Open Access

Investigation of A Fuzzy Problem by the Fuzzy Laplace Transform


Cite

Introduction

Many researchers study fuzzy logic [1, 2]. Zadeh [3] and Dubois and Prade [4] introduced fuzzy number and fuzzy arithmetic. Also, Kandel and Byatt [5] introduced the term ”fuzzy differential equation”. Firstly, Chang and Zadeh introduced the concept of fuzzy derivative [6]. Dubois and Prade [7] followed up their approach. Other methods were studied in several papers [8, 9, 10, 11, 12].

Fuzzy differential equations are important topic many fields. For example, population models [13], civil engineering [14], population dynamics model [15], growth model [16].

To solve fuzzy differential equation is useful by fuzzy Laplace transform. Firstly, Allahviranloo and Ahmadi introduced fuzzy Laplace transform [17]. To solve problems in many areas of fuzzy differential equation, fuzzy Laplace transform was used in many papers [18, 19, 20, 21, 22].

In this paper, the solutions of a fuzzy problem with triangular fuzzy number initial values are investigated by fuzzy Laplace transform. Generalized differentiability, fuzzy arithmetic are used. Purpose of this study is to investigate solutions using fuzzy Laplace transform for the studied problem.

It is given in section 2 preliminaries, in section 3 findings and main results, in section 4 conclusions.

Preliminaries
Definition 1

[23] A fuzzy number is a mapping u : ℝ → [0, 1] satisfying the properties {x ∈ ℝ | u(x) > 0} is compact, u is normal, u is convex fuzzy set, u is upper semi-continuous on ℝ.

Let ℝF show the set of all fuzzy numbers.

Definition 2

[24] Let be u ∈ ℝF. [u]α = [uα, uα] = {x ∈ ℝ | u(x) ≥ α}, 0 < α ≤ 1 is α-level set of u. If α = 0, [u]0 = cl{suppu} = cl{x ∈ ℝ | u(x) > 0}.

Remark 1

[24] The parametric form [uα, uα] of a fuzzy number satisfying the following requirements is a valid α-level set.

uα is left-continuous monotonic increasing (nondecreasing) bounded on (0, 1],

uα is left-continuous monotonic decreasing (nonincreasing) bounded on (0, 1],

uα and uα are right-continuous for α = 0,

uαuα, 0 ≤ α ≤ 1.

Definition 3

[23] The α-level set of A, Aα=A_α,A¯α=a_+a¯a_2α,a¯a¯a_2α(A_1=A¯1,A_1A_α $\begin{array}{} \left[ A\right] ^{\alpha }=\left[ \underline{A}_{\alpha }, \overline{A}_{\alpha }\right] =\left[ \underline{a}+\left( \frac{\overline{a} -\underline{a}}{2}\right) \alpha ,\overline{a}-\left( \frac{\overline{a}- \underline{a}}{2}\right) \alpha \right] (\underline{A}_{1}=\overline{A} _{1},\underline{A}_{1}-\underline{A}_{\alpha } \end{array}$ = AαA1) is a symmetric triangular fuzzy number with support [a, a].

Definition 4

[8, 24, 25] Let be u, v ∈ ℝF. If u = v + w such that there exists w ∈ ℝF, w is the Hukuhara difference of u and v, w = uv.

Definition 5

[24, 25, 26] Let be f : [a, b] → ℝF and x0 ∈ [a, b]. If there exists f(x0) ∈ ℝF such that for all h > 0 sufficiently small, ∃ f(x0 + h) ⊖ f(x0), f(x0) ⊖ f(x0h) and the limits hold

limh0fx0+hfx0h=limh0fx0fx0hh=fx0, $$\begin{array}{} \displaystyle \underset{h\rightarrow 0}{\lim }\frac{f\left( x_{0}+h\right) \ominus f\left( x_{0}\right) }{h}=\underset{h\rightarrow 0}{\lim }\frac{f\left( x_{0}\right) \ominus f\left( x_{0}-h\right) }{h}=f^{^{\prime }}\left( x_{0}\right) , \end{array}$$

f is Hukuhara differentiable at x0.

Definition 6

[24] Let be f : [a, b] → ℝF and x0 ∈ [a, b]. If there exists f(x0) ∈ ℝF such that for all h > 0 sufficiently small, ∃ f(x0 + h) ⊖ f(x0), f(x0) ⊖ f(x0h) and the limits hold

limh0fx0+hfx0h=limh0fx0fx0hh=fx0, $$\begin{array}{} \displaystyle \underset{h\rightarrow 0}{\lim }\frac{f\left( x_{0}+h\right) \ominus f\left( x_{0}\right) }{h}=\underset{h\rightarrow 0}{\lim }\frac{f\left( x_{0}\right) \ominus f\left( x_{0}-h\right) }{h}=f^{^{\prime }}\left( x_{0}\right) , \end{array}$$

f is (1)-differentiable at x0. If there exists f(x0) ∈ ℝF such that for all h > 0 sufficiently small, ∃ f(x0) ⊖f(x0 + h), f(x0h) ⊖ f(x0) and the limits hold

limh0fx0fx0+hh=limh0fx0hfx0h=fx0, $$\begin{array}{} \displaystyle \underset{h\rightarrow 0}{\lim }\frac{f\left( x_{0}\right) \ominus f\left( x_{0}+h\right) }{-h}=\underset{h\rightarrow 0}{\lim }\frac{f\left( x_{0}-h\right) \ominus f\left( x_{0}\right) }{-h}=f^{^{\prime }}\left( x_{0}\right) , \end{array}$$

f is (2)-differentiable.

Theorem 1

[27] Let f : [a, b] → ℝF be fuzzy function and denote [f(x)]α = [fα(x), fα(x)], for each α ∈ [0, 1].

If the function f is (1)-differentiable, the lower function fα and the upper function fα are differentiable, fxα=f_αx,f¯αx, $\begin{array}{} \displaystyle \left[ f^{^{\prime }}\left( x\right) \right] ^{\alpha }=\left[ \underline{f}_{\alpha }^{^{\prime }}\left( x\right) , \overline{f}_{\alpha }^{^{\prime }}\left( x\right) \right] , \end{array}$

If the function f is (2)-differentiable, the lower function fα and the upper function fα are differentiable, fxα=f¯αx,f_αx. $\begin{array}{} \displaystyle \left[ f^{^{\prime }}\left( x\right) \right] ^{\alpha }=\left[ \overline{f}_{\alpha }^{^{\prime }}\left( x\right) , \underline{f}_{\alpha }^{^{\prime }}\left( x\right) \right] . \end{array}$

Theorem 2

[27] Let f : [a, b] → ℝF be fuzzy function and denote [f(x)]α = [fα(x), fα(x)], for each α ∈ [0, 1], the function f is (1)-differentiable or (2)-differentiable.

If the functions f and f are (1)-differentiable, the functions f_αandf¯α $\begin{array}{} \displaystyle \underline{f}_{\alpha }^{^{\prime }}~~ and~~\overline{f}_{\alpha }^{^{\prime }} \end{array}$ are differentiable, fxα=f_αx,f¯αx, $\begin{array}{} \displaystyle \left[ f^{^{\prime \prime }}\left( x\right) \right] ^{\alpha }=\left[ \underline{f} _{\alpha }^{^{\prime \prime }}\left( x\right) ,\overline{f}_{\alpha }^{^{\prime \prime }}\left( x\right) \right] , \end{array}$

If the function f is (1)-differentiable and the function f is (2)-differentiable, the functions f_αandf¯α $\begin{array}{} \displaystyle \underline{f}_{\alpha }^{^{\prime }}~~ and~~\overline{f}_{\alpha }^{^{\prime }} \end{array}$ are differentiable, fxα=f¯αx,f_αx, $\begin{array}{} \displaystyle \left[ f^{^{^{\prime \prime }}}\left( x\right) \right] ^{\alpha }=\left[ \overline{f}_{\alpha }^{^{^{\prime \prime }}}\left( x\right) ,\underline{f}_{\alpha }^{^{\prime \prime }}\left( x\right) \right] , \end{array}$

If the function f is (2)-differentiable and the function f is (1)-differentiable, the functions f_αandf¯α $\begin{array}{} \displaystyle \underline{f} _{\alpha }^{^{\prime }}~~ and ~~\overline{f}_{\alpha }^{^{\prime }} \end{array}$ are differentiable, fxα=f¯αx,f_αx, $\begin{array}{} \displaystyle \left[ f^{^{^{\prime \prime }}}\left( x\right) \right] ^{\alpha }=\left[ \overline{f}_{\alpha }^{^{^{\prime \prime }}}\left( x\right) ,\underline{f}_{\alpha }^{^{\prime \prime }}\left( x\right) \right] , \end{array}$

If the functions f and f are (2)-differentiable, the functions f_αandf¯α $\begin{array}{} \displaystyle \underline{f}_{\alpha }^{^{\prime }}~~ and~~\overline{f}_{\alpha }^{^{\prime }} \end{array}$ are differentiable, fxα=f_αx,f¯αx. $\begin{array}{} \displaystyle \left[ f^{^{\prime \prime }}\left( x\right) \right] ^{\alpha }=\left[ \underline{f} _{\alpha }^{^{\prime \prime }}\left( x\right) ,\overline{f}_{\alpha }^{^{\prime \prime }}\left( x\right) \right] . \end{array}$

Definition 7

[18, 19] Let f : [a, b] → ℝF be fuzzy function. The fuzzy Laplace transform of f is

Fs=Lft=0estftdt=limτ0τestf_tdt,limτ0τestf¯tdt,Fs,α=Lftα=Lf_αt,Lf¯αt,Lf_αt=0estf_αtdt=limτ0τestf_αtdt,Lf¯αt=0estf¯αtdt=limτ0τestf¯αtdt. $$\begin{array}{c} \displaystyle F\left( s\right) =L\left( f\left( t\right) \right) =\overset{\infty }{% \underset{0}{\int }}e^{-st}f\left( t\right) dt=\left[ \underset{\tau \rightarrow \infty }{\lim }\overset{\tau }{\underset{0}{\int }}e^{-st}% \underline{f}\left( t\right) dt,\underset{\tau \rightarrow \infty }{\lim }% \overset{\tau }{\underset{0}{\int }}e^{-st}\overline{f}\left( t\right) dt% \right] , \\\displaystyle F\left( s,\alpha \right) =L\left( \left( f\left( t\right) \right) ^{\alpha }\right) =\left[ L\left( \underline{f}_{\alpha }\left( t\right) \right) ,L\left( \overline{f}_{\alpha }\left( t\right) \right) \right] , \\\displaystyle L\left( \underline{f}_{\alpha }\left( t\right) \right) =\overset{\infty }{% \underset{0}{\int }}e^{-st}\underline{f}_{\alpha }\left( t\right) dt=% \underset{\tau \rightarrow \infty }{\lim }\overset{\tau }{\underset{0}{\int }% }e^{-st}\underline{f}_{\alpha }\left( t\right) dt, \\\displaystyle L\left( \overline{f}_{\alpha }\left( t\right) \right) =\overset{\infty }{% \underset{0}{\int }}e^{-st}\overline{f}_{\alpha }\left( t\right) dt=\underset% {\tau \rightarrow \infty }{\lim }\overset{\tau }{\underset{0}{\int }}e^{-st}% \overline{f}_{\alpha }\left( t\right) dt. \end{array}$$

Theorem 3

[18, 19] Suppose that f is continuous fuzzy-valued function on [0, ∞) and exponential order α and that f is piecewise continuous fuzzy-valued function on [0, ∞).

If the function f is (1) differentiable,

Lft=sLftf0, $$\begin{array}{} \displaystyle L\left( f^{^{\prime }}\left( t\right) \right) =sL\left( f\left( t\right) \right) \ominus f\left( 0\right) , \end{array}$$

if the function f is (2) differentiable,

Lft=f0sLft. $$\begin{array}{} \displaystyle L\left( f^{^{\prime }}\left( t\right) \right) =\left( -f\left( 0\right) \right) \ominus \left( -sL\left( f\left( t\right) \right) \right) . \end{array}$$

Theorem 4

[18, 19] Suppose that f and f are continuous fuzzy-valued functions on [0, ∞) and exponential order α and that f is piecewise continuous fuzzy-valued function on [0, ∞).

If the functions f and f are (1) differentiable,

Lft=s2Lftsf0f0, $$\begin{array}{} \displaystyle L\left( f^{^{\prime \prime }}\left( t\right) \right) =s^{2}L\left( f\left( t\right) \right) \ominus sf\left( 0\right) \ominus f^{^{\prime }}\left( 0\right) , \end{array}$$

if the function f is (1) differentiable and the function f is (2) differentiable,

Lft=f0s2Lftsf0, $$\begin{array}{} \displaystyle L\left( f^{^{^{\prime \prime }}}\left( t\right) \right) =-f^{^{\prime }}\left( 0\right) \ominus \left( -s^{2}\right) L\left( f\left( t\right) \right) -sf\left( 0\right) , \end{array}$$

if the function f is (2) differentiable and the function f is (1) differentiable,

Lft=sf0s2Lftf0, $$\begin{array}{} \displaystyle L\left( f^{^{^{\prime \prime }}}\left( t\right) \right) =-sf\left( 0\right) \ominus \left( -s^{2}\right) L\left( f\left( t\right) \right) \ominus f^{^{\prime }}\left( 0\right) , \end{array}$$

if the functions f and f are (2) differentiable,

Lft=s2Lftsf0f0. $$\begin{array}{} \displaystyle L\left( f^{^{\prime \prime }}\left( t\right) \right) =s^{2}L\left( f\left( t\right) \right) \ominus sf\left( 0\right) -f^{^{\prime }}\left( 0\right) . \end{array}$$

Theorem 5

[17, 19] Let be f(t), g(t) continuous fuzzy-valued functions and c1 and c2 constants, then

Lc1ft+c2gt=c1Lft+c2Lgt. $$\begin{array}{} \displaystyle L\left( c_{1}f\left( t\right) +c_{2}g\left( t\right) \right) =\left( c_{1}L\left( f\left( t\right) \right) \right) +\left( c_{2}L\left( g\left( t\right) \right) \right) . \end{array}$$

Findings and Main Results

We study the problem

u(t)+u(t)=Aα,t>0 $$\begin{array}{} \displaystyle u^{\prime \prime }(t)+u(t)=\left[ A\right] ^{\alpha }, t \gt 0 \end{array}$$

u(0)=Bα,u(0)=Cα $$\begin{array}{} \displaystyle u(0)=\left[ B\right] ^{\alpha },{ \, }u^{^{\prime }}(0)=\left[ C\right]^{\alpha } \end{array}$$

by the fuzzy Laplace transform, where A, B and C are symmetric triangular fuzzy numbers with supports [a, a], [b, b] and [c, c], respectively. Also, the α–level sets of A, B, C are

Aα=A_α,A¯α=a_+a¯a_2α,a¯a¯a_2α,Bα=B_α,B¯α=b_+b¯b_2α,b¯b¯b_2α,Cα=C_α,C¯α=c_+c¯c_2α,c¯c¯c_2α. $$\begin{array}{} \displaystyle \left[ A\right] ^{\alpha }=\left[ \underline{A}_{\alpha },\overline{A} _{\alpha }\right] =\left[ \underline{a}+\left( \frac{\overline{a}-\underline{ a}}{2}\right) \alpha ,\overline{a}-\left( \frac{\overline{a}-\underline{a}}{2 }\right) \alpha \right] , \\\displaystyle \left[ B\right] ^{\alpha }=\left[ \underline{B}_{\alpha },\overline{B} _{\alpha }\right] =\left[ \underline{b}+\left( \frac{\overline{b}-\underline{ b}}{2}\right) \alpha ,\overline{b}-\left( \frac{\overline{b}-\underline{b}}{2 }\right) \alpha \right] , \\\displaystyle \left[ C\right] ^{\alpha }=\left[ \underline{C}_{\alpha },\overline{C} _{\alpha }\right] =\left[ \underline{c}+\left( \frac{\overline{c}-\underline{ c}}{2}\right) \alpha ,\overline{c}-\left( \frac{\overline{c}-\underline{c}}{2 }\right) \alpha \right] . \end{array}$$

In this paper, (i, j) solution means that u is (i) differentiable, u is (j) differentiable.

If u and u are (1) differentiable, since

s2Luαtsuα0uα0+Luαt=LAα, $$\begin{array}{} \displaystyle s^{2}L\left( u_{\alpha }\left( t\right) \right) \ominus su_{\alpha }\left( 0\right) \ominus u_{\alpha }^{^{\prime }}\left( 0\right) +L\left( u_{\alpha }\left( t\right) \right) =L\left( \left[ A\right] ^{\alpha }\right) , \end{array}$$

and using the fuzzy arithmetic and Hukuhara difference, yields the equations

s2Lu_αtsu_α0u_α0+Lu_αt=LA_α,s2Lu¯αtsu¯α0u¯α0+Lu¯αt=LA¯α. $$\begin{array}{} \displaystyle s^{2}L\left( \underline{u}_{\alpha }\left( t\right) \right) -s\underline{u} _{\alpha }\left( 0\right) -\underline{u}_{\alpha }^{^{\prime }}\left( 0\right) +L\left( \underline{u}_{\alpha }\left( t\right) \right) =L\left( \underline{A}_{\alpha }\right) , \\\ \displaystyle s^{2}L\left( \overline{u}_{\alpha }\left( t\right) \right) -s\overline{u} _{\alpha }\left( 0\right) -\overline{u}_{\alpha }^{^{\prime }}\left( 0\right) +L\left( \overline{u}_{\alpha }\left( t\right) \right) =L\left( \overline{A}_{\alpha }\right) . \end{array}$$

Using the initial values, we get

Lu_αt=A_αss2+1+sB_αs2+1+C_αs2+1,Lu¯αt=A¯αss2+1+sB¯αs2+1+C¯αs2+1. $$\begin{array}{} \displaystyle L\left( \underline{u}_{\alpha }\left( t\right) \right) =\frac{\underline{A} _{\alpha }}{s\left( s^{2}+1\right) }+\frac{s\underline{B}_{\alpha }}{s^{2}+1} +\frac{\underline{C}_{\alpha }}{s^{2}+1}, \\\ \displaystyle L\left( \overline{u}_{\alpha }\left( t\right) \right) =\frac{\overline{A} _{\alpha }}{s\left( s^{2}+1\right) }+\frac{s\overline{B}_{\alpha }}{s^{2}+1}+ \frac{\overline{C}_{\alpha }}{s^{2}+1}. \end{array}$$

From this, taking the inverse Laplace transform of the above equations, the lower solution and the upper solution are obtained as

u_αt=A_α1cost+B_αcost+C_αsint,u¯αt=A¯α1cost+B¯αcost+C¯αsint. $$\begin{array}{} \displaystyle \underline{u}_{\alpha }\left( t\right) =\underline{A}_{\alpha }\left( 1-\cos \left( t\right) \right) +\underline{B}_{\alpha }\cos \left( t\right) + \underline{C}_{\alpha }\sin \left( t\right) , \\\ \displaystyle \overline{u}_{\alpha }\left( t\right) =\overline{A}_{\alpha }\left( 1-\cos \left( t\right) \right) +\overline{B}_{\alpha }\cos \left( t\right) + \overline{C}_{\alpha }\sin \left( t\right) . \end{array}$$

If u is (1) differentiable and u is (2) differentiable, since

uα0s2Luαtsuα0+Luαt=LAα, $$\begin{array}{} \displaystyle -u_{\alpha }^{^{\prime }}\left( 0\right) \ominus \left( -s^{2}\right) L\left( u_{\alpha }\left( t\right) \right) -su_{\alpha }\left( 0\right) +L\left( u_{\alpha }\left( t\right) \right) =L\left( \left[ A\right] ^{\alpha }\right) , \end{array}$$

and using the fuzzy arithmetic and Hukuhara difference, the equations

u¯α0s2Lu¯αtsu¯α0+Lu_αt=LA_α, $$\begin{array}{} \displaystyle -\overline{u}_{\alpha }^{^{\prime }}\left( 0\right) -\left( -s^{2}L\left( \overline{u}_{\alpha }\left( t\right) \right) \right) -s\overline{u}_{\alpha }\left( 0\right) +L\left( \underline{u}_{\alpha }\left( t\right) \right) =L\left( \underline{A}_{\alpha }\right) , \end{array}$$

u_α0s2Lu_αtsu_α0+Lu¯αt=LA¯α $$\begin{array}{} \displaystyle -\underline{u}_{\alpha }^{^{\prime }}\left( 0\right) -\left( -s^{2}L\left( \underline{u}_{\alpha }\left( t\right) \right) \right) -s\underline{u} _{\alpha }\left( 0\right) +L\left( \overline{u}_{\alpha }\left( t\right) \right) =L\left( \overline{A}_{\alpha }\right) \end{array}$$

are obtained. If L(uα(t)) in the equation (3.4) is replaced by the equation (3.3) and making the necessary operations, we have

Lu_αt=A_αs1s4+C¯α1s4+sB¯αA¯α1s4s2C_α1s4s3B_α1s4. $$\begin{array}{} \displaystyle L\left( \underline{u}_{\alpha }\left( t\right) \right) =\frac{\underline{A} _{\alpha }}{s\left( 1-s^{4}\right) }+\frac{\overline{C}_{\alpha }}{1-s^{4}}+ \frac{s\left( \overline{B}_{\alpha }-\overline{A}_{\alpha }\right) }{1-s^{4}} -\frac{s^{2}\underline{C}_{\alpha }}{1-s^{4}}-\frac{s^{3}\underline{B} _{\alpha }}{1-s^{4}}. \end{array}$$

Taking inverse Laplace transform of the equation (3.5), the lower solution is obtained as

u_αt=A_α114et14et12cost+C¯α14et+14et+12sint+B¯αA¯α14et14et+12costC_α14et+14et12sintB_α14et14et12cost. $$\begin{array}{} \begin{split}{} \displaystyle \underline{u}_{\alpha }\left( t\right) &=&\underline{A}_{\alpha }\left( 1- \frac{1}{4}e^{t}-\frac{1}{4}e^{-t}-\frac{1}{2}\cos \left( t\right) \right) + \overline{C}_{\alpha }\left( -\frac{1}{4}e^{t}+\frac{1}{4}e^{-t}+\frac{1}{2} \sin \left( t\right) \right) \\ &&+\left( \overline{B}_{\alpha }-\overline{A}_{\alpha }\right) \left( -\frac{ 1}{4}e^{t}-\frac{1}{4}e^{-t}+\frac{1}{2}\cos \left( t\right) \right) - \underline{C}_{\alpha }\left( -\frac{1}{4}e^{t}+\frac{1}{4}e^{-t}-\frac{1}{2} \sin \left( t\right) \right) \\ &&-\underline{B}_{\alpha }\left( -\frac{1}{4}e^{t}-\frac{1}{4}e^{-t}-\frac{1 }{2}\cos \left( t\right) \right) . \end{split} \end{array}$$

Similarly, the upper solution is obtained as

u¯αt=A¯α114et14et12cost+C_α14et+14et+12sint+B_αA_α14et14et+12costC¯α14et+14et12sintB¯α14et14et12cost. $$\begin{array}{} \begin{split}{} \displaystyle \overline{u}_{\alpha }\left( t\right) &=&\overline{A}_{\alpha }\left( 1- \frac{1}{4}e^{t}-\frac{1}{4}e^{-t}-\frac{1}{2}\cos \left( t\right) \right) + \underline{C}_{\alpha }\left( -\frac{1}{4}e^{t}+\frac{1}{4}e^{-t}+\frac{1}{2} \sin \left( t\right) \right) \\ &&+\left( \underline{B}_{\alpha }-\underline{A}_{\alpha }\right) \left( - \frac{1}{4}e^{t}-\frac{1}{4}e^{-t}+\frac{1}{2}\cos \left( t\right) \right) - \overline{C}_{\alpha }\left( -\frac{1}{4}e^{t}+\frac{1}{4}e^{-t}-\frac{1}{2} \sin \left( t\right) \right) \\ &&-\overline{B}_{\alpha }\left( -\frac{1}{4}e^{t}-\frac{1}{4}e^{-t}-\frac{1}{ 2}\cos \left( t\right) \right) . \end{split} \end{array}$$

If u is (2) differentiable and u is (1) differentiable, since

suα0s2Luαtuα0+Luαt=LAα, $$\begin{array}{} \displaystyle -su_{\alpha }\left( 0\right) \ominus \left( -s^{2}\right) L\left( u_{\alpha }\left( t\right) \right) \ominus u_{\alpha }^{^{\prime }}\left( 0\right) +L\left( u_{\alpha }\left( t\right) \right) =L\left( \left[ A\right] ^{\alpha }\right), \end{array}$$

we have the equations

su¯α0s2Lu¯αtu¯α0+Lu_αt=LA_α, $$\begin{array}{} \displaystyle -s\overline{u}_{\alpha }\left( 0\right) -\left( -s^{2}L\left( \overline{u} _{\alpha }\left( t\right) \right) \right) -\overline{u}_{\alpha }^{^{\prime }}\left( 0\right) +L\left( \underline{u}_{\alpha }\left( t\right) \right) =L\left( \underline{A}_{\alpha }\right) , \end{array}$$

su_α0s2Lu_αtu_α0+Lu¯αt=LA¯α, $$\begin{array}{} \displaystyle -s\underline{u}_{\alpha }\left( 0\right) -\left( -s^{2}L\left( \underline{u} _{\alpha }\left( t\right) \right) \right) -\underline{u}_{\alpha }^{^{\prime }}\left( 0\right) +L\left( \overline{u}_{\alpha }\left( t\right) \right) =L\left( \overline{A}_{\alpha }\right) , \end{array}$$

If L(uα(t)) in the equation (3.7) is replaced by the equation (3.6), we get

Lu_αt=A_αs1s4+C_α1s4+sB¯αA¯α1s4s2C¯α1s4s3B_α1s4. $$\begin{array}{} \displaystyle L\left( \underline{u}_{\alpha }\left( t\right) \right) =\frac{\underline{A} _{\alpha }}{s\left( 1-s^{4}\right) }+\frac{\underline{C}_{\alpha }}{1-s^{4}}+ \frac{s\left( \overline{B}_{\alpha }-\overline{A}_{\alpha }\right) }{1-s^{4}} -\frac{s^{2}\overline{C}_{\alpha }}{1-s^{4}}-\frac{s^{3}\underline{B} _{\alpha }}{1-s^{4}}. \end{array}$$

From this, the lower solution is obtained as

u_αt=A_α114et14et12cost+C_α14et+14et+12sint+B¯αA¯α14et14et+12costC¯α14et+14et12sintB_α14et14et12cost. $$\begin{array}{} \begin{split}{} \displaystyle \underline{u}_{\alpha }\left( t\right) &=&\underline{A}_{\alpha }\left( 1- \frac{1}{4}e^{t}-\frac{1}{4}e^{-t}-\frac{1}{2}\cos \left( t\right) \right) + \underline{C}_{\alpha }\left( -\frac{1}{4}e^{t}+\frac{1}{4}e^{-t}+\frac{1}{2} \sin \left( t\right) \right) \\ &&+\left( \overline{B}_{\alpha }-\overline{A}_{\alpha }\right) \left( -\frac{ 1}{4}e^{t}-\frac{1}{4}e^{-t}+\frac{1}{2}\cos \left( t\right) \right) - \overline{C}_{\alpha }\left( -\frac{1}{4}e^{t}+\frac{1}{4}e^{-t}-\frac{1}{2} \sin \left( t\right) \right) \\ &&-\underline{B}_{\alpha }\left( -\frac{1}{4}e^{t}-\frac{1}{4}e^{-t}-\frac{1 }{2}\cos \left( t\right) \right) . \end{split} \end{array}$$

Similarly, the upper solution is obtained as

u¯αt=A¯α114et14et12cost+C¯α14et+14et+12sint+B_αA_α14et14et+12costC_α14et+14et12sintB¯α14et14et12cost. $$\begin{array}{} \begin{split}{} \displaystyle \overline{u}_{\alpha }\left( t\right) &=&\overline{A}_{\alpha }\left( 1- \frac{1}{4}e^{t}-\frac{1}{4}e^{-t}-\frac{1}{2}\cos \left( t\right) \right) + \overline{C}_{\alpha }\left( -\frac{1}{4}e^{t}+\frac{1}{4}e^{-t}+\frac{1}{2} \sin \left( t\right) \right) \\ &&+\left( \underline{B}_{\alpha }-\underline{A}_{\alpha }\right) \left( - \frac{1}{4}e^{t}-\frac{1}{4}e^{-t}+\frac{1}{2}\cos \left( t\right) \right) - \underline{C}_{\alpha }\left( -\frac{1}{4}e^{t}+\frac{1}{4}e^{-t}-\frac{1}{2} \sin \left( t\right) \right) \\ &&-\overline{B}_{\alpha }\left( -\frac{1}{4}e^{t}-\frac{1}{4}e^{-t}-\frac{1}{ 2}\cos \left( t\right) \right) . \end{split} \end{array}$$

If u is (2) differentiable and u is (2) differentiable, since

s2Luαtsuα0uα0+Luαt=LAα, $$\begin{array}{} \displaystyle s^{2}L\left( u_{\alpha }\left( t\right) \right) \ominus su_{\alpha }\left( 0\right) -u_{\alpha }^{^{\prime }}\left( 0\right) +L\left( u_{\alpha }\left( t\right) \right) =L\left( \left[ A\right] ^{\alpha }\right), \end{array}$$

we have the equations

s2Lu_αtsu_α0u_α0+Lu_αt=LA_α,s2Lu¯αtsu¯α0u¯α0+Lu¯αt=LA¯α, $$\begin{array}{} \displaystyle s^{2}L\left( \underline{u}_{\alpha }\left( t\right) \right) -s\underline{u} _{\alpha }\left( 0\right) -\underline{u}_{\alpha }^{^{\prime }}\left( 0\right) +L\left( \underline{u}_{\alpha }\left( t\right) \right) =L\left( \underline{A}_{\alpha }\right), \\\\ \displaystyle s^{2}L\left( \overline{u}_{\alpha }\left( t\right) \right) -s\overline{u} _{\alpha }\left( 0\right) -\overline{u}_{\alpha }^{^{\prime }}\left( 0\right) +L\left( \overline{u}_{\alpha }\left( t\right) \right) =L\left( \overline{A}_{\alpha }\right), \end{array}$$

Using the initial values, the lower and upper solutions are obtained as

Lu_αt=A_αss2+1+sB_αs2+1+C¯αs2+1,Lu¯αt=A¯αss2+1+sB¯αs2+1+C_αs2+1. $$\begin{array}{} \displaystyle L\left( \underline{u}_{\alpha }\left( t\right) \right) =\frac{\underline{A} _{\alpha }}{s\left( s^{2}+1\right) }+\frac{s\underline{B}_{\alpha }}{s^{2}+1} +\frac{\overline{C}_{\alpha }}{s^{2}+1}, \\\ \displaystyle L\left( \overline{u}_{\alpha }\left( t\right) \right) =\frac{\overline{A} _{\alpha }}{s\left( s^{2}+1\right) }+\frac{s\overline{B}_{\alpha }}{s^{2}+1}+ \frac{\underline{C}_{\alpha }}{s^{2}+1}. \end{array}$$

From this, solutions are obtained as

u_αt=A_α1cost+B_αcost+C¯αsint,u¯αt=A¯α1cost+B¯αcost+C_αsint. $$\begin{array}{} \displaystyle \underline{u}_{\alpha }\left( t\right) =\underline{A}_{\alpha }\left( 1-\cos \left( t\right) \right) +\underline{B}_{\alpha }\cos \left( t\right) + \overline{C}_{\alpha }\sin \left( t\right) , \\\\ \displaystyle \overline{u}_{\alpha }\left( t\right) =\overline{A}_{\alpha }\left( 1-\cos \left( t\right) \right) +\overline{B}_{\alpha }\cos \left( t\right) + \underline{C}_{\alpha }\sin \left( t\right) . \end{array}$$

Example 1

Consider the problem

u(t)+u(t)=0α,y(0)=1α,y(0)=2α $$\begin{array}{} \displaystyle u^{\prime \prime }(t)+u(t)=\left[ 0\right] ^{\alpha },{ \, } y(0)=\left[ 1\right] ^{\alpha },{ \, }y^{^{\prime }}(0)=\left[ 2\right] ^{\alpha } \end{array}$$

by fuzzy Laplace transform, where [0]α = [–1 + α, 1 – α], [1]α = [α, 2 – α], [2]α = [1 + α, 3 – α].

(1, 1) solution is

u_αt=1+α1cost+αcost+1+αsint,u¯αt=1α1cost+2αcost+3αsint,utα=u_αt,u¯αt, $$\begin{array}{c} \displaystyle \underline{u}_{\alpha }\left( t\right) =\left( -1+\alpha \right) \left( 1-\cos \left( t\right) \right) +\alpha \cos \left( t\right) +\left( 1+\alpha \right) \sin \left( t\right) , \\\displaystyle \overline{u}_{\alpha }\left( t\right) =\left( 1-\alpha \right) \left( 1-\cos \left( t\right) \right) +\left( 2-\alpha \right) \cos \left( t\right) +\left( 3-\alpha \right) \sin \left( t\right) , \\\displaystyle \left[ u\left( t\right) \right] ^{\alpha }=\left[ \underline{u}_{\alpha }\left( t\right) ,\overline{u}_{\alpha }\left( t\right) \right] , \end{array}$$

(1, 2) solution is

u_αt=1+α114et14et12cost+3α14et+14et+12sint+14et14et+12cost1+α14et+14et12sintα14et14et12cost, $$\begin{array}{} \begin{split}{} \displaystyle \underline{u}_{\alpha }\left( t\right) &=&\left( -1+\alpha \right) \left( 1- \frac{1}{4}e^{t}-\frac{1}{4}e^{-t}-\frac{1}{2}\cos \left( t\right) \right) +\left( 3-\alpha \right) \left( -\frac{1}{4}e^{t}+\frac{1}{4}e^{-t}+\frac{1}{ 2}\sin \left( t\right) \right) \\ &&+\left( -\frac{1}{4}e^{t}-\frac{1}{4}e^{-t}+\frac{1}{2}\cos \left( t\right) \right) -\left( 1+\alpha \right) \left( -\frac{1}{4}e^{t}+\frac{1}{4 }e^{-t}-\frac{1}{2}\sin \left( t\right) \right) \\ &&-\alpha \left( -\frac{1}{4}e^{t}-\frac{1}{4}e^{-t}-\frac{1}{2}\cos \left( t\right) \right) , \end{split} \end{array}$$

u¯αt=1α114et14et12cost+1+α14et+14et+12sint+14et14et+12cost3α14et+14et12sint2α14et14et12cost, $$\begin{array}{} \begin{split}{} \displaystyle \overline{u}_{\alpha }\left( t\right) &=&\left( 1-\alpha \right) \left( 1- \frac{1}{4}e^{t}-\frac{1}{4}e^{-t}-\frac{1}{2}\cos \left( t\right) \right) +\left( 1+\alpha \right) \left( -\frac{1}{4}e^{t}+\frac{1}{4}e^{-t}+\frac{1}{ 2}\sin \left( t\right) \right) \\ &&+\left( -\frac{1}{4}e^{t}-\frac{1}{4}e^{-t}+\frac{1}{2}\cos \left( t\right) \right) -\left( 3-\alpha \right) \left( -\frac{1}{4}e^{t}+\frac{1}{4 }e^{-t}-\frac{1}{2}\sin \left( t\right) \right) \\ &&-\left( 2-\alpha \right) \left( -\frac{1}{4}e^{t}-\frac{1}{4}e^{-t}-\frac{1 }{2}\cos \left( t\right) \right) ,\\ \end{split} \end{array}$$

utα=u_αt,u¯αt, $$\begin{array}{} \displaystyle \left[ u\left( t\right) \right] ^{\alpha }=\left[ \underline{u}_{\alpha }\left( t\right) ,\overline{u}_{\alpha }\left( t\right) \right] , \end{array}$$

(2, 1) solution is

u_αt=1+α114et14et12cost+1+α14et+14et+12sint+14et14et+12cost3α14et+14et12sintα14et14et12cost, $$\begin{array}{} \begin{split}{} \displaystyle \underline{u}_{\alpha }\left( t\right) &=&\left( -1+\alpha \right) \left( 1- \frac{1}{4}e^{t}-\frac{1}{4}e^{-t}-\frac{1}{2}\cos \left( t\right) \right) +\left( 1+\alpha \right) \left( -\frac{1}{4}e^{t}+\frac{1}{4}e^{-t}+\frac{1}{ 2}\sin \left( t\right) \right) \\ &&+\left( -\frac{1}{4}e^{t}-\frac{1}{4}e^{-t}+\frac{1}{2}\cos \left( t\right) \right) -\left( 3-\alpha \right) \left( -\frac{1}{4}e^{t}+\frac{1}{4 }e^{-t}-\frac{1}{2}\sin \left( t\right) \right) \\ &&-\alpha \left( -\frac{1}{4}e^{t}-\frac{1}{4}e^{-t}-\frac{1}{2}\cos \left( t\right) \right) , \end{split} \end{array}$$

u¯αt=1α114et14et12cost+3α14et+14et+12sint+14et14et+12cost1+α14et+14et12sint2α14et14et12cost, $$\begin{array}{} \begin{split}{} \displaystyle \overline{u}_{\alpha }\left( t\right) &=&\left( 1-\alpha \right) \left( 1- \frac{1}{4}e^{t}-\frac{1}{4}e^{-t}-\frac{1}{2}\cos \left( t\right) \right) +\left( 3-\alpha \right) \left( -\frac{1}{4}e^{t}+\frac{1}{4}e^{-t}+\frac{1}{ 2}\sin \left( t\right) \right) \\ &&+\left( -\frac{1}{4}e^{t}-\frac{1}{4}e^{-t}+\frac{1}{2}\cos \left( t\right) \right) -\left( 1+\alpha \right) \left( -\frac{1}{4}e^{t}+\frac{1}{4 }e^{-t}-\frac{1}{2}\sin \left( t\right) \right) \\ &&-\left( 2-\alpha \right) \left( -\frac{1}{4}e^{t}-\frac{1}{4}e^{-t}-\frac{1 }{2}\cos \left( t\right) \right), \end{split} \end{array}$$

utα=u_αt,u¯αt, $$\begin{array}{} \displaystyle \left[ u\left( t\right) \right] ^{\alpha }=\left[ \underline{u}_{\alpha }\left( t\right) ,\overline{u}_{\alpha }\left( t\right) \right] , \end{array}$$

and (2, 2) solution is

u_αt=1+α1cost+αcost+3αsint,u¯αt=1α1cost+2αcost+1+αsint, $$\begin{array}{c} \displaystyle \underline{u}_{\alpha }\left( t\right) =\left( -1+\alpha \right) \left( 1-\cos \left( t\right) \right) +\alpha \cos \left( t\right) +\left( 3-\alpha \right) \sin \left( t\right) , \\\displaystyle \overline{u}_{\alpha }\left( t\right) =\left( 1-\alpha \right) \left( 1-\cos \left( t\right) \right) +\left( 2-\alpha \right) \cos \left( t\right) +\left( 1+\alpha \right) \sin \left( t\right) , \end{array}$$

utα=u_αt,u¯αt. $$\begin{array}{} \displaystyle \left[ u\left( t\right) \right] ^{\alpha }=\left[ \underline{u}_{\alpha }\left( t\right) ,\overline{u}_{\alpha }\left( t\right) \right] . \end{array}$$

If

u_αtα>0,u¯αtα<0,u_αtu¯αt, $$\begin{array}{} \displaystyle \frac{\partial \underline{u}_{\alpha }\left( t\right) }{\partial \alpha } \gt 0, \text{ }\frac{\partial \overline{u}_{\alpha }\left( t\right) }{\partial \alpha } \lt 0,\text{ }\underline{u}_{\alpha }\left( t\right) \leq \overline{u} _{\alpha }\left( t\right) , \end{array}$$

the (i, j) solution (i = 1, 2) is a valid αlevel set. According to this, since sin(t) ≥ –1, (1, 1) solution is a valid αlevel set, since etet > 0, (1, 2) solution is a valid αlevel set, (2, 1) solution is not a valid αlevel set as etet – 2 > 0, that is (2, 1) solution is not a valid αlevel set for t > 0.881374, since sin (t) ≤ 1, (2, 2) solution is a valid αlevel set.

Also, since for (1, 1) solution,

u_1t=cost+2sint=u¯1t,u_1tu_αt=1α1+sint=u¯αtu¯1t, $$\begin{array}{c} \displaystyle \underline{u}_{1}\left( t\right) =\cos \left( t\right) +2\sin \left( t\right) =\overline{u}_{1}\left( t\right) , \\\displaystyle \underline{u}_{1}\left( t\right) -\underline{u}_{\alpha }\left( t\right) =\left( 1-\alpha \right) \left( 1+\sin \left( t\right) \right) =\overline{u} _{\alpha }\left( t\right) -\overline{u}_{1}\left( t\right) , \end{array}$$

for (1, 2) solution,

u_1t=cost+2sint=u¯1t,u_1tu_αt=1α1+12et12et=u¯αtu¯1t, $$\begin{array}{c} \displaystyle \underline{u}_{1}\left( t\right) =\cos \left( t\right) +2\sin \left( t\right) =\overline{u}_{1}\left( t\right) , \\\displaystyle \underline{u}_{1}\left( t\right) -\underline{u}_{\alpha }\left( t\right) =\left( 1-\alpha \right) \left( 1+\frac{1}{2}e^{t}-\frac{1}{2}e^{-t}\right) = \overline{u}_{\alpha }\left( t\right) -\overline{u}_{1}\left( t\right) , \end{array}$$

for (2, 1) solution,

u_1t=cost+2sint=u¯1t,u_1tu_αt=1α112et+12et=u¯αtu¯1t, $$\begin{array}{c} \displaystyle \underline{u}_{1}\left( t\right) =\cos \left( t\right) +2\sin \left( t\right) =\overline{u}_{1}\left( t\right) , \\\displaystyle \underline{u}_{1}\left( t\right) -\underline{u}_{\alpha }\left( t\right) =\left( 1-\alpha \right) \left( 1-\frac{1}{2}e^{t}+\frac{1}{2}e^{-t}\right) = \overline{u}_{\alpha }\left( t\right) -\overline{u}_{1}\left( t\right) , \end{array}$$

for (2, 2) solution,

u_1t=cost+2sint=u¯1t,u_1tu_αt=1α1sint=u¯αtu¯1t, $$\begin{array}{c} \displaystyle \underline{u}_{1}\left( t\right) =\cos \left( t\right) +2\sin \left( t\right) =\overline{u}_{1}\left( t\right) , \\\displaystyle \underline{u}_{1}\left( t\right) -\underline{u}_{\alpha }\left( t\right) =\left( 1-\alpha \right) \left( 1-\sin \left( t\right) \right) =\overline{u} _{\alpha }\left( t\right) -\overline{u}_{1}\left( t\right), \end{array}$$

all of the solutions are symmetric triangular fuzzy numbers.

Conclusions

In this paper, solutions of a fuzzy problem with symmetric triangular fuzzy number inital values are investigated by fuzzy Laplace transform. Generalized differantiability, fuzzy arithmetic are used. Example is solved. It is shown whether the solutions are valid α–level sets or not. If inital values are symmetric triangular fuzzy numbers, then the solutions are symmetric triangular fuzzy numbers for any time.

eISSN:
2444-8656
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics