Open Access

RETRACTED ARTICLE: Anticipated backward doubly stochastic differential equations with non-Liphschitz coefficients

   | Jun 24, 2019

Cite

Introduction

Backward stochastic differential equations (BSDEs in short) were first introduced by Pardoux and Peng [4]. They proved an existence and uniqueness result under Lipschitz condition. Since then many efforts have been made in relaxing the Lipschitz assumption of the generator of the BSDEs (see among others Mao [3] and Wang and Huang [7]). Few years later, the same authors considered in [5] a new type of BSDEs, that is a class of backward doubly stochastic differential equations (BDSDEs in short) with two different directions of stochastic integrals. These equations are extensively used in the study of stochastic partial differential equations (SPDEs). Their link with SPDEs in the case of Lipchitzian drift was established in [5]. The key point of solvency of such equations is the martingale representation theorem. In this spirit, Bally and Matoussi [1] gave the probabilistic representation of the solution in Sobolev space of semilinear SPDEs in terms of BDSDEs.

On the other hand, Peng and Yang [6] introduced the following type of anticipated backward stochastic differential equations (ABSDEs in short)

dYt=ft,Yt,Zt,Yt+δ(t),Zt+ζ(t)dtZtdWt,0tT,Yt=ξt,Zt=ηt,TtT+K, $$\begin{array}{} \displaystyle \begin{cases} -dY_t= f\left(t, Y_t, Z_t,Y_ {t+\delta(t)}, Z_ {t+\zeta(t)}\right)dt - Z_t dW_t,\quad \quad 0\le t \le T,\\ Y_{t} = \xi_{t}, \quad Z_{t} =\eta_{t},\quad\quad T\le t \le T+K, \end{cases} \end{array}$$

where δ and ζ are given nonnegative deterministic functions. In these equations, the generator includes not only the values of solutions of the present but also the future. In [6], the authors obtained the existence and uniqueness of the solution of ABSDE under Lipschitz assumption, gave the comparison theorem for one dimensional ABSDEs and finally they solved a stochastic control problem by showing the duality between linear stochastic differential delay equations and ABSDEs.

This paper is devoted to the following anticipated BDSDE

Yt=ξT+tTf(r,Yr,Zr,Yr+δ(r),Zr+ζ(r))dr+tTg(r,Yr,Zr)dBrtTZrdWr,0tT,Yt=ξt,Zt=ηt,TtT+K $$\begin{array}{} \displaystyle \begin{cases} Y_t= \xi_{T} + \displaystyle \int_t^T f(r,Y_r, Z_r, Y_{r+\delta(r)}, Z_{r+\zeta(r)}) dr + \int_t^T g(r,Y_r, Z_r)dB_r - \displaystyle \int_t^T Z_r dW_r, \quad 0\le t \le T,\\ Y_{t} = \xi_{t}, \quad Z_{t} =\eta_{t}, \quad\quad T\le t \le T+K \end{cases} \end{array}$$

where K is a positive constant, ξ., η. are given stochastic processes and δ, ζ: [0, T] → R+ are continuous functions satisfying:

t + δ(t) ≤ T + K, t + ζ(t) ≤ T + K.

There exists M ≥ 0 such that for 0 ≤ tT and non negative integrable function h,

tTh(r+ϕ(r))drMtT+Kh(r)dr,ϕ{δ,ζ}. $$\begin{array}{} \displaystyle \int_t^T h (r+ \phi(r)) dr \le M \int_t^{T+K} h (r) dr, \quad \phi \in \{\delta, \zeta\}. \end{array}$$

The paper is organized as follows. In section 2, we study first solvability of our equation in the case of Lipschtzian coefficients. Using this result, in section 3 we prove existence and uniqueness of solution with coefficients satisfying rather weaker conditions.

Preliminaries

Let Ω be a non-empty set, ℱ a σ-algebra of sets of Ω and P a probability measure defined on ℱ. The triplet (Ω, ℱ, P) defines a probability space, which is assumed to be complete. For a fix real 0 < T ≤ ∞, we assume given two mutually independent processes:

an —dimensional Brownian motion (Bt)0≤tT,

a d—dimensional Brownian motion (Wt)0≤tT.

We consider the family (ℱt)0≤tT given by

Ft=FtWFt,TB,0tT,Gs=F0,sWFs,T+KB,0sT+K, $$\begin{array}{} \displaystyle {\mathscr F}_{t} = {\mathscr F}^W_{t} \vee {\mathscr F}^B_{t, T}, \quad \; \;0\le t\le T,\quad \; \; {\mathscr G}_{s} = {\mathscr F}^W_{0,s} \vee {\mathscr F}^B_{s,T+K}, \quad 0\le s\le T+K, \end{array}$$

where for any process {φt}t0,Fs,tφ=σ{φrφs,srt}N,Ftφ=F0,tφ. $\begin{array}{} \displaystyle \{\varphi_t\}_{t\ge0}, \; {\mathscr F}^\varphi_{s,t} = \sigma\{\varphi_r-\varphi_s, \; s\le r\le t\}\vee {\mathscr N}, \; \; {\mathscr F}^\varphi_{t} = {\mathscr F}^\varphi_{0,t}. \end{array}$ Here 𝒩 denotes the class of P—null sets of ℱ. Note that (ℱt)0≤tT does not constitute a classical filtration.

For kN we consider the following sets (where E denotes the mathematical expectation with respect to the probability measure P):

L2(𝒢T, Rk) the space of 𝒢T-measurable random variable such that E[|ξT|2] < +∞.

S[0,T]2 $\begin{array}{} \displaystyle {\mathscr S}_{[0, T]}^2 \end{array}$(𝒢, Rk) the space of 𝒢t—adapted càdlàg processes

Ψ:[0,T]×ΩRk,||Ψ||S2(Rk)2=Esup0tT|Ψt|2<. $$\begin{array}{} \displaystyle \Psi: [0, T]\times \Omega \longrightarrow \mathbf{R}^k, \; || \Psi ||_{\mathscr{S}^2(\mathbf{R}^k)}^2 = {\bf E} \left(\sup_{0\leq t\leq T} |\Psi_t|^2 \right) \lt \infty. \end{array}$$

M[0,T]2 $\begin{array}{} \displaystyle \mathscr M_{[0, T]}^2 \end{array}$ (𝒢, Rk×d) the space of 𝒢t—progressively measurable processes

Ψ:[0,T]×ΩRk×d,||Ψ||M2(Rk×d)2=E0T|Ψt|2dt<. $$\begin{array}{} \displaystyle \Psi: [0, T]\times \Omega \longrightarrow \mathbf{R}^{k\times d},\; || \Psi ||_{\mathscr{M}^2(\mathbf{R}^{k\times d})}^2 = {\bf E} \int_0^T |\Psi_t|^2 \, dt \lt \infty. \end{array}$$

CG2(0,T)=M[0,T]2(G,Rk)×M[0,T]2(G,Rk×d) $\begin{array}{} \displaystyle {\mathscr C}_\mathscr{G}^2 (0, T) = \mathscr M_{[0, T]}^2 (\mathscr{G}, \mathbf{R}^k) \times \mathscr{M}_{[0, T]}^2 (\mathscr{G}, \mathbf{R}^{k\times d}) \end{array}$ endowed with the norm

||(Y,Z)||CG2(0,T)2=||Y||M2(Rk)2+||Z||M2(Rk×d)2. $$\begin{array}{} \displaystyle ||(Y,Z)||^2_ {{\mathscr C}_\mathscr{G}^2 (0, T)} = || Y||_{\mathscr{M}^2(\mathbf{R}^k)}^2 + ||Z||_{\mathscr{M}^2(\mathbf{R}^{k\times d})}^2 . \end{array}$$

BG2(0,T)=S[0,T]2(G,Rk)×M[0,T]2(G,Rk×d) $\begin{array}{} \displaystyle {\mathscr B}_\mathscr{G}^2 (0, T) = \mathscr S_{[0, T]}^2 (\mathscr{G}, \mathbf{R}^k) \times \mathscr{M}_{[0, T]}^2 (\mathscr{G}, \mathbf{R}^{k\times d}) \end{array}$ endowed with the norm

||(Y,Z)||BG2(0,T)2=||Y||S2(Rk)2+||Z||M2(Rk×d)2. $$\begin{array}{} \displaystyle ||(Y,Z)||^2_ {{\mathscr B}_\mathscr{G}^2 (0, T)} = || Y||_{\mathscr{S}^2(\mathbf{R}^k)}^2 + ||Z||_{\mathscr{M}^2(\mathbf{R}^{k\times d})}^2 . \end{array}$$

S be the set of all nondecreasing, continuous and concave function ρ(⋅) : R+R+ satisfying ρ(0) = 0, ρ(s) > 0 for s > 0 and 0+duρ(u)=+. $\begin{array}{} \int_{0+}\frac{du}{\rho(u)}= +\infty. \end{array}$

Remark 2.1

For any ρS, we can find a pair of positive constants a and b such that ρ(ν) ≤ a + bν for all ν ≥ 0.

We denote 𝒜 = Ω × [0, T] × Rk × Rk×d, f(r, 0) = h(r, 0, 0, 0, 0), for all x, yRk |x| the Euclidean norm of x and denote by 〈x, y〉 the Euclidean inner product.

Definition 2.2

A pair of processes (Y, Z) is called a solution to ABDSDE (1), if (Y, Z) ∈ BG2 $\begin{array}{} \displaystyle {\mathscr B}_\mathscr{G}^2 \end{array}$ (0, T + K) and it satisfies eq.(1).

First we investigate the case of lipschitz coefficients.

The case of Lipschitz coefficients

In this subsection, we will mainly study the existence and uniqueness of the solution to ABDSDE (1) with Lipschitz coefficients. For this purpose, we first make the following assumptions.

Assumptions

In the following, we assume that there exists ρS such that f and g satisfy assumptions (H1).

There exists a constant c > 0 such that

|f(t,y,z,θ(r),φ(r))f(t,y,z,θ(r),φ(r))|2c(|yy|2+|zz|2)+EFt[|θ(r)θ(r)|2+|φ(r)φ(r)|2], $$\begin{array}{} \begin{split}{} \displaystyle |f(t, y,z, \theta(r), \varphi(r))- f(t, y',z', \theta'(r), \varphi'(r))|^{2} &\leq c (|y-y^\prime|^{2} + |z-z^\prime|^{2}) \\&+ {\bf E}^{\mathscr{F}_{t}}[|\theta(r) - \theta'(r)|^{2} + |\varphi(r) - \varphi'(r)|^{2}], \end{split} \end{array}$$

for all (r, r′) ∈ [t, T + K], (t, y, z, θ(r), φ(r)), (t, y′, z′, θ′(r), φ′(r)) ∈ 𝒜 × CG2 $\begin{array}{} \displaystyle {\mathscr C}_\mathscr{G}^2 \end{array}$ (t, T + K).

There exists a constant 0 < α1 < 1 such that for any (t, y, z), (t, y′, z′) ∈ [0, T] × Rk × Rk×d

|g(t,y,z)g(t,y,z)|2c|yy|2+α1|zz|2. $$\begin{array}{} \displaystyle |g(t, y,z) - g(t, y',z')|^2 \leq c|y-y^\prime|^{2} + \alpha_{1}|z-z^\prime|^2. \end{array}$$

For any (t, y, z) ∈ [0, T] × Rk × Rk×d,

E0T|f(s,0)|2ds+E0T|g(s,y,z)|2ds<. $$\begin{array}{} \displaystyle {\bf E}\left[\int_0^T |f(s, 0)|^{2}ds\right] + {\bf E}\left[\int_0^T |g(s, y,z)|^{2}ds\right] \lt \infty. \end{array}$$

Existence and uniqueness of solution
Lemma 3.1

Suppose that (Yt, Zt)0≤tT CG2 $\begin{array}{} \displaystyle {\mathscr C}_\mathscr{G}^2 \end{array}$ (0, T + K) is the unique solution to the ABDSDE (1). Then Y S[0,T]2 $\begin{array}{} \displaystyle \mathscr S_{[0, T]}^2 \end{array}$ (𝒢, Rk).

Proof

Itô’s formula applied to eq.(1) yields, for 0 ≤ tT

|Yt|2+tT|Zr|2dr=|ξT|2+2tTYr,f(r,Yr,Zr,Yr+δ(r),Zr+ζ(r))dr+2tTYr,g(r,Yr,Zr)dBr2tTYr,ZrdWr+tT|g(r,Yr,Zr)|2dr. $$\begin{array}{} \begin{split}{} \displaystyle |Y_t|^2 + \int_t^T|Z_r|^2dr &= |\xi_{T}|^2+ 2\int_t^T\langle Y_r,f(r,Y_r, Z_r, Y_{r+\delta(r)}, Z_{r+\zeta(r)})\rangle dr + 2 \int_t^T\langle Y_r,g(r,Y_r, Z_r)dB_r\rangle \\ &-2\int_t^T\langle Y_r, Z_rdW_r\rangle + \int_t^T|g(r,Y_r, Z_r)|^2dr. \end{split} \end{array}$$

Using the fact that 2abεa2 + b2/ε for ε > 0 and assumptionn (H1.1), we deduce that

2EtTYr,f(r,Yr,Zr,Yr+δ(r),Zr+ζ(r))dr1εEtT|Yr|2dr+εcEtT(|Yr|2+|Zr|2)dr+εEtTEFt[|Yr+δ(r)|2+|Zr+ζ(r)|2]dr+2EtT|Yr||f(r,0)|dr. $$\begin{array}{} \begin{split}{} \displaystyle 2{\bf E}\int_t^T&\langle Y_r,f(r,Y_r, Z_r, Y_{r+\delta(r)}, Z_{r+\zeta(r)})\rangle dr \le \frac{1}{\varepsilon}{\bf E}\int_t^T|Y_r|^2dr + \varepsilon c{\bf E}\int_t^T(|Y_r|^2 +|Z_r|^2)dr \\ &+ \varepsilon{\bf E}\int_t^T{\bf E}^{\mathscr{F}_{t}}[|Y_{r+\delta(r)}|^{2} + |Z_{r+\zeta(r)}|^{2}]dr + 2{\bf E}\int_t^T|Y_r||f(r,0)|dr. \end{split} \end{array}$$

Applying (A2), we obtain finally

2EtTYr,f(r,Yr,Zr,Yr+δ(r),Zr+ζ(r))dr1ε+ε(c+M)EtT|Yr|2dr+ε(c+M)EtT|Zr|2dr+2EtT|Yr||f(r,0)|dr+εMETT+K(|ξr|2+|ηr|2)dr. $$\begin{array}{} \begin{split}{} \displaystyle 2{\bf E}\int_t^T&\langle Y_r,f(r,Y_r, Z_r, Y_{r+\delta(r)}, Z_{r+\zeta(r)})\rangle dr \le \left(\frac{1}{\varepsilon}+\varepsilon(c+M)\right){\bf E}\int_t^T|Y_r|^2dr\\ &+\varepsilon(c\!+\!M){\bf E}\int_t^T\!\!|Z_r|^2dr + 2{\bf E}\int_t^T|Y_r||f(r,0)|dr +\varepsilon M{\bf E}\int_T^{T\!+\!K}\!\!(|\xi_r|^2 \!+\!|\eta_r|^2)dr. \end{split} \end{array}$$

In addition, for any 0 ≤ tT, we have

EtT|g(r,Yr,Zr)|2drEtT|g(r,Yr,Zr)g(r,0,0)|2dr+EtT|g(r,0,0)|2drcEtT|Yr|2dr+α1EtT|Zr|2dr+EtTg(r,0,0)|2dr. $$\begin{array}{} \begin{split}{} \displaystyle {\bf E}\int_t^T|g(r,Y_r, Z_r)|^2dr &\le {\bf E}\int_t^T|g(r,Y_r, Z_r)-g(r,0,0)|^2dr +{\bf E}\int_t^T|g(r,0, 0)|^2dr\\ &\le c{\bf E}\int_t^T\!|Y_r|^2dr + \alpha_{1}{\bf E}\int_t^T\!\!|Z_r|^2dr +{\bf E}\int_t^Tg(r,0, 0)|^2dr. \end{split} \end{array}$$

Putting pieces together, we deduce from (2) that

EtT|Zr|2drE[|ξT|2]+MεETT+K(|ξr|2+|ηr|2)dr+1ε+ε(c+M)+cEtT|Yr|2dr+2EtT|Yr||f(r,0)|dr+EtT|g(r,0,0)|2dr+α1+ε(c+M)EtT|Zr|2dr. $$\begin{array}{} \begin{split}{} \displaystyle {\bf E}\int_t^T|Z_r|^2dr &\le {\bf E}[|\xi_{T}|^2] + M\varepsilon{\bf E}\int_T^{T\!+\!K}\!\!\!(|\xi_r|^2 \!+\!|\eta_r|^2)dr + \left(\frac{1}{\varepsilon}\!+\!\varepsilon(c\!+\!M)\!+\!c\right){\bf E}\int_t^T\!\!|Y_r|^2dr\\ &+ 2{\bf E}\int_t^T|Y_r||f(r,0)|dr + {\bf E}\int_t^T|g(r, 0,0)|^2dr +\left(\alpha_{1}\!+\!\varepsilon(c\!+\!M)\right){\bf E}\int_t^T\!\!|Z_r|^2\!dr. \end{split} \end{array}$$

If we choose ε = ε0 satisfying 1/C0 = (1–[α1 + ε0(c+M)])–1 > 0, we deduce that

EtT|Zr|2dr1C0EXt+2tT|Yr||f(r,0)|dr+tT|g(r,0,0)|2dr $$\begin{array}{} \displaystyle {\bf E}\int_t^T|Z_r|^2dr \le \frac{1}{C_0}{\bf E} \left[ X_t + 2 \int_t^T|Y_r||f(r,0)|dr + \int_t^T|g(r, 0,0)|^2dr\right] \end{array}$$

where putting C1=1ε0+ε0(c+M)+c, $\begin{array}{} \displaystyle C_1=\left(\frac{1}{\varepsilon_0}\!+\!\varepsilon_0(c\!+\!M)\!+\!c\right), \end{array}$

Xt=|ξT|2+Mε0TT+K(|ξr|2+|ηr|2)dr+C1tT|Yr|2dr. $$\begin{array}{} \displaystyle X_t= \left[|\xi_{T}|^2 + M\varepsilon_0\int_T^{T\!+\!K}\!\!\!(|\xi_r|^2 \!+\!|\eta_r|^2)dr + C_1\int_t^T\!\!|Y_r|^2dr\right]. \end{array}$$

By the same computations as before, we have

E[|ξT|2]+2EtTYr,f(r,Yr,Zr,Yr+δ(r),Zr+ζ(r))dr+EtT|g(r,Yr,Zr)|2dr1C0EXt+2tT|Yr||f(r,0)|dr+tT|g(r,0,0)|2dr. $$\begin{array}{} \begin{split}{} \displaystyle {\bf E}[|\xi_{T}|^2] &+2{\bf E}\int_t^T\langle Y_r,f(r,Y_r, Z_r, Y_{r+\delta(r)}, Z_{r+\zeta(r)})\rangle dr +{\bf E}\int_t^T|g(r,Y_r, Z_r)|^2dr \\ &\le \frac{1}{C_0}{\bf E} \left[ X_t + 2 \int_t^T|Y_r||f(r,0)|dr + \int_t^T|g(r,0, 0 )|^2dr\right]. \end{split} \end{array}$$

Moreover using again eq.(2), we have

EsuptrT|Yr|2E[|ξT|2]+2EsuptsTsTYr,f(r,Yr,Zr,Yr+δ(r),Zr+ζ(r))dr+2EsuptsTsTYr,g(r,Yr,Zr)dBr+2EsuptsTsTYr,ZrdWr+tT|g(r,Yr,Zr)|2dr. $$\begin{array}{} \begin{split}{} \displaystyle {\bf E}\left(\sup_{t\le r\le T}|Y_r|^2\right) &\le {\bf E}[|\xi_{T}|^2] + 2{\bf E}\sup_{t\le s\le T}\left(\int_s^T\langle Y_r,f(r,Y_r, Z_r, Y_{r+\delta(r)}, Z_{r+\zeta(r)})\rangle dr\right)\\ &+ 2 {\bf E}\sup_{t\le s\le T}\left|\int_s^T\langle Y_r,g(r,Y_r, Z_r)dB_r\rangle\right| + 2{\bf E}\sup_{t\le s\le T}\left|\int_s^T\langle Y_r, Z_rdW_r\rangle\right|\\ &+ \int_t^T|g(r,Y_r, Z_r)|^2dr. \end{split} \end{array}$$

By Burkhölder-Davis-Gundy inequality, there exists a constant C > 0 which may vary from line to line such that

EsuptsTsTYr,g(r,Yr,Zr)dBr18EsuptrT|Yr|2+CtT|g(r,Yr,Zr)|2dr2EsuptsTsTYr,ZrdWr18EsuptrT|Yr|2+CtT|Zr|2dr. $$\begin{array}{} \begin{split}{} \displaystyle {\bf E}\sup_{t\le s\le T}\left|\int_s^T\langle Y_r,g(r,Y_r, Z_r)dB_r\rangle\right| &\le \frac{1}{8}{\bf E}\left(\sup_{t\le r\le T}|Y_r|^2\right) + C\int_t^T|g(r,Y_r, Z_r)|^2dr \\ 2{\bf E}\sup_{t\le s\le T}\left|\int_s^T\langle Y_r, Z_rdW_r\rangle\right| &\le \frac{1}{8}{\bf E}\left(\sup_{t\le r\le T}|Y_r|^2\right) + C\int_t^T|Z_r|^2dr. \end{split} \end{array}$$

Using the above inequalities, we deduce from (5) that

34EsuptrT|Yr|2E[|ξT|2]+2EsuptsTsTYr,f(r,Yr,Zr,Yr+δ(r),Zr+ζ(r))dr+CtT|g(r,Yr,Zr)|2dr+CEtT|Zr|2dr $$\begin{array}{} \begin{split}{} \displaystyle \frac{3}{4}{\bf E}\left(\sup_{t\le r\le T}|Y_r|^2\right) \!&\le {\bf E}[|\xi_{T}|^2] + 2{\bf E}\sup_{t\le s\le T}\left(\int_s^T\langle Y_r,f(r,Y_r, Z_r, Y_{r+\delta(r)}, Z_{r+\zeta(r)})\rangle dr\right) \\ &+ C\int_t^T|g(r,Y_r, Z_r)|^2dr + C{\bf E}\int_t^T\!|Z_r|^2dr \end{split} \end{array}$$

Applying (3) and (4), we deduce that

34EsuptrT|Yr|22CC0EXt+2tT|Yr||f(r,0)|dr+tT|g(r,0,0)|2dr. $$\begin{array}{} \displaystyle \frac{3}{4}{\bf E}\left(\sup_{t\le r\le T}|Y_r|^2\right) \le \frac{2C}{C_0}{\bf E} \left[ X_t + 2 \int_t^T|Y_r||f(r,0)|dr + \int_t^T|g(r,0, 0 )|^2dr\right]. \end{array}$$

Moreover, we have

4CC0EtT|Yr||f(r,0)|dr14EsuptrT|Yr|2+42CC02EtT|f(r,0)|dr2. $$\begin{array}{} \displaystyle \frac{4C}{C_0}{\bf E}\int_t^T|Y_r||f(r,0)|dr \le \frac{1}{4}{\bf E}\left(\sup_{t\le r\le T}|Y_r|^2\right) + 4\left(\frac{2C}{C_0}\right)^2{\bf E}\left(\int_t^T|f(r,0)|dr\right)^2. \end{array}$$

Hence gathering (3) and (6) we obtain

12EsuptrT|Yr|2+EtT|Zr|2drC2EXt+tT|f(r,0)|dr2+tT|g(r,0,0)|2dr, $$\begin{array}{} \displaystyle \frac{1}{2}{\bf E}\left(\sup_{t\le r\le T}|Y_r|^2\right) + {\bf E}\int_t^T|Z_r|^2dr \le C_2{\bf E} \left[X_t + \left(\int_t^T|f(r,0)|dr\right)^2 + \int_t^T|g(r, 0,0)|^2dr\right], \end{array}$$

where C2 is a positive constant (which may change from line to line).

Then, applying the fubini’s theorem to (7), this leads to

EsuptrT|Yr|2C2E[|ξT|2+TT+K(|ξr|2+|ηr|2)dr+tT|f(r,0)|dr2+tT|g(r,0,0)|2dr]+C3tTE[suprsT|Ys|2]dr, $$\begin{array}{} \begin{split}{} \displaystyle {\bf E}\left(\sup_{t\le r\le T}|Y_r|^2\right) &\le C_2{\bf E}\bigg[|\xi_{T}|^2 + \int_T^{T\!+\!K}\!\!\!(|\xi_r|^2 \!+\!|\eta_r|^2)dr + \left(\int_t^T\!\!|f(r,0)|dr\right)^2 + \int_t^T\!\!|g (r, 0,0)|^2dr \bigg]\\ &+ C_3\int_t^T\!\!{\bf E}[\sup_{r\le s\le T}|Y_s|^2]dr, \end{split} \end{array}$$

where C3 = 2C1C2. Hence Gronwall’s inequality yields

EsuptrT|Yr|2+. $$\begin{array}{} \displaystyle {\bf E}\left(\sup_{t\le r\le T}|Y_r|^2\right) \le +\infty. \end{array}$$

This implies that Y S[0,T]2 $\begin{array}{} \displaystyle \mathscr S_{[0, T]}^2 \end{array}$ (𝒢, Rk). This completes the proof.□

To solve our equations, we examine first the cases where the coefficients do not depend on the variables. Namely, we consider the stochastic equation

Yt=ξT+tTf(r)dr+tTg(r)dBrtTZrdWr,0tT. $$\begin{array}{} \displaystyle Y_t = \xi_{T} + \int_t^T f(r) dr + \int_t^T g(r)dB_r - \int_t^TZ_rdW_r, \quad 0\le t\le T. \end{array}$$

where fM[0,T]2(G,Rk),gM[0,T]2(G,Rk×)andξTL2(GT,Rk). $\begin{array}{} \displaystyle f\in\mathscr{M}_{[0, T]}^2 (\mathscr{G}, \mathbf{R}^k), \quad g\in\mathscr{M}_{[0, T]}^2 (\mathscr{G}, \mathbf{R}^{k\times \ell})~ \text{and}~ \xi_{T} \in L^{2}({\mathscr G}_{T}, \mathbf{R}^{k}). \end{array}$

Let us recall the following result which will be useful in the sequel (the proof is omitted since it is an adaptation of Theorem 3.1 in Xu [9]).

Proposition 3.2

Given ξTL2(𝒢T, Rk), eq.(8) has a unique solution (Yt, Zt)0≤tT CG2 $\begin{array}{} \displaystyle {\mathscr C}_\mathscr{G}^2 \end{array}$ (0, T).

We are now in position to give our main results of this section.

Theorem 3.3

Assume that the assumptions (A1), (A2) and (H1) are true and let ξTL2(𝒢T, Rk). Then for any (ξ,η)S[T,T+K]2(G,Rk)×M[T,T+K]2(G,Rk×d) $\begin{array}{} \displaystyle (\xi,\eta)\in\mathscr{S}_{[T, T+K]}^2 (\mathscr{G}, \mathbf{R}^k)\times \mathscr{M}_{[T, T+K]}^2 (\mathscr{G}, \mathbf{R}^{k\times d}) \end{array}$ the ABDSDE (1) has a unique solution (Yt, Zt)0≤tT BG2 $\begin{array}{} \displaystyle {\mathscr B}_\mathscr{G}^2 \end{array}$ (0, T + K).

Proof

Existence. Let us consider the mapping

Ψ:CG2(0,T+K)CG2(0,T+K),(y,z)(Y,Z) $$\begin{array}{} \begin{split}{} \displaystyle \Psi : {\mathscr C}_\mathscr{G}^2 (0, T+K) &\to {\mathscr C}_\mathscr{G}^2 (0, T+K), \\ (y, z) &\to (Y, Z) \end{split} \end{array}$$

where the pair (Yt, Zt)0≤tT+K CG2 $\begin{array}{} \displaystyle {\mathscr C}_\mathscr{G}^2 \end{array}$ (0, T + K) is s.t. (Yt, Zt)TtT+K = (ξt, ηt) and it satisfies the equation

0tT,Yt=ξT+tTf(r,yr,zr,yr+δ(r),zr+ζ(r))dr+tTg(r,yr,zr)dBrtTZrdWr,t[T,T+K],Yt=ξt,Zt=ηt. $$\begin{array}{} \displaystyle \begin{cases} \forall 0\le t \le T,\\ Y_t= \xi_{T} + \displaystyle \int_t^T f(r,y_r, z_r,y_{r+\delta(r)}, z_{r+\zeta(r)})dr + \int_t^T g(r,y_r, z_r)dB_r - \displaystyle \int_t^T Z_r dW_r, \\ \forall t\in [T, T+K], \quad Y_{t} = \xi_{t}, \quad Z_{t} = \eta_{t}. \end{cases} \end{array}$$

Thanks to Proposition 3.2, the mapping Ψ is well defined. Let (Y, Z) and (, ) be two solutions of eq.(9), i.e:

(Y,Z)=Ψ(y,z)and(Y~,Z~)=Ψ(y~,z~). $$\begin{array}{} \displaystyle (Y, Z )=\Psi (y, z) \quad and \quad (\widetilde Y, \widetilde Z)= \Psi (\widetilde y, \widetilde z). \end{array}$$

Fix βR. The pair (Y, Z) solves the ABDSDE

Y¯t=tTΔf(r)dr+tTΔg(r)dBrtTZ¯rdWr,0tT,t[T,T+K],Y¯t=0,Z¯t=0, $$\begin{array}{} \displaystyle \begin{cases} \overline Y_t= \displaystyle \int_t^T\!\! \Delta f(r) dr + \int_t^T \!\! \Delta g(r) dB_r - \displaystyle \int_t^T \overline Z_rdW_r,\quad \forall \, 0\le t \le T,\\ \forall t\in [T, T+K], \quad \overline Y_t = 0, \quad \overline Z_t = 0, \end{cases} \end{array}$$

where for ρ ∈ {Y, Z}, ρ = ρρ͠, Δ g(r) = g(r, yr, zr) – g(r, r, r) and

Δf(r)=f(r,yr,zr,yr+δ(r),zr+ζ(r))f(r,y~r,z~r,y~r+δ(r),z~r+ζ(r)). $$\begin{array}{} \displaystyle \Delta f(r) = f(r,y_r, z_r,y_{r+\delta(r)}, z_{r+\zeta(r)}) -f(r,\widetilde y_r, \widetilde z_r,\widetilde y_{r+\delta(r)}, \widetilde z_{r+\zeta(r)}). \end{array}$$

Applying Ito’s formula, we obtain

E[eβt|Y¯t|2+βtTeβr|Y¯r|2dr+tTeβr|Z¯r|2dr]=2EtTeβrY¯r,Δf(r)dr+EtTeβr|Δg(r)|2dr. $$\begin{array}{} \displaystyle {\bf E}\bigg[e^{\beta t}|\overline Y_t|^2 + \beta\int_t^T\! e^{\beta r}|\overline Y_r|^2 dr + \int_t^T \!\!e^{\beta r} |\overline Z_r|^2 dr\bigg] = 2 {\bf E} \int_t^T \!\! e^{\beta r}\langle \overline Y_r, \Delta f(r)\rangle dr + {\bf E} \int_t^T\!\! e^{\beta r}|\Delta g(r)|^2 dr. \end{array}$$

Using the inequality 2abεa2 + b2/ε (where ε > 0 will be chosen later) and assumption (H1.1), we obtain

EtTeβr|Δg(r)|2drcEtT+Keβr|y¯r|2dr+α1EtT+Keβr|z¯r|2dr. $$\begin{array}{} \displaystyle {\bf E} \int_t^{T} e^{\beta r}|\Delta g(r)|^2 dr \le c{\bf E} \int_t^{T+K} e^{\beta r}|\overline y_r|^2dr + \alpha_{1}{\bf E} \int_t^{T+K} e^{\beta r}|\overline z_r|^{2} dr. \end{array}$$

Similarly, we have

2eβrY¯r,Δf(r)eβrε|Y¯r|2+cεeβr(|y¯r|2+|z¯r|2)+1εeβrEFt|y¯r+δ(r)|2+|z¯r+ζ(r)|2. $$\begin{array}{} \displaystyle 2e^{\beta r}\langle \overline Y_r,\Delta f(r)\rangle \le e^{\beta r}\varepsilon|\overline Y_r |^{2} + \frac{c}{\varepsilon}e^{\beta r}(|\overline y_r|^{2} +|\overline z_r|^{2}) + \frac{1}{\varepsilon}e^{\beta r}{\bf E}^{\mathscr{F}_{t}}\left[|\overline y_{r+\delta(r)}|^{2} + |\overline z_{r+\zeta(r)}|^{2}\right]. \end{array}$$

Which implies by virtue of condition (A2) that

2EtTeβrY¯r,Δf(r)drεEtT+Keβr|Y¯r|2dr+1ε(c+M)EtT+Keβr(|y¯r|2+|z¯r|2)dr. $$\begin{array}{} \displaystyle 2{\bf E}\int_t^T \!\! e^{\beta r}\langle \overline Y_r, \Delta f(r)\rangle dr \le \varepsilon {\bf E} \int_t^{T+K} \!\! e^{\beta r}|\overline Y_r |^{2} dr + \frac{1}{\varepsilon}(c+ M ){\bf E} \int_t^{T+K}\!e^{\beta r}(|\overline y_r|^{2} +|\overline z_r|^{2})dr. \end{array}$$

Therefore, we can write (where γ=1ε(c+M)+c1ε(c+M)+α1 $\begin{array}{} \displaystyle \gamma = \frac{\frac{1}{\varepsilon}(c+ M )+c}{\frac{1}{\varepsilon}(c+ M )+\alpha_{1}} \end{array}$

Eeβt|Y¯t|2+(βε)EtT+Keβr|Y¯r|2dr+EtT+Keβr|Z¯r|2dr1ε(c+M)+cEtT+Keβr|y¯r|2dr+1ε(c+M)+α1EtT+Keβr|z¯r|2dr=1ε(c+M)+α1EtT+Keβrγ|y¯r|2+|z¯r|2dr. $$\begin{array}{} \begin{split}{} \displaystyle {\bf E}\left(e^{\beta t}|\overline Y_t|^2\right) &+ (\beta -\varepsilon){\bf E} \int_t^{T+K} \!\!\! e^{\beta r}|\overline Y_r|^2 dr + {\bf E}\int_t^{T+K} \!\!e^{\beta r} |\overline Z_r|^2 dr \\ &\le\left(\frac{1}{\varepsilon}(c+ M )+c\right){\bf E}\int_t^{T+K} \!\! e^{\beta r}|\overline y_r |^{2}dr + \left(\frac{1}{\varepsilon}(c+ M )+\alpha_{1}\right){\bf E}\int_t^{T+K} \!\! e^{\beta r}|\overline z_r|^{2}dr\\ &=\left(\frac{1}{\varepsilon}(c+ M )+\alpha_{1}\right){\bf E}\int_t^{T+K} \!\! e^{\beta r}\left[ \gamma |\overline y_r |^{2} + |\overline z_r|^{2}\right] dr. \end{split} \end{array}$$

Hence if we choose ε = ε0 satisfying c¯=1ε0(c+M)+α1<1, $\begin{array}{} \displaystyle \overline c=\left(\frac{1}{\varepsilon_0}(c+ M )+\alpha_{1}\right) \lt 1, \end{array}$ choose β = ε0 + γ, then we deduce

EtT+Keβrγ|Y¯r|2+|Z¯r|2drc¯EtT+Keβrγ|y¯r|2+|z¯r|2dr. $$\begin{array}{} \displaystyle {\bf E}\int_t^{T+K}\!\!\! e^{\beta r}\left[\gamma|\overline Y_r|^2 + |\overline Z_r|^2\right] dr\le\overline c{\bf E}\int_t^{T+K}\!\!\! e^{\beta r}\left[\gamma|\overline y_r|^2 + |\overline z_r|^2\right]dr. \end{array}$$

Thus, the mapping Ψ is a strict contraction on CG2 $\begin{array}{} \displaystyle {\mathscr C}_\mathscr{G}^2 \end{array}$ (0, T + K) and it has a unique fixed point

(Y,Z)CG2(0,T+K). $$\begin{array}{} \displaystyle (Y, Z)\in {\mathscr C}_\mathscr{G}^2 (0, T+K). \end{array}$$

It remains to prove that the above solution is in BG2 $\begin{array}{} \displaystyle {\mathscr B}_\mathscr{G}^2 \end{array}$ (0, T + K). Indeed, by Lemma 3.1, we have Y S[0,T]2 $\begin{array}{} \displaystyle \mathscr S_{[0, T]}^2 \end{array}$ (𝒢, Rk). Thus, we obtain (Yt, Zt)0≤tT BG2 $\begin{array}{} \displaystyle {\mathscr B}_\mathscr{G}^2 \end{array}$ (0, T + K).

Uniqueness. Let (Y, Z) and (, ) two solutions of eq.(1). Itô’s formula applied to eq.(10) yields, for 0 ≤ tT

E[|Y¯t|2]+EtT|Z¯r|2dr2EtTY¯r,Δf(r)dr+EtT|Δg(r)|2dr. $$\begin{array}{} \displaystyle {\bf E}[|\overline Y_t|^2] + {\bf E}\int_t^T|\overline Z_r|^2dr\le 2{\bf E} \int_t^T \!\!\langle \overline Y_r ,\Delta f(r)\rangle dr + {\bf E}\int_t^T\!\!|\Delta g(r)|^2 dr. \end{array}$$

Using assumption (H1), we have:

2EtTY¯r,Δf(r)dr(1ε(c+M)+ε)EtT|Y¯r|2dr+1ε(c+M)EtT|Z¯r|2dr,EtT|Δg(r)|2drcEtT|Y¯r|2dr+α1EtT|Z¯r|2dr. $$\begin{array}{} \begin{split}{} \displaystyle 2{\bf E}\int_t^T\langle \overline Y_r,\Delta f(r)\rangle dr &\le(\frac{1}{\varepsilon}(c+M)+\varepsilon){\bf E}\int_t^T|\overline Y_r |^{2}dr + \frac{1}{\varepsilon}(c+M){\bf E}\int_t^T|\overline Z_r|^{2}dr, \\ {\bf E}\int_t^T |\Delta g(r)|^2dr &\le c{\bf E}\int_t^T|\overline Y_r|^2dr + \alpha_{1}{\bf E}\int_t^T|\overline Z_r|^{2}dr. \end{split} \end{array}$$

Hence if we choose ξ = ξ0 satisfying α¯=1ε0(c+M)+α1<1 $\begin{array}{} \displaystyle \overline\alpha=\frac{1}{\varepsilon_0}(c+M)+\alpha_{1} \lt 1 \end{array}$ and denote c¯=c(ε0+1)+Mε0+ε0, $\begin{array}{} \displaystyle \overline c=\frac{c(\varepsilon_0+1)+M}{\varepsilon_0}+\varepsilon_0, \end{array}$ then using the above inequalities, from (12), we obtain

E| Y ¯t |2+(1α¯)EtT|Z¯r|2drc¯EtT|Y¯r|2dr. $$\begin{array}{} \displaystyle {\bf E}\left(|\overline Y_t|^2\right) + (1-\overline\alpha){\bf E}\int_t^T \!\!|\overline Z_r|^2 dr \le \overline c{\bf E}\int_t^T|\overline Y_r|^2dr. \end{array}$$

Then we can use Gronwall’s inequality to deduce Y = 0 and Z = 0. This completes the proof.□

The case of non-Lipschitz coefficients

In this subsection, we will mainly study the existence and uniqueness of the solution to ABDSDE (1) with non-Lipschitz coefficients. For this purpose, we first make the following assumptions.

Assumptions

In the following, we assume that there exists ρS such that f and g satisfy assumptions (H2).

There exists a constant c > 0 such that

|f(t,y,z,θ(r),φ(r))f(t,y,z,θ(r),φ(r))|2c(ρ(|yy|2)+|zz|2)+EFt[ρ(|θ(r)θ(r)|2)+|φ(r)φ(r)|2], $$\begin{array}{} \begin{split}{} \displaystyle |f(t, y,z, \theta(r), \varphi(r))- f(t, y',z', \theta'(r), \varphi'(r))|^{2} \!&\leq c (\rho(|y-y^\prime|^{2}) + |z-z^\prime|^{2}) \\&+ {\bf E}^{\mathscr{F}_{t}}[\rho(|\theta(r) - \theta'(r)|^{2}) + |\varphi(r) - \varphi'(r)|^{2}], \end{split} \end{array}$$

for all (r, r′) ∈ [t, T + K], (t, y, z, θ(r), φ(r)), (t, y′, z′, θ′(r), φ′(r)) ∈ 𝒜 × CG2 $\begin{array}{} \displaystyle {\mathscr C}_\mathscr{G}^2 \end{array}$ (t, T + K).

There exists a constant 0 < α1 < 1 such that for any (t, y, z), (t, y′, z′) ∈ [0, T] × Rk × Rk×d

|g(t,y,z)g(t,y,z)|2ρ(|yy|2)+α1|zz|2. $$\begin{array}{} \displaystyle |g(t, y,z) - g(t, y',z')|^2 \leq \rho(|y-y^\prime|^{2}) + \alpha_{1}|z-z^\prime|^2. \end{array}$$

(H1.3) holds.

Existence and uniqueness of solution

We consider now the sequence (Θn)nN = (Yn, Zn)nN given by

Yt0=0,Zt0=0,0tT+K,Ytn=ξT+tTf(r,Yrn1,Zrn,Yr+δ(r)n1,Zr+ζ(r)n)dr+tTg(r,Yrn1,Zrn)dBrtTZrndWr,0tT,Ytn=ξt,Ztn=ηt,TtT+K. $$\begin{array}{} \displaystyle \begin{cases} Y_t^0=0, \; Z_t^0=0, \quad 0\le t \le T+K,\\ Y_t^{n} = \xi_{T} + \displaystyle \int_t^T\!\! f(r,Y_r^{n-1}, Z_r^{n},Y_{r+\delta(r)}^{n-1}, Z_{r+\zeta(r)}^{n}) dr + \int_t^T \!\! g(r, Y_r^{n-1}, Z_r^{n})dB_r - \displaystyle \int_t^T Z_r^{n} dW_r, \quad\quad 0\le t \le T,\\ Y_{t}^{n} = \xi_{t}, \quad Z_{t}^{n} = \eta_{t}, \quad\quad T\le t \le T+K. \end{cases} \end{array}$$

Thanks to Theorem 3.3, this sequence is well defined since the generators f(r,Yrn1,,Yr+δ(r)n1,) $\begin{array}{} \displaystyle f(r, Y_{r}^{n-1},\cdot, Y_{r+\delta(r)}^{n-1}, \cdot) \end{array}$ and g(r,Yrn1,) $\begin{array}{} \displaystyle g(r, Y_{r}^{n-1},\cdot) \end{array}$ are Γ-Lipschitz. Let us state the following previous result

Lemma 4.1

Assume that the assumptions (A1), (A2) and (H2) are true and let ξTL2(𝒢T, Rk). Then for any (ξ,η)S[T,T+K]2(G,Rk)×M[T,T+K]2(G,Rk×d) $\begin{array}{} \displaystyle (\xi, \eta)\in \mathscr S_{[T, T+K]}^2 (\mathscr{G}, \mathbf{R}^k) \times \mathscr{M}_{[T, T+K]}^2 (\mathscr{G}, \mathbf{R}^{k\times d}) \end{array}$ there exists a positive constant C such that

supn0E|Ytn|2C(1+E[X]),0tT+K $$\begin{array}{} \displaystyle \sup_{{n\ge 0}} {\bf E}|Y_{t}^{n}|^{2} \le C'(1 + {\bf E} [X]), \quad \quad 0\le t\le T+K \end{array}$$

where

X=|ξT|2+TT+K(|ξr|2+|ηr|2)dr+0T|f(r,0)|2dr+0T|g(r,0,0)|2dr. $$\begin{array}{} \displaystyle X = |\xi_{T}|^{2} + \int_{T}^{T+K}(|\xi_r|^{2} +|\eta_{r}|^{2})dr + \int_{0}^{T} |f(r, 0)|^{2}dr + \int_{0}^{T} |g(r, 0,0)|^{2}dr. \end{array}$$

Proof

For β > 0, apply Itô’s formula to eβt|Ytn|2, $\begin{array}{} \displaystyle e^{\beta t}|Y_t^n|^2, \end{array}$

E[eβt|Ytn|2]+βEtTeβr|Yrn|2dr+EtTeβr|Zrn|2dr=E[eβT|ξT|2]+2EtTeβrYrn,f(r,Yrn1,Zrn,Yr+δ(r)n1,Zr+ζ(r)n)dr+EtTeβr|g(r,Yrn1,Zrn)|2dr. $$\begin{array}{} \begin{split}{} \displaystyle {\bf E}[ e^{\beta t}|Y_t^n|^2] &+ \beta {\bf E} \int_t^T\!\!e^{\beta r} |Y_r^n|^2 dr + {\bf E}\int_t^T\!\!e^{\beta r} |Z_r^n|^2 dr = {\bf E}[e^{\beta T}|\xi_T|^2] \\ &+ 2{\bf E}\int_t^T\!\!e^{\beta r}\langle Y_{r}^n, f(r,Y_r^{n-1}, Z_r^{n},Y_{r+\delta(r)}^{n-1}, Z_{r+\zeta(r)}^{n})\rangle dr + {\bf E}\int_t^T\!\!e^{\beta r} |g(r,Y_r^{n-1}, Z_r^{n})|^2dr. \end{split} \end{array}$$

Using the inequality 2abεa2 + b2/ε (where ε > 0 will be chosen later), we deduce from assumptions (H2.1) and (H2.2)

EtTeβr|g(r,Yrn1,Zrn)|2drEtTeβr|g(r,0,0)|2dr+EtTeβrρ(|Yrn1|2)+α1|Zrn|2dr $$\begin{array}{} \displaystyle {\bf E}\int_t^T\!\!e^{\beta r} |g(r,Y_r^{n-1}, Z_r^{n})|^2dr \le {\bf E}\int_t^T\!\!e^{\beta r}|g(r,0,0)|^2dr + {\bf E}\int_t^T\!\!e^{\beta r}\left[\rho(|Y_r^{n-1}|^{2}) + \alpha_{1}|Z_r^n|^2 \right]dr \end{array}$$

and

2EtTeβrYrn,f(r,Yrn1,Zrn,Yr+δ(r)n1,Zr+ζ(r)n)drε2EtTeβr|Yrn|2dr+2εEtTeβr|f(r,0)|2dr+2εcEtTeβrρ(|Yrn1|2)+|Zrn|2dr+2εEtTeβrEFtρ(|Yr+δ(r)n1|2)+|Zr+ζ(r)n|2dr. $$\begin{array}{} \begin{split}{} \displaystyle 2{\bf E}\int_t^T\!\!e^{\beta r}&\langle Y_{r}^n, f(r,Y_r^{n-1}, Z_r^{n},Y_{r+\delta(r)}^{n-1}, Z_{r+\zeta(r)}^{n})\rangle dr\le \frac{\varepsilon}{2}{\bf E}\int_t^T\!\!e^{\beta r}| Y_{r}^n |^2 dr +\frac{2}{\varepsilon}{\bf E}\int_t^T\!\!e^{\beta r} |f(r,0)|^2 dr \\ &+ \frac{2}{\varepsilon}c{\bf E}\int_t^T\!\!e^{\beta r}\left( \rho(|Y_r^{n-1}|^{2}) + |Z_r^n|^2\right)dr+ \frac{2}{\varepsilon}{\bf E}\int_t^T\!\!e^{\beta r} {\bf E}^{\mathscr{F}_{t}}\left[\rho(|Y_{r+\delta(r)}^{n-1}|^{2}) + |Z_{r+\zeta(r)}^{n}|^2 \right]dr. \end{split} \end{array}$$

Applying condition (A2), the last term on the right-hand side of (15) is less than

2εMEtTeβrρ(|Yrn1|2)+|Zrn|2dr+2εMETT+Keβrρ(|ξr|2)+|ηr|2dr. $$\begin{array}{} \displaystyle \frac{2}{\varepsilon}M{\bf E}\int_t^T\!\!e^{\beta r}\left[\rho(|Y_r^{n-1}|^{2}) + |Z_r^{n}|^2 \right]dr + \frac{2}{\varepsilon}M{\bf E}\int_T^{T+K}\!\!e^{\beta r}\left[\rho(|\xi_r|^{2}) + |\eta_r|^2 \right]dr. \end{array}$$

Putting pieces together, we obtain finally

E[eβt|Ytn|2]+βEtTeβr|Yrn|2dr+EtTeβr|Zrn|2drE[eβT|ξT|2]+ε2EtTeβr|Yrn|2dr+2ε(c+M)+1EtTeβrρ(|Yrn1|2)dr+2ε(c+M)+α1EtTeβr|Zrn|2dr+2εMETT+Keβrρ(|ξr|2)+|ηr|2dr+2εEtTeβr|f(r,0)|2dr+EtTeβr|g(r,0,0)|2dr. $$\begin{array}{} \begin{split}{} \displaystyle {\bf E}[ e^{\beta t}&|Y_t^n|^2] + \beta {\bf E} \int_t^T\!\!e^{\beta r} |Y_r^n|^2 dr + {\bf E}\int_t^T\!\!e^{\beta r} |Z_r^n|^2 dr \le {\bf E}[e^{\beta T}|\xi_T|^2] + \frac{\varepsilon}{2}{\bf E} \int_t^T\!\!e^{\beta r}|Y_{r}^n|^2dr\\ &+ \left(\frac{2}{\varepsilon}(c+M)+1\right){\bf E}\int_t^T\!\!e^{\beta r}\rho(|Y_{r}^{n-1}|^2)dr + \left(\frac{2}{\varepsilon}(c+M)+\alpha_{1}\right){\bf E}\int_t^T\!\!e^{\beta r}|Z_r^n|^2 dr \\ &+\frac{2}{\varepsilon}M{\bf E}\int_T^{T+K}\!\!e^{\beta r}\left[\rho(|\xi_r|^{2})+ |\eta_r|^2 \right]dr + \frac{2}{\varepsilon} {\bf E}\int_t^T\!\!e^{\beta r}|f(r,0)|^2dr + {\bf E}\int_t^T\!\!e^{\beta r}|g(r,0,0)|^2dr. \end{split} \end{array}$$

This implies thanks to Remark 2.1 that

E[eβt|Ytn|2]+βEtTeβr|Yrn|2dr+EtTeβr|Zrn|2drE[eβT|ξT|2]+ε2EtTeβr|Yrn|2dr+2ε(c+M)+1bEtTeβr|Yrn1|2dr+2ε(c+M)+α1EtTeβr|Zrn|2dr+2εMETT+Keβrb|ξr|2+|ηr|2dr+2εEtTeβr|f(r,0)|2dr+EtTeβr|g(r,0,0)|2dr+Cε $$\begin{array}{} \begin{split}{} \displaystyle {\bf E}[ e^{\beta t}|Y_t^n|^2] &+ \beta {\bf E} \int_t^T\!\!e^{\beta r} |Y_r^n|^2 dr + {\bf E}\int_t^T\!\!e^{\beta r} |Z_r^n|^2 dr \le {\bf E}[e^{\beta T}|\xi_T|^2] + \frac{\varepsilon}{2}{\bf E} \int_t^T\!\!e^{\beta r}|Y_{r}^n|^2dr\\ &+ \left(\frac{2}{\varepsilon}(c+M)+1\right)b{\bf E}\int_t^T\!\!e^{\beta r}|Y_{r}^{n-1}|^2dr + \left(\frac{2}{\varepsilon}(c+M)+\alpha_{1}\right){\bf E}\int_t^T\!\!e^{\beta r}|Z_r^n|^2 dr \\ &+\frac{2}{\varepsilon}M{\bf E}\int_T^{T+K}\!\!e^{\beta r}\left[b|\xi_r|^{2} + |\eta_r|^2 \right]dr + \frac{2}{\varepsilon} {\bf E}\!\!\int_t^T\!\!e^{\beta r}|f(r,0)|^2dr + {\bf E}\!\!\int_t^T\!\!e^{\beta r}|g(r,0,0)|^2dr + C_\varepsilon \end{split} \end{array}$$

where Cε=aβ2ε(c+2M)+1eβ(T+K). $\begin{array}{} \begin{split}{} \displaystyle C_\varepsilon= \frac{a}{\beta}\left[\frac{2}{\varepsilon}(c+2M)+1\right]e^{\beta(T+K)}. \end{split} \end{array}$ Choose ε = ε0 such that β=12(ε0+1),C0=Cε0and2ε0(M+c)+α1 $\begin{array}{} \displaystyle \beta=\frac{1}{2}(\varepsilon_0 + 1), C_0= C_{\varepsilon_0}\;\; \rm{and}\; \frac{2}{\varepsilon_0}(M+c)+ \alpha_{1} \end{array}$ = 1/2. Therefore, we obtain

E[eβt|Ytn|2]+12EtTeβr|Yrn|2dr+12EtTeβr|Zrn|2dr2ε0(c+M)+1bEtTeβr|Yrn1|2dr+E[eβT|ξT|2]+2ε0METT+Keβrb|ξr|2+|ηr|2dr+2ε0E0Teβr|f(r,0)|2dr+E0Teβr|g(r,0,0)|2dr+C0,0tT. $$\begin{array}{} \begin{split}{} \displaystyle {\bf E}[ e^{\beta t}|Y_t^n|^2] &+ \frac{1}{2} {\bf E} \int_t^T\!\!e^{\beta r} |Y_r^n|^2 dr + \frac{1}{2} {\bf E}\int_t^T\!\!e^{\beta r} |Z_r^n|^2 dr \le \left(\frac{2}{\varepsilon_0}(c+M)+1\right)b{\bf E}\int_t^T\!\!e^{\beta r}|Y_{r}^{n-1}|^2dr\\ &+ {\bf E}[e^{\beta T}|\xi_T|^2] + \frac{2}{\varepsilon_0}M{\bf E}\int_T^{T+K}\!\!e^{\beta r}\left[b|\xi_r|^{2} + |\eta_r|^2 \right]dr + \frac{2}{\varepsilon_0} {\bf E}\int_0^T\!\!e^{\beta r}|f(r,0)|^2dr\\ &+ {\bf E}\int_0^T\!\!e^{\beta r}|g(r,0,0)|^2dr + C_0, \quad 0\leq t\leq T. \end{split} \end{array}$$

This leads to

E[|Ytn|2]+12EtT|Yrn|2dr+12EtT|Zrn|2drCE[X]+1+CEtT|Yrn1|2dr,0tT $$\begin{array}{} \displaystyle {\bf E}[|Y_t^n|^2]+ \frac{1}{2}{\bf E} \int_t^T\!\!|Y_r^n|^2 dr + \frac{1}{2}{\bf E}\int_t^T\!\!|Z_r^n|^2 dr \le C'\left( {\bf E}[X]+ 1\right) + C'{\bf E}\int_t^T\!\! |Y_r^{n-1}|^{2} dr,\quad 0\leq t\leq T \end{array}$$

where C′ is a positive constant(which may vary from line to line).

In particular, putting qn(t)=supnNE[|Ytn|2], $\begin{array}{} q_n(t)= \sup_{n\in\mathbb{N}}{\bf E}[|Y_t^n|^2] , \end{array}$ we have

qn(t)CE[X]+1+CtTqn(r)dr,0tT. $$\begin{array}{} \displaystyle q_n(t) \le C'\left( {\bf E}[X]+ 1\right) + C'\int_t^T\!\!q_n(r)dr,\quad 0\leq t\leq T. \end{array}$$

Gronwall’s inequality yields

supnNE[|Ytn|2]C(1+E[X]),0tT. $$\begin{array}{} \displaystyle \sup_{n\in\mathbb{N}}{\bf E}[|Y_t^n|^2] \le C'(1 + {\bf E}[X]), \quad 0\leq t\leq T. \end{array}$$

This immediately gives (14).□

Now we establish the main result of this section.

Theorem 4.2

Assume that the assumptions (A1), (A2) and (H2) are true and let ξTL2(𝒢T, Rk). Then for any (ξ,η)S[T,T+K]2(G,Rk)×M[T,T+K]2(G,Rk×d) $\begin{array}{} \displaystyle (\xi, \eta)\in \mathscr S_{[T, T+K]}^2 (\mathscr{G}, \mathbf{R}^k) \times \mathscr{M}_{[T, T+K]}^2 (\mathscr{G}, \mathbf{R}^{k\times d}) \end{array}$ the ABDSDE (1) has a unique solution (Y, Z) ∈ BG2 $\begin{array}{} \displaystyle {\mathscr B}_\mathscr{G}^2 \end{array}$(0, T + K).

Proof

Existence. We consider the sequence defined in eq.(13). For a process ρ ∈ {Y, Z}, and nN, mN, ρ¯tn,m=ρtnρtm,Δg(n,m)(r)=f(r,Yrn1,Zrn)g(r,Yrm1,Zrm) $\begin{array}{} \displaystyle \overline \rho_t^{n, m}= \rho_t^{n}-\rho_t^{m}, \Delta g^{(n, m)}(r)=f(r,Y_r^{n-1}, Z_r^{n})- g(r,Y_r^{m-1}, Z_r^{m}) \end{array}$ and Δf(n,m)(r)=f(r,Yrn1,Zrn,Yr+δ(r)n1,Zr+ζ(r)n)f(r,Yrm1,Zrm,Yr+δ(r)m1,Zr+ζ(r)m). $\begin{array}{} \displaystyle \Delta f^{(n, m)}(r)=f(r,Y_r^{n-1}, Z_r^{n},Y_{r+\delta(r)}^{n-1}, Z_{r+\zeta(r)}^{n})- f(r,Y_r^{m-1}, Z_r^{m},Y_{r+\delta(r)}^{m-1}, Z_{r+\zeta(r)}^{m}). \end{array}$

Note that the pair (Yn,m, Zn,m) solves the following equation

Y¯tn,m=tTΔf(n,m)(r)dr+tTΔg(n,m)(r)dBrtTZ¯rn,mdWr,0tT,Y¯tn,m=0,Z¯tn,m=0,TtT+K. $$\begin{array}{} \displaystyle \begin{cases} \overline Y_t^{n, m} = \displaystyle \int_t^T\!\! \Delta f^{(n, m)}(r) dr + \int_t^T \!\! \Delta g^{(n, m)}(r) dB_r - \displaystyle \int_t^T \overline Z_r^{n, m} dW_r, \quad \quad 0\le t \le T,\\ \overline Y_t^{n, m} = 0, \quad \overline Z_t^{n, m} = 0, \quad\quad T\le t \le T +K. \end{cases} \end{array}$$

By the same computations as in the proof of Lemma 4.1, we have

E|Y¯tn,m|2+12EtT|Y¯rn,m|2dr+12EtT|Z¯rn,m|2drCEtTρ(|Y¯rn1,m1|2)dr,0tT. $$\begin{array}{} \displaystyle {\bf E} |\overline Y_t^{n,m}|^2 + \frac{1}{2}{\bf E} \int_t^T |\overline Y_r^{n,m}|^2dr + \frac{1}{2}{\bf E} \int_t^T |\overline Z_r^{n,m}|^2dr \le C'{\bf E}\int_t^T \!\!\rho(|\overline Y_r^{n-1,m-1}|^2)dr,\quad 0\le t \le T. \end{array}$$

Applying Fatou’s lemma and the fact that ρS, we deduce that

q(t)CtT+Kρ(q(r))dr,0tT+K $$\begin{array}{} \displaystyle q(t)\le C'\int_t^{T+K} \!\!\rho(q(r))dr, \quad 0\le t \le T +K \end{array}$$

where q(t)=limn,msupE|Y¯tn,m|2,0tT+K. $\begin{array}{} q(t)=\lim_{n,m \to\infty}\sup{\bf E}|\overline Y_t^{n,m}|^2,\quad 0\le t \le T+K. \end{array}$ Therefore, we can use Bihari’s inequality to get q(t) = 0, i.e. limn,msupE|Y¯tn,m|2=0 $\begin{array}{} \lim_{n,m \to\infty}\sup{\bf E}|\overline Y_t^{n,m}|^2=0 \end{array}$ for all 0 ≤ tT + K.

So, from inequality (16), we obtain

limn,mE|YtnYtm|2+tT+K|ZrnZrm|2dr=0,0tT+K. $$\begin{array}{} \displaystyle \lim_{n,m\to\infty}{\bf E}\left(|Y_t^n - Y_t^m|^2 + \int_t^{T+K}\!\!\!|Z_r^n - Z_r^m|^2dr \right)=0,\quad 0\le t \le T +K. \end{array}$$

Then, there exists (Y, Z) ∈ BG2 $\begin{array}{} \displaystyle {\mathscr B}_\mathscr{G}^2 \end{array}$ (0, T + K) such that

limnE|YtnYt|2+tT+K|ZrnZr|2dr=0,0tT+K. $$\begin{array}{} \displaystyle \lim_{n\to\infty}{\bf E}\left(|Y_t^n - Y_t|^2 + \int_t^{T+K}\!\!\!|Z_r^n - Z_r|^2dr \right)=0, \quad 0\le t \le T +K. \end{array}$$

Finally, taking limit in eq.(13) as n → +∞, we conclude that (Y, Z) solves

0tT,Yt=ξT+tTf(r,Yr,Zr,Yr+δ(r),Zr+ζ(r))dr+tTg(r,Yr,Zr)dBrtTZrdWr,Yt=ξt,Zt=ηt,TtT+K. $$\begin{array}{} \displaystyle \begin{cases} 0\le t \le T,\\ Y_t= \xi_{T} + \displaystyle \int_t^T f(r, Y_r, Z_r,Y_{r+\delta(r)}, Z_{r+\zeta(r)}) dr + \int_t^T g(r, Y_r, Z_r)dB_r- \displaystyle\int_t^T Z_r dW_r,\\ Y_{t} = \xi_{t}, \quad Z_{t} =\eta_{t}, \quad\quad T\le t \le T+K. \end{cases} \end{array}$$

This shows that (Y, Z) ∈ BG2 $\begin{array}{} \displaystyle {\mathscr B}_\mathscr{G}^2 \end{array}$ (0, T + K) solves ABDSDE (1). The proof of existence is complete.

Uniqueness. Let (Yi, Zi) ∈ BG2 $\begin{array}{} \displaystyle {\mathscr B}_\mathscr{G}^2 \end{array}$ (0, T + K), i = 1, 2 be two solutions of ABDSDE (1). Define Y¯t=Yt1Yt2,Z¯t=Zt1Zt2,Δg(r)=g(r,Yr1,Zr1)g(r,Yr2,Zr2) $\begin{array}{} \displaystyle \overline Y_t= Y_t^1 - Y_t^2,\quad \overline Z_t= Z_t^1 - Z_t^2, \Delta g(r)=g(r, Y_r^1, Z_r^{1})- g(r, Y_r^{2}, Z_r^{2}) \end{array}$ and Δf(r)=f(r,Yr1,Zr1,Yr+δ(r)1,Zr+ζ(r)1)f(r,Yr2,Zr2,Yr+δ(r)2,Zr+ζ(r)2). $\begin{array}{} \displaystyle \Delta f(r) = f(r, Y_r^1, Z_r^{1},Y_{r+\delta(r)}^{1}, Z_{r+\zeta(r)}^{1}) -f(r, Y_r^{2}, Z_r^{2},Y_{r+\delta(r)}^{2}, Z_{r+\zeta(r)}^{2}). \end{array}$

We obtain the following equation

Y¯t=tTΔf(r)dr+tTΔg(r)dBrtTZ¯rdWr,0tT,Y¯t=0,Z¯t=0,TtT+K. $$\begin{array}{} \displaystyle \begin{cases} \overline Y_t = \displaystyle \int_t^T\!\! \Delta f(r) dr + \int_t^T \!\! \Delta g(r)dB_r - \displaystyle\int_t^T \overline Z_r dW_r, \quad \quad 0\le t \le T,\\ \overline Y_t = 0, \quad \overline Z_t = 0, \quad\quad T\le t \le T +K. \end{cases} \end{array}$$

By the same computations as in Lemma 4.1, we obtain

E[|Y¯t|2]+12EtT|Y¯r|2dr+12EtT|Z¯r|2drCEtTρ(|Y¯r|2)dr,0tT. $$\begin{array}{} \displaystyle {\bf E} [|\overline Y_t|^2] + \frac{1}{2}{\bf E} \int_t^T |\overline Y_r|^2 dr + \frac{1}{2}{\bf E} \int_t^T |\overline Z_r|^2 dr \le C'{\bf E}\int_t^T \!\!\rho(|\overline Y_r|^2)dr, \quad 0\le t \le T. \end{array}$$

This leads to

E[|Y¯t|2]CEtT+Kρ(|Y¯r|2)dr,0tT+K. $$\begin{array}{} \displaystyle {\bf E}[|\overline Y_t|^2]\le C'{\bf E}\int_t^{T+K} \!\!\rho(|\overline Y_r|^2)dr, \quad 0\le t \le T+K. \end{array}$$

Using Fubini’s theorem and Jensen’s inequality, we deduce that

E|Y¯t|2CtT+Kρ(E|Y¯r|2)dr,0tT+K. $$\begin{array}{} \displaystyle {\bf E}|\overline Y_t|^2 \le C'\int_t^{T+K} \rho({\bf E}|\overline Y_r|^2)dr, \quad 0\le t \le T+K. \end{array}$$

Then we can use Bihari’s inequality to obtain E|Y¯t|2=0,0tT+K. $\begin{array}{} \displaystyle {\bf E}|\overline Y_t|^2=0, 0\le t\le T+K. \end{array}$ This implies Zt = 0.□

eISSN:
2444-8656
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics