{2}}} \end{array}$$

Fully Discrete Convergence Analysis of Fourth-Order Non-linear Hyperbolic Equations based on Finite Element Analysis

Let p⃗ = − ∇ u, v = ∇ ⋅ p⃗, then the problem equation (30) is equivalent to the following problem:

utt+γΔv+v+vt+fu=0,X,tΩ×0,Tvp=0,X,tΩ×0,Tp+u=0,X,tΩ×0,TuX,t=vX,t=0,X,tΩ×0,TuX,0=u0,utX,0=u1,XΩ $$\begin{array}{} \displaystyle \left\{ {\begin{array}{*{20}{c}} {{u_{tt}} + \gamma \Delta v + v + {v_t} + f\left( u \right) = 0,\left( {X,t} \right) \in \Omega \times \left( {0,T} \right]}\\ {v - \nabla \cdot \vec p = 0,\left( {X,t} \right) \in \Omega \times \left( {0,T} \right]}\\ {\vec p + \nabla u = 0,\left( {X,t} \right) \in \Omega \times \left( {0,T} \right]}\\ {u\left( {X,t} \right) = v\left( {X,t} \right) = 0,\left( {X,t} \right) \in \partial \Omega \times \left( {0,T} \right]}\\ {u\left( {X,0} \right) = {u_0},{u_t}\left( {X,0} \right) = {u_1},X \in \Omega } \end{array}} \right. \end{array}$$

The variational question of equation (30) is to find {u, v, p⃗}[0, T] → H01 $\begin{array}{} H_0^1 \end{array}$(Ω) × H01 $\begin{array}{} H_0^1 \end{array}$(Ω) × (L2(Ω))2 so that:

utt,ϕ=γv,ϕ+v,ϕ+fu,ϕ=0,ϕH01Ωv,χ+p,χ=0,ϕH01Ωp,w+u,w=0,wL2Ω2uX,0=u0,utX,0=u1,XΩ $$\begin{array}{} \displaystyle \left\{ {\begin{array}{*{20}{c}} {\left( {{u_{tt}},\phi } \right) = \gamma \left( {\nabla v,\nabla \phi } \right) + \left( {v,\phi } \right) + \left( {f\left( u \right),\phi } \right) = 0,\forall \phi \in H_0^1\left( \Omega \right)}\\ {\left( {v,\chi } \right) + \left( {\vec p,\nabla \chi } \right) = 0,\forall \phi \in H_0^1\left( \Omega \right)}\\ {\left( {\vec p,\vec w} \right) + \left( {\nabla u,\vec w} \right) = 0,\forall \vec w \in {{\left( {{L^2}\left( \Omega \right)} \right)}^2}}\\ {u\left( {X,0} \right) = {u_0},{u_t}\left( {X,0} \right) = {u_1},X \in \Omega } \end{array}} \right. \end{array}$$

Considering the semi-discrete scheme of equation (34), {uh, vh, p⃗h} : [0, T] → Mh × Mh × W⃗h is obtained, so that:

uhtt,ϕh+γvh,ϕh+vh,ϕh+vht,ϕh+fuh,ϕh=0,ϕhMhvh,χh+ph,χh=0,χhMhph,wh+uh,wh=0,whWhuh0=Rhu0,uht0=Rhu1,XΩuh0=Rhu0,XΩ $$\begin{array}{} \displaystyle \left\{ {\begin{array}{*{20}{c}} {\left( {{u_{htt}},{\phi _h}} \right) + \gamma \left( {\nabla {v_h},\nabla {\phi _h}} \right) + \left( {{v_h},{\phi _h}} \right) + \left( {{v_{ht}},{\phi _h}} \right) + \left( {f\left( {{u_h}} \right),{\phi _h}} \right) = 0,\forall {\phi _h} \in {M_h}}\\ {\left( {{v_h},{\chi _h}} \right) + \left( {{{\vec p}_h},\nabla {\chi _h}} \right) = 0,\forall {\chi _h} \in {M_h}}\\ {\left( {{{\vec p}_h},{{\vec w}_h}} \right) + \left( {\nabla {u_h},{{\vec w}_h}} \right) = 0,\forall {{\vec w}_h} \in {{\vec W}_h}}\\ {{u_h}\left( 0 \right) = {R_h}{u_0},{u_{ht}}\left( 0 \right) = {R_h}{u_1},X \in \Omega }\\ {{u_h}\left( 0 \right) = {{R\!\!\!^{^{\frown}} }_h}\left( { - \nabla {u_0}} \right),X \in \Omega } \end{array}} \right. \end{array}$$

It is easy to verify that equation (35) has unique solutions. The super-approximation and super-convergence results of mixed element solutions are given in the semi-discrete scheme [19].

Theorem 1

Supposing that {u, v, p⃗} and {uh, vh, p⃗h} are the solutions of equation (30) and equation (35), respectively. When u, vH3(Ω), utt, vt, vttH2(Ω), p⃗ ∈ (H2(Ω))2, there are the following super-approximation properties:

Ihuuh1Ch2u3+0tR2ds12 $$\begin{array}{} \displaystyle {\left\| {{I_h}u - {u_h}} \right\|_1} \le C{h^2}\left[ {{{\left\| u \right\|}_3} + {{\left( {\int_0^t {{R_2}ds} } \right)}^{\frac{1}{2}}}} \right] \end{array}$$

Ihvvh1Ch2v3+v22+0tR1ds12 $$\begin{array}{} \displaystyle {\left\| {{I_h}v - {v_h}} \right\|_1} \le C{h^2}\left[ {{{\left\| v \right\|}_3} + {{\left( {\left\| v \right\|_2^2 + \int_0^t {{R_1}ds} } \right)}^{\frac{1}{2}}}} \right] \end{array}$$

Πhpph0Ch2p2+v3+0tR2ds12 $$\begin{array}{} \displaystyle {\left\| {\Pi h\vec p - {{\vec p}_h}} \right\|_0} \le C{h^2}\left[ {{{\left\| {\vec p} \right\|}_2} + {{\left\| v \right\|}_3} + {{\left( {\int_0^t {{R_2}ds} } \right)}^{\frac{1}{2}}}} \right] \end{array}$$

where R1=u22+utt22+v22+vtt22,R2=vt22+R1. $\begin{array}{} \displaystyle {R_1} = \left\| u \right\|_2^2 + \left\| {{u_{tt}}} \right\|_2^2 + \left\| v \right\|_2^2 + \left\| {{v_{tt}}} \right\|_2^2,{R_2} = \left\| {{v_t}} \right\|_2^2 + {R_1}. \end{array}$

Let:

uuh=uRhu+Rhuuh=η+ξ $$\begin{array}{} \displaystyle u - {u_h} = \left( {u - {R_h}u} \right) + \left( {{R_h}u - {u_h}} \right) = \eta + \xi \end{array}$$

vvh=vRhv+Rhvvh=τ+τ $$\begin{array}{} \displaystyle v - {v_h} = \left( {v - {R\!\!\!^{^{\frown}}}_h}v \right) + \left( {{{ R\!\!\!^{^{\frown}}}_h}v - {v_h}} \right) = \tau + \tau \end{array}$$

pph=pRhp+Rhpph=p+θ $$\begin{array}{} \displaystyle \vec p - {\vec p_h} = \left( {\vec p - {{R\!\!\!^{^{\frown}} }_h}\vec p} \right) + \left( {{{R\!\!\!^{^{\frown}} }_h}\vec p - {{\vec p}_h}} \right){\rm{ = }}\vec p + \vec \theta \end{array}$$

From equations (30) and (35), the following error equation can be obtained:

ξtt,ϕh+γτ,ϕh+τ,ϕh+τt,ϕh=ηtt,ϕhτ,ϕhτt,ϕhfufuh,ϕhτ,χh+θ,χh=τ,χhθ,wh+ξ,wh=0 $$\begin{array}{} \displaystyle \left\{ {\begin{array}{*{20}{c}} {\left( {{\xi _{tt}},{\phi _h}} \right) + \gamma \left( {\nabla \tau ,\nabla {\phi _h}} \right) + \left( {\tau ,{\phi _h}} \right) + \left( {{\tau _t},{\phi _h}} \right)}\\ { = \left( {{\eta _{tt}},{\phi _h}} \right) - \left( {\tau ,{\phi _h}} \right) - \left( {{\tau _t},{\phi _h}} \right) - \left( {f\left( u \right) - f\left( {{u_h}} \right),{\phi _h}} \right)}\\ {\left( {\tau ,{\chi _h}} \right) + \left( {\vec \theta ,\nabla {\chi _h}} \right) = - \left( {\tau ,{\chi _h}} \right)}\\ {\left( {\vec \theta ,{{\vec w}_h}} \right) + \left( {\nabla \xi ,{{\vec w}_h}} \right) = 0} \end{array}} \right. \end{array}$$

In equation (42), ϕh = τt in formula 1, and for t in the second and third formulas, derivatives are obtained. And then χ h = ξtt and w⃗h = ∇ ξtt, respectively, there are:

ξtt,τt+γτ,τt+τ,τt+τt,τt=ηtt,τtτ,τtτt,τtfufuh,τtτt,ξtt+θt,ξtt=τ,ξttθt,ξtt+ξt,ξtt=0 $$\begin{array}{} \displaystyle \left\{ {\begin{array}{*{20}{c}} {\left( {{\xi _{tt}},{\tau _t}} \right) + \gamma \left( {\nabla \tau ,\nabla {\tau _t}} \right) + \left( {\tau ,{\tau _t}} \right) + \left( {{\tau _t},{\tau _t}} \right)}\\ { = - \left( {{\eta _{tt}},{\tau _t}} \right) - \left( {\tau ,{\tau _t}} \right) - \left( {{\tau _t},{\tau _t}} \right) - \left( {f\left( u \right) - f\left( {{u_h}} \right),{\tau _t}} \right)}\\ {\left( {{\tau _t},{\xi _{tt}}} \right) + \left( {{{\vec \theta }_t},\nabla {\xi _{tt}}} \right) = - \left( {\tau ,{\xi _{tt}}} \right)}\\ {\left( {{{\vec \theta }_t},\nabla {\xi _{tt}}} \right) + \left( {\nabla {\xi _t},\nabla {\xi _{tt}}} \right) = 0} \end{array}} \right. \end{array}$$

According to equation (43):

12ddtξt02+γ2ddtτ02+12ddtτ02+τ02=ηtt,τtr,τtrt,τtfufuh,τt+τt,ξtt=i=15Ai $$\begin{array}{} \displaystyle \frac{1}{2}\frac{d}{{dt}}\left\| {\nabla {\xi _t}} \right\|_0^2 + \frac{\gamma }{2}\frac{d}{{dt}}\left\| {\nabla \tau } \right\|_0^2 + \frac{1}{2}\frac{d}{{dt}}\left\| \tau \right\|_0^2 + \left\| \tau \right\|_0^2\\ = - \left( {{\eta _{tt}},{\tau _t}} \right) - \left( {r,{\tau _t}} \right) - \left( {{r_t},{\tau _t}} \right) - \left( {f\left( u \right) - f\left( {{u_h}} \right),{\tau _t}} \right) + \left( {{\tau _t},{\xi _{tt}}} \right) = \sum\limits_{i = 1}^5 {{A_i}} \end{array}$$

Let estimate Ai(i = 1, 2, …, 5) in turn.

Using Schwarz inequality, Young inequality and interpolation theory, the following conclusions are obtained:

i=12AiCηtt0+r0τt0Ch4utt22+vtt22+12τt22 $$\begin{array}{} \displaystyle \sum\limits_{i = 1}^2 {{A_i}} \le C\left( {{{\left\| {{\eta _{tt}}} \right\|}_0} + {{\left\| r \right\|}_0}} \right){\left\| {{\tau _t}} \right\|_0} \le C{h^4}\left( {\left\| {{u_{tt}}} \right\|_2^2 + \left\| {{v_{tt}}} \right\|_2^2} \right) + \frac{1}{2}\left\| {{\tau _t}} \right\|_2^2 \end{array}$$

Since f satisfies the Lipschitz condition, there are:

A4Cuuh0τt0Cξ02+h4u22+12τt02 $$\begin{array}{} \displaystyle {A_4} \le C{\left\| {u - {u_h}} \right\|_0}{\left\| {{\tau _t}} \right\|_0} \le C\left( {\left\| \xi \right\|_0^2 + {h^4}\left\| u \right\|_2^2 + \frac{1}{2}\left\| {{\tau _t}} \right\|_0^2} \right) \end{array}$$

Using derivative transfer techniques, there are:

A3=rtt,τddtrt,τCh4vtt22+τ02ddtrt,τ $$\begin{array}{} \displaystyle {A_3} = \left( {{r_{tt}},\tau } \right) - \frac{d}{{dt}}\left( {{r_t},\tau } \right) \le C\left( {{h^4}\left\| {{v_{tt}}} \right\|_2^2 + \left\| \tau \right\|_0^2} \right) - \frac{d}{{dt}}\left( {{r_t},\tau } \right) \end{array}$$

A5=rtt,ξt+ddtrt,ξtCh4vtt22+ξt02ddtrt,ξt $$\begin{array}{} \displaystyle {A_5} = \left( {{r_{tt}},{\xi _t}} \right) + \frac{d}{{dt}}\left( {{r_t},{\xi _t}} \right) \le C\left( {{h^4}\left\| {{v_{tt}}} \right\|_2^2 + \left\| {{\xi _t}} \right\|_0^2} \right) - \frac{d}{{dt}}\left( {{r_t},{\xi _t}} \right) \end{array}$$

By introducing the above estimates of Ai into equation (44), we can obtain that:

min1,γ2ddtξt12+τ12Ch4u22+utt22+v22+utt22+Cξ02+ξt02+τ02ddtrt,τrt,ξt $$\begin{array}{} \displaystyle \frac{{\min \left\{ {1,\gamma } \right\}}}{2}\frac{d}{{dt}}\left( {\left\| {{\xi _t}} \right\|_1^2 + \left\| \tau \right\|_1^2} \right) \le C{h^4}\left( {\left\| u \right\|_2^2 + \left\| {{u_{tt}}} \right\|_2^2 + \left\| v \right\|_2^2 + \left\| {{u_{tt}}} \right\|_2^2} \right)\\ + C\left( {\left\| \xi \right\|_0^2 + \left\| {{\xi _t}} \right\|_0^2 + \left\| \tau \right\|_0^2} \right) - \frac{d}{{dt}}\left[ {\left( {{r_t},\tau } \right) - \left( {{r_t},{\xi _t}} \right)} \right] \end{array}$$

The two ends of the equation are multiplied by 2min1,γ, $\begin{array}{} \frac{2}{{\min \left\{ {1,\gamma } \right\}}}, \end{array}$ and then integrated from 0 to t. It is noted that τ (0) = ξt(0) = ξ (0) = 0, ξ02C0tξt02ds, $\begin{array}{} \left\| \xi \right\|_0^2 \le C\int_0^t {\left\| {{\xi _t}} \right\|} _0^2ds, \end{array}$ and then according to inequality 0t0sφ2dsdτC0tφ2ds, $\begin{array}{} \int_0^t {\int_0^s {{\varphi ^2}dsd\tau } } \le C\int_0^t {{\varphi ^2}} ds, \end{array}$ there are:

ξt12+τ12Ch40tu22+utt22+v22+utt22ds+C0tτ12+ξt12+ξ02ds1min1,γrt,τξtCh4vt22+0tu22+utt22+v22+utt22ds+C0tτ12+ξt12ds+12τ12+ξt12 $$\begin{array}{} \left\| {{\xi _t}} \right\|_1^2 + \left\| \tau \right\|_1^2 \le C{h^4}\int_0^t {\left( {\left\| u \right\|_2^2 + \left\| {{u_{tt}}} \right\|_2^2 + \left\| v \right\|_2^2 + \left\| {{u_{tt}}} \right\|_2^2} \right)ds} \\ + C\int_0^t {\left( {\left\| \tau \right\|_1^2 + \left\| {{\xi _t}} \right\|_1^2 + \left\| \xi \right\|_0^2} \right)ds - \frac{1}{{\min \left\{ {1,\gamma } \right\}}}\left[ {\left( {{r_t},\tau } \right) - \left( {{\xi _t}} \right)} \right]} \\ \le C{h^4}\left[ {\left\| {{v_t}} \right\|_2^2 + \int_0^t {\left( {\left\| u \right\|_2^2 + \left\| {{u_{tt}}} \right\|_2^2 + \left\| v \right\|_2^2 + \left\| {{u_{tt}}} \right\|_2^2} \right)ds} } \right]\\ + C\int_0^t {\left( {\left\| \tau \right\|_1^2 + \left\| {{\xi _t}} \right\|_1^2} \right)ds + \frac{1}{2}\left( {\left\| \tau \right\|_1^2 + \left\| {{\xi _t}} \right\|_1^2} \right)} \end{array}$$

The Gronwall inequality is used to obtain:

ξt1+τ1Ch2vt22+0tR1ds12 $$\begin{array}{} \displaystyle {\left\| {{\xi _t}} \right\|_1} + \left\| \tau \right\|{}_1 \le C{h^2}{\left( {\left\| {{v_t}} \right\|_2^2 + \int_0^t {{R_1}ds} } \right)^{\frac{1}{2}}} \end{array}$$

On the other hand, if it is noticed that ξ (0) = ∇ ξ (0) = 0, it can get from ξ12C0tξt12ds: $\begin{array}{} \left\| \xi \right\|_1^2 \le C\int_0^t {\left\| {{\xi _t}} \right\|} _1^2ds: \end{array}$

ξ12C0tξt12dsCh40tvt22+0sR1dτCh40tR2ds $$\begin{array}{} \displaystyle \left\| \xi \right\|_1^2 \le C\int_0^t {\left\| {{\xi _t}} \right\|} _1^2ds \le C{h^4}\left[ {\int_0^t {\left( {\left\| {{v_t}} \right\|_2^2 + \int_0^s {{R_1}d\tau } } \right) \le C{h^4}\int_0^t {{R_2}ds} } } \right] \end{array}$$

Namely:

ξ1Ch20tR2ds12 $$\begin{array}{} \displaystyle \left\| \xi \right\|_1^{} \le C{h^2}{\left( {\int_0^t {{R_2}ds} } \right)^{\frac{1}{2}}} \end{array}$$

In the third form of equation (42), w⃗h = θ⃗ is obtained from Schwarz inequality.

θ02=θ,θ=ξ,θCξ0θ0 $$\begin{array}{} \displaystyle \left\| {\vec \theta } \right\|_0^2 = \left( {\vec \theta ,\vec \theta } \right) = - \left( {\nabla \xi ,\vec \theta } \right) \le C\left\| {\nabla \xi \left\| 0 \right\|\left. {\vec \theta } \right\|} \right\|{}_0 \end{array}$$

According to equation (54), there are:

θ0<Cξ1Ch20tR2ds12 $$\begin{array}{} \displaystyle \left\| {\vec \theta } \right\|_0^{} \lt C{\left\| \xi \right\|_1} \le C{h^2}{\left( {\int_0^t {{R_2}ds} } \right)^{\frac{1}{2}}} \end{array}$$

By using the trigonometric inequality, it can obtain:

Ihuuh1CIhuRhu1+Rhuuh1Ch2u3+0tR2ds12 $$\begin{array}{} \displaystyle {\left\| {{I_h}u - {u_h}} \right\|_1} \le C\left( {{{\left\| {{I_h}u - {R_h}u} \right\|}_1} + {{\left\| {{R_h}u - {u_h}} \right\|}_1}} \right) \le C{h^2}\left[ {{{\left\| u \right\|}_3} + {{\left( {\int_0^t {{R_2}ds} } \right)}^{\frac{1}{2}}}} \right] \end{array}$$

The theorem is proved.

In order to obtain global super-convergence, the adjacent four elements are merged into one large element processing operators I2h2andΠ2h2: $\begin{array}{} \displaystyle I_{2h}^2~~ \text{and}~~ \Pi _{2h}^2: \end{array}$

I2h2Ihu=I2h2u,uH2ΩI2h2uu1Ch2u3,uH3ΩI2h2uh1Cuh1,uhMh $$\begin{array}{} \displaystyle \left\{ {\begin{array}{*{20}{c}} {I_{2h}^2{I_h}u = I_{2h}^2u,\forall u \in {H^2}\left( \Omega \right)}\\ {{{\left\| {I_{2h}^2u - u} \right\|}_1} \le C{h^2}{{\left\| u \right\|}_3},\forall u \in {H^3}\left( \Omega \right)}\\ {{{\left\| {I_{2h}^2{u_h}} \right\|}_1} \le C{{\left\| {{u_h}} \right\|}_1},\forall {u_h} \in {M_h}} \end{array}} \right. \end{array}$$

I2h2Ihu=I2h2u,uH2ΩI2h2uu1Ch2u3,uH3ΩI2h2uh1Cuh1,uhMh $$\begin{array}{} \begin{array}{} \displaystyle \left\{ {\begin{array}{*{20}{c}} {I_{2h}^2{I_h}u = I_{2h}^2u,\forall u \in {H^2}\left( \Omega \right)}\\ {{{\left\| {I_{2h}^2u - u} \right\|}_1} \le C{h^2}{{\left\| u \right\|}_3},\forall u \in {H^3}\left( \Omega \right)}\\ {{{\left\| {I_{2h}^2{u_h}} \right\|}_1} \le C{{\left\| {{u_h}} \right\|}_1},\forall {u_h} \in {M_h}} \end{array}} \right. \end{array} \end{array}$$

Combining theorem 1 and the properties of operators above, the global super-convergence results can be obtained as follows.

Theorem 2

Under the condition of Theorem 1, there are:

I2h2uhu1Ch2u3+0tR2ds12 $$\begin{array}{} \displaystyle {\left\| {I_{2h}^2{u_h} - u} \right\|_1} \le C{h^2}\left[ {{{\left\| u \right\|}_3} + {{\left( {\int_0^t {{R_2}ds} } \right)}^{\frac{1}{2}}}} \right] \end{array}$$

I2h2vhv1Ch2v3+vt22+0tR1ds12 $$\begin{array}{} \displaystyle {\left\| {I_{2h}^2{v_h} - v} \right\|_1} \le C{h^2}\left[ {{{\left\| v \right\|}_3} + {{\left( {\left\| {{v_t}} \right\|_2^2 + \int_0^t {{R_1}ds} } \right)}^{\frac{1}{2}}}} \right] \end{array}$$

Π2h2php0Ch2p2+v3+0tR2ds12 $$\begin{array}{} \displaystyle {\left\| {\Pi _{2h}^2{{\vec p}_h} - \vec p} \right\|_0} \le C{h^2}\left[ {{{\left\| {\vec p} \right\|}_2} + {{\left( {{{\left\| v \right\|}_3} + \int_0^t {{R_2}ds} } \right)}^{\frac{1}{2}}}} \right] \end{array}$$

It is proved that: According to equations (36) and (57), using trigonometric inequalities, the following results are obtained:

I2h2uhu1=I2h2uhI2h2Ihu+I2h2Ihuu1CuhIhu1+CI2h2uu1CuhIhu1+Ch2u3Ch2u3+0tR2ds12 $$\begin{array}{} \displaystyle {\left\| {I_{2h}^2{u_h} - u} \right\|_1} = {\left\| {I_{2h}^2{u_h} - I_{2h}^2{I_h}u + I_{2h}^2{I_h}u - u} \right\|_1}\\ \le C{\left\| {{u_h} - {I_h}u} \right\|_1} + C{\left\| {I_{2h}^2u - u} \right\|_1}\\ \le C{\left\| {{u_h} - {I_h}u} \right\|_1} + C{h^2}{\left\| u \right\|_3}\\ \le C{h^2}\left[ {{{\left\| u \right\|}_3} + {{\left( {\int_0^t {{R_2}ds} } \right)}^{\frac{1}{2}}}} \right] \end{array}$$

According to equation (57) and equation (37), using trigonometric inequalities, similar proofs can be obtained as follows:

I2h2vhv1=Ch2v3+vt22+0tR1ds12 $$\begin{array}{} \displaystyle {\left\| {I_{2h}^2{v_h} - v} \right\|_1} = C{h^2}\left[ {{{\left\| v \right\|}_3} + {{\left( {\left\| {{v_t}} \right\|_2^2 + \int_0^t {{R_1}ds} } \right)}^{\frac{1}{2}}}} \right] \end{array}$$

According to equations (58) and (38), the triangular inequality is used to obtain:

Π2h2php0=Π2h2phΠ2h2Πhp+Π2h2Πhpp0CphΠhp0+CΠ2h2pp0CphΠhp0+Ch2p2Ch2p2+v3+0tR2ds12 $$\begin{array}{} {\left\| {\Pi _{2h}^2{{\vec p}_h} - \vec p} \right\|_0} = {\left\| {\Pi _{2h}^2{{\vec p}_h} - \Pi _{2h}^2{\Pi _h}\vec p + \Pi _{2h}^2{\Pi _h}\vec p - \vec p} \right\|_0}\\ \le C{\left\| {{{\vec p}_h} - {\Pi _h}\vec p} \right\|_0} + C{\left\| {\Pi _{2h}^2\vec p - \vec p} \right\|_0}\\ \le C{\left\| {{{\vec p}_h} - {\Pi _h}\vec p} \right\|_0} + C{h^2}{\left\| {\vec p} \right\|_2}\\ \le C{h^2}\left[ {{{\left\| {\vec p} \right\|}_2} + {{\left\| v \right\|}_3} + {{\left( {\int_0^t {{R_2}ds} } \right)}^{\frac{1}{2}}}} \right] \end{array}$$

The theorem can be proved.

Note 1: If interpolation is used directly and the high precision results of bilinear elements Q11 and Q10 × Q10 are used, and the reciprocal transfer technique of time t is used, when u, ut, utt, v, vtH3(Ω), vttH2(Ω)v and p⃗ ∈ (H2(Ω))2, the following super-approximation results are obtained:

Ihuuh1Ch20tu22+utt32+vt32+vtt22+ut32+v32ds12 $$\begin{array}{} \displaystyle {\left\| {{I_h}u - {u_h}} \right\|_1} \le C{h^2}{\left[ {\int_0^t {\left( {\left\| u \right\|_2^2 + \left\| {{u_{tt}}} \right\|_3^2 + \left\| {{v_t}} \right\|_3^2 + \left\| {{v_{tt}}} \right\|_2^2 + \left\| {{u_t}} \right\|_3^2 + \left\| v \right\|_3^2} \right)ds} } \right]^{\frac{1}{2}}} \end{array}$$

Ihuuh1Ch2ut22+vt32+v32+0tu22+utt32+v32+vt32+vtt22ds12 $$\begin{array}{} \displaystyle {\left\| {{I_h}u - {u_h}} \right\|_1} \le C{h^2}{\left[ {\left\| {{u_t}} \right\|_2^2 + \left\| {{v_t}} \right\|_3^2 + \left\| v \right\|_3^2 + \int_0^t {\left( {\left\| u \right\|_2^2 + \left\| {{u_{tt}}} \right\|_3^2 + \left\| v \right\|_3^2 + \left\| {{v_t}} \right\|_3^2 + \left\| {{v_{tt}}} \right\|_2^2} \right)ds} } \right]^{\frac{1}{2}}} \end{array}$$

Πhpph0Ch2p2+u3+0tu22+utt32+vt32+vtt32+vt32+v32ds12 $$\begin{array}{} \displaystyle {\left\| {{\Pi _h}\vec p - {{\vec p}_h}} \right\|_0} \le C{h^2}\left[ {\left\| {\vec p} \right\|_2^{} + {{\left\| u \right\|}_3} + {{\left[ {\int_0^t {\left( {\left\| u \right\|_2^2 + \left\| {{u_{tt}}} \right\|_3^2 + \left\| {{v_t}} \right\|_3^2 + \left\| {{v_{tt}}} \right\|_3^2 + \left\| {{v_t}} \right\|_3^2 + \left\| v \right\|_3^2} \right)ds} } \right]}^{\frac{1}{2}}}} \right] \end{array}$$

Compared with theorem 1, we can see that the method of combining interpolation with projection is used to reduce the smoothness of ut, utt, vt.

Note 2: Many well-known incompatible elements can be verified, such as E Q1rot $\begin{array}{} \displaystyle Q_1^{rot} \end{array}$ elements in rectangular meshes, Q1rot $\begin{array}{} \displaystyle Q_1^{rot} \end{array}$ elements in square meshes or constrained rotating Q1 elements (equivalent to P1 incompatible elements in rectangular meshes), because their compatibility errors can only be estimated as follows:

KΓhKvnϕhds=Oh2v3ϕhh=Ohv3ϕh0,ϕhMh $$\begin{array}{} \displaystyle \sum\limits_{K \in {\Gamma _h}} {\int_{\partial K} {\frac{{\partial v}}{{\partial n}}} } {\phi _h}ds = O\left( {{h^2}} \right){\left\| v \right\|_3}{\left\| {{\phi _h}} \right\|_h} = O\left( h \right){\left\| v \right\|_3}{\left\| {{\phi _h}} \right\|_0},{\phi _h} \in {M_h} \end{array}$$

where h=K1,K212 $\begin{array}{} \displaystyle {\left\| \cdot \right\|_h} = {\left( {\sum\limits_K {\left| \cdot \right|_{1,K}^2} } \right)^{\frac{1}{2}}} \end{array}$ is a module on, Mh so the result of Theorem 1 cannot be obtained up to now. However, under the condition of theorem 1, if the condition vtH3(Ω), p⃗t ∈ (H2(Ω))2 is added, the super-approximation results with O(h2) orders in semi-discrete scheme can also be obtained by using the derivative transfer technique. The total degree of freedom of the mixed element scheme given here is only 4NP (where NP is the number of all nodes in the partition of Ω) [20].

Conclusions

Hyperbolic PDEs are PDEs describing vibration or wave phenomena. One of its typical examples is the wave equation and the wave equation when n = 1. It can be used to describe the small transverse vibration of string, which is called string vibration equation. This is the first PDE to be systematically studied. In the process of neural propagation, neural transmission signals and the rate of change in time and space are mathematically represented as a class of initial boundary value problems for non-linear quasi-hyperbolic equations. The non-linear hyperbolic equation is a new type of non-linear evolution equation with profound physical background. In this paper, the full discrete convergence analysis method of non-linear hyperbolic equation based on finite element analysis is used to analyse the full discrete convergence of second-order and fourth-order non-linear hyperbolic equation and obtain the super-convergence results. There is a certain value in the study of non-linear hyperbolic equation.

eISSN:
2444-8656
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics