Open Access

Solution of two point boundary value problems, a numerical approach: parametric difference method

   | Dec 31, 2018

Cite

Introduction

There has been a great deal of interest in developing techniques for the accurate numerical solution of two-point boundary value problems. In this article we have considered a parametric difference method for the numerical solution of the boundary value problems with the form

u(x)=g(x,u,u),a<x<b$$\begin{array}{} \displaystyle u''(x)=g(x,u,u'),\quad a \lt x \lt b \end{array}$$

subject to the boundary conditions

u(a)=αandp1u(b)+q1u(b)=β,$$\begin{array}{} \displaystyle u'(a)=\alpha \quad \text{and} \quad p_1u(b)+q_1u'(b)=\beta , \nonumber \end{array}$$

or

p0u(a)+q0u(a)=α0andu(b)=β0,$$\begin{array}{} \displaystyle p_0u(a)+q_0u'(a)=\alpha_0 \quad \text{and}\quad u'(b)=\beta_0 , \nonumber \end{array}$$

where α, β, p0 etc. are real constants and known. We assume that g is continuous function in ([a, b] × ℜ2, ℜ).

In many branches of engineering, humanity and sciences ordinary differential equations occur as mathematical models. In general, these equations have solutions that can be expressed in restricted form only. So it is essential to consider approximate solutions by means of numerical techniques. To solve these problems numerically, we have many accurate numerical methods for instance, shooting-projection [1], collocation [2], finite difference methods [3] available in the literature. However the relatively less advanced method, the method of parameter differentiation is known in the literature and some historical development can be found in [4]. The existence and uniqueness of the solution for the problem (1) are assumed. The specific assumption on g(x, u, u′) to ensure the existence and uniqueness will not be considered in this article however I may refer literature in [5, 6, 7, 8].

In this article we shall develop a hybrid parametric difference method for the approximate numerical solution of problems (1). We have performed a numerical experiment to demonstrate the effectiveness of the method. We have achieved accuracy and bound on the error between the analytical and numerical approximation solution of the problem. To the best of our knowledge, no method similar to the proposed method for the numerical approximate solution has been discussed in the literature to date.

We have presented our work in this article as follows. In the next section we will discuss the parametric difference method and in Section 3 we will derive our propose method. In Section 4 and 5, respectively, we have estimated truncation error and discussed convergence under appropriate condition. The applications of the proposed method to the model problems and numerical results have been produced to show the efficiency in Section 6. Discussion and conclusion on the performance of the method are presented in Section 7.

The Parametric Difference Method

Following the ideas in [4], re-formulate the problem (1) either by introducing a physical parameter or identify a physical parameter that appears either in the differential equation or in the boundary conditions as independent variable. Let us introduce λ as physical parameter in differential equation (1), so we have obtained,

u(x)=g(x,u,u)f(x,λ,u,u),a<x<b$$\begin{array}{} \displaystyle u''(x)=g(x,u,u')\equiv f(x,\lambda,u,u'),\quad a \lt x \lt b \end{array}$$

and boundary conditions are

u(a)=αandp1u(b)+q1u(b)=β,$$\begin{array}{} \displaystyle u'(a)=\alpha \quad \text{and} \quad p_1u(b)+q_1u'(b)=\beta , \nonumber \end{array}$$

or

p0u(a)+q0u(a)=α0andu(b)=β0,$$\begin{array}{} \displaystyle p_0u(a)+q_0u'(a)=\alpha_0 \quad \text{and}\quad u'(b)=\beta_0 , \nonumber \end{array}$$

Now let introduce new variable y(x) = = dudλ$\begin{array}{} \displaystyle \frac{du}{d\lambda} \end{array}$, a differentiation of solution of problem (1) with respect to λ. Differentiate problem (2) with respect to λ. Thus we have reduced the problem (2) into following system of equations,

y=F(fλ,y,y),u˙=y(x)$$\begin{array}{} \displaystyle y''=F(\frac{\partial f}{\partial \lambda},y,y'), \nonumber \\ \displaystyle\dot{u}=y(x) \end{array}$$

subject to the boundary conditions,

y(a)=0andp1y(b)+q1y(b)=0,$$\begin{array}{} \displaystyle y'(a)=0 \quad \text{and} \quad p_1y(b)+q_1y'(b)=0 , \end{array}$$

or

p0y(a)+q0y(a)=0andy(b)=0,$$\begin{array}{} \displaystyle p_0y(a)+q_0y'(a)=0 \quad \text{and}\quad y'(b)=0 , \end{array}$$

and y(x) is known for some λ.

We wish to determine the approximate numerical solution u(x) of the problem (2) for different values of λ and λ0λλM. We define M – 1 numbers of nodal points in [λ0, λM], as λ0 < λ1 < λ2 < …… < λM using a uniform step length H such that λi = λ0 + jH, j = 0, 1, .., M. Also, we define N – 1 numbers of nodal points in [a, b], the domain in which the solution of the problem (1) is desired, as ax0 < x1 < x2 < …… < xN = b using a uniform step length h such that xi = x0 + ih, i = 0, 1, .., N. To simplify the expression we denote the numerical approximation of u(x) at the node x = xi as ui. Let us denote Fi as the approximation of the theoretical value of the source function F( fλ$\begin{array}{} \displaystyle \frac{\partial f}{\partial \lambda} \end{array}$, y(x), y′(x)) at node x = xi, i = 0, 1, 2, ……, N. Let write a system of equations (3) at nodal point xi in notational form as,

yi=Fiu˙i=yi$$\begin{array}{} \displaystyle y''_i=F_i \\ \dot{u}_i=y_i \end{array}$$

subject to the boundary conditions

y0=0andp1yN+q1yN=0,$$\begin{array}{} \displaystyle y'_0=0 \quad \text{and} \quad p_1y_N+q_1y'_N=0 , \nonumber \end{array}$$

or

p0y0+q0y0=0andy(b)=0,$$\begin{array}{} \displaystyle p_0y_0+q_0y'_0=0 \quad \text{and}\quad y'(b)=0 , \nonumber \end{array}$$

Following the idea in [9], we propose our difference method for the numerical solution of problem (3) as follows,

yiyi1=hyi1+h26(2Fi1+Fi),i=1,2,..,N,yiyi1=h2(Fi+Fi1),i=1,2,..,N,uj1uj=H(yi1+((λ0a)+((j1)H(i1)h))yi1),j=1,2,..,M.$$\begin{array}{} \displaystyle \qquad\qquad\qquad\qquad\qquad\quad~\, y_i-y_{i-1}=hy'_{i-1}+\frac{h^2}{6}(2F_{i-1}+F_i), \qquad i=1,2,..,N, \nonumber \\ \displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad~~~\,\! y'_i-y'_{i-1}=\frac{h}{2}(F_i+F_{i-1}), \qquad i=1,2,..,N, \nonumber \\ \displaystyle u_{j-1}-u_j= -H(y_{i-1}+((\lambda_0-a)+((j-1)H-(i-1)h))y'_{i-1}), \qquad j=1,2,..,M. \end{array}$$

which is a system of linear/ nonlinear equations depending on forcing function g(x, u, u′). We solve system of equations (4) by applying an appropriate iterative method.

Derivation of the Difference Method

In this section we outline the derivation and development of the proposed finite difference method. We approximate first problem in (3) as a linear combination of y(x), y′(x) and F( fλ$\begin{array}{} \displaystyle \frac{\partial f}{\partial \lambda} \end{array}$, y, y′),

a0yi1+a1yi+a2hyi1+a3hyi+h2(b0Fi1+b1Fi)=0$$\begin{array}{} \displaystyle a_0y_{i-1}+a_1y_i+a_2hy'_{i-1}+a_3hy'_i+h^2(b_0F_{i-1}+b_1F_i)=0 \end{array}$$

where a0, ⋯, b1 are constant. To determine these constants, we expand each term in the above expression in a Taylor series about a node xi and compare the coefficients of hp, p = 0, ⋯, 3 in the both sides of the expression. So we obtained a system of linear equations in a0, ⋯, b1. Solving the system of equations, we got

(a0,a1,a2,a3,b0,b1)=(1,1,1,0,13,16)$$\begin{array}{} \displaystyle (a_0,a_1,a_2,a_3,b_0,b_1)=(-1,1,-1,0,-\frac{1}{3},-\frac{1}{6}) \end{array}$$

Substituting these constants from (6) in (5), we obtained

yiyi1hyi1h26(2Fi1+Fi)=0$$\begin{array}{} \displaystyle y_i-y_{i-1}-hy'_{i-1}-\frac{h^2}{6}(2F_{i-1}+F_i)=0 \end{array}$$

Following the similar idea as above, we derive following equations,

yiyi1=h2(Fi+Fi1),uj1uj=H(yi1+((λ0a)+((j1)H(i1)h))yi1)$$\begin{array}{} \displaystyle y'_i-y'_{i-1}=\frac{h}{2}(F_i+F_{i-1}),\\ \displaystyle\quad\! u_{j-1}-u_j= -H(y_{i-1}+((\lambda_0-a)+((j-1)H-(i-1)h))y'_{i-1}) \end{array}$$

Local Truncation Error

The local truncation error in the difference method (4) using the exact arithmetic may be calculated by using Taylor series expansion at the nodal points x = xi, i = 1, 2, .., N. Thus the truncation error Ti in the first equation of the method (4) may be written as:

Ti1=h424yi(4),1iN.$$\begin{array}{} \displaystyle T_{i-1}=-\frac{h^4}{24}y^{(4)}_i ,\qquad1\leq i\leq N. \end{array}$$

Similarly we can obtain truncation error in second equation of method (4) at x = xi, i = 1, 2, .., N as given below,

Ti=h33yi(4),1iN.$$\begin{array}{} \displaystyle T'_i=-\frac{h^3}{3}y^{(4)}_i , \quad 1\leq i \leq N. \end{array}$$

The truncation error in final equation of method (4) at λj–1, j = 1, 2, .., M and xi–1, i = 1, 2, .., N is,

T=H2u¨j1((λ0a)+((j1)H(i1)h))22yi1.$$\begin{array}{} \displaystyle T_{*}=\frac{H}{2}\ddot{u}_{j-1}-\frac{((\lambda_0-a)+((j-1)H-(i-1)h))^2}{2}y''_{i-1}. \end{array}$$

Thus we have obtained a truncation error at each node of order O(H + h2) if λ0 = a.

Convergence of the Difference Method

Let us assume the following conditions [10],

u(x) and u′(x) are finite

g(x, u(x), u′(x)) is continuous in ([a, b] × ℜ2, ℜ)

guandgu$\begin{array}{} \displaystyle \frac{\partial g}{\partial u}\quad \text{and}\quad \frac{\partial g}{\partial u'} \end{array}$ exist and are continuous in [a, b]

gu>0and|gu|<w$\begin{array}{} \displaystyle \frac{\partial g}{\partial u} \gt 0 \quad\text{and}\quad|\frac{\partial g}{\partial u'}| \lt w \end{array}$ in [a, b] for some positive real number w.

Under above conditions problem (1) will posses unique solution [7]. However the forcing function F( fλ$\begin{array}{} \displaystyle \frac{\partial f}{\partial \lambda} \end{array}$, y, y′) in (3) may be written as,

F(fλ,y,y)fuy+fuy+fλ$$\begin{array}{} \displaystyle F(\frac{\partial f}{\partial \lambda},y,y')\equiv \frac{\partial f}{\partial u}y+ \frac{\partial f}{\partial u'}y'+\frac{\partial f}{\partial \lambda} \end{array}$$

Let us assume Mi=(fy)i,Mi=(fy)i$\begin{array}{} \displaystyle M_i=(\frac{\partial f}{\partial y})_i, M'_i=(\frac{\partial f}{\partial y'})_i \end{array}$ and using (12), we can write difference method (4) as follows,

(1+h23Mi1)yi1+(1h26Mi)yih26Miyih(1+h3Mi1)yi1=h26(2(fλ)i1+(fλ)i),h2Mi1yi1h2Miyi+(1h2Mi)yi(1h2Mi1)yi1=h2((fλ)i1+(fλ)i),i=1,2,..,N$$\begin{array}{} \displaystyle -(1+\frac{h^2}{3}M_{i-1})y_{i-1}+(1-\frac{h^2}{6}M_i)y_i-\frac{h^2}{6}M'_iy'_i-h(1+\frac{h}{3}M'_{i-1})y'_{i-1} =\frac{h^2}{6}(2(\frac{\partial f}{\partial \lambda})_{i-1}+(\frac{\partial f}{\partial \lambda})_i), \\ \displaystyle -\frac{h}{2}M_{i-1}y_{i-1}-\frac{h}{2}M_iy_i+(1-\frac{h}{2}M'_i)y'_i-(1-\frac{h}{2}M'_{i-1})y'_{i-1} =\frac{h}{2}((\frac{\partial f}{\partial \lambda})_{i-1}+(\frac{\partial f}{\partial \lambda})_i), \qquad i=1,2,..,N\qquad\quad \end{array}$$

Let Yi and yi be respectively an exact solution and approximate solution of the system of equations (3). Let us define εi = yiYi, an error between the exact analytical and numerical approximation solution of the problem (3) and similarly we can define εi=yiYi.$\begin{array}{} \displaystyle \varepsilon'_i=y'_i-Y'_i. \end{array}$ Let us write (13) in matrix form

Dε+T=0,$$\begin{array}{} \displaystyle \mathbf{D}\boldsymbol{\varepsilon}+\mathbf{T} = \boldsymbol{0}, \end{array}$$

where matrix D is of order 2(N – 1) × 2(N – 1), moreover we have partitioned the D in the following manner,

D=A11A12A21A22$$\begin{array}{} \displaystyle \mathbf{D}=\left( \begin{array}{ccc} \mathbf{A}_{11} &\vdots & \mathbf{A}_{12} \\ \cdots &\vdots &\cdots \\ \mathbf{A}_{21}&\vdots & \mathbf{A}_{22} \\ \end{array} \right) \end{array}$$

where each matrix A is of order (N – 1) × (N – 1) and these matrices are,

A11=1h23M01h26M101h23M11h26M21h23MN21h26MN101h23MN1N1×N1$$\begin{array}{} \displaystyle \mathbf{A}_{11}=\left( \begin{array}{cccc} -1-\frac{h^2}{3}M_0 & 1-\frac{h^2}{6}M_1 & & 0 \\ & -1-\frac{h^2}{3}M_1 & 1-\frac{h^2}{6}M_2 & \\ & \ddots & \ddots & \\ & & & \\ & & -1-\frac{h^2}{3}M_{N-2} & 1-\frac{h^2}{6}M_{N-1} \\ 0 & & & -1-\frac{h^2}{3}M_{N-1}\\ \end{array} \right)_{N-1 \times N-1} \end{array}$$

an upper diagonal matrix with bandwidth of 1,

A12=h26M10hh23M1h26M2hh23MN2h26MN10hh23MN1h26MNN1×N1$$\begin{array}{} \displaystyle \mathbf{A}_{12}=\left( \begin{array}{cccc} -\frac{h^2}{6}M'_1 & & & 0 \\ -h-\frac{h^2}{3}M'_1 & -\frac{h^2}{6}M'_2 & & \\ \ddots & \ddots & &\\ & & & \\ & -h-\frac{h^2}{3}M'_{N-2} & -\frac{h^2}{6}M'_{N-1}& \\ 0 & &-h-\frac{h^2}{3}M'_{N-1} & -\frac{h^2}{6}M'_N\\ \end{array} \right)_{N-1 \times N-1} \end{array}$$

a lower diagonal matrix with bandwidth of 1,

A21=h2M0h2M10h2M1h2M2h2MN2h2MN10h2MN1N1×N1$$\begin{array}{} \displaystyle \mathbf{A}_{21}=\left( \begin{array}{cccc} -\frac{h}{2}M_0 & -\frac{h}{2}M_1 & & 0 \\ & -\frac{h}{2}M_1 & -\frac{h}{2}M_2 & \\ & \ddots & \ddots & \\ & & & \\ & & -\frac{h}{2}M_{N-2} & -\frac{h}{2}M_{N-1} \\ 0 & & & -\frac{h}{2}M_{N-1}\\ \end{array} \right)_{N-1 \times N-1} \end{array}$$

an upper diagonal matrix with bandwidth of 1 and finally,

A22=1h2M101h2M11h2M21h2MN21h2MN101h2MN11h2MNN1×N1$$\begin{array}{} \displaystyle \mathbf{A}_{22}=\left( \begin{array}{cccc} 1-\frac{h}{2}M'_1 & & & 0 \\ -1-\frac{h}{2}M'_1 & 1-\frac{h}{2}M'_2 & & \\ \ddots & \ddots & &\\ & & & \\ & -1-\frac{h}{2}M'_{N-2} & 1-\frac{h}{2}M'_{N-1}& \\ 0 & &-1-\frac{h}{2}M'_{N-1} & 1-\frac{h}{2}M'_N\\ \end{array} \right)_{N-1 \times N-1} \end{array}$$

a lower diagonal matrix with bandwidth of 1,

ε=(ε0,ε1,..,εN1,ε1,..,εN)t,$$\begin{array}{} \displaystyle \boldsymbol{\varepsilon}=(\varepsilon_0,\varepsilon_1,..,\varepsilon_{N-1},\varepsilon'_1,..,\varepsilon'_N)^t , \end{array}$$

and

T=(T0,T1,..,TN1,T1,..,TN)t.$$\begin{array}{} \displaystyle \mathbf{T}=(T_0,T_1,..,T_{N-1},T'_1,..,T'_N)^t . \end{array}$$

are 1 × 2(N – 1) matrices.

Let us assume that either Mi<0orM2hfori=1,2,..,N.$\begin{array}{} \displaystyle M'_i \lt 0 ~\text{or}~ M'\neq\frac{2}{h} ~\text{for}~ i=1,2,..,N. \end{array}$ These either assumptions ensure that diagonal block matrices A11 and A22 are invertible. Moreover A111<0$\begin{array}{} \displaystyle \mathbf{A}^{-1}_{11} \lt 0 \end{array}$ a negative definite but A221>0$\begin{array}{} \displaystyle \mathbf{A}^{-1}_{22} \gt 0 \end{array}$ a positive definite if |Mi|<2h.$\begin{array}{} \displaystyle |M'_i| \lt \frac{2}{h}. \end{array}$ Let us assume

|A12A221A21A111|<1$$\begin{array}{} \displaystyle |\mathbf{A}_{12}\mathbf{A}^{-1}_{22}\mathbf{A}_{21}\mathbf{A}^{-1}_{11}| \lt 1 \end{array}$$

hence block matrix D is invertible [11].

Let us define,

a2=A12A221anda1=A21A111.$$\begin{array}{} \displaystyle a^*_2=\|\mathbf{A}_{12}\mathbf{A}^{-1}_{22}\|_\infty \quad\text{and} \quad a_{*1}=\|\mathbf{A}_{21}\mathbf{A}^{-1}_{11}\|_\infty . \end{array}$$

and

Si=h26(2Mi1+Mi),1iN11h23Mi1,i=N$$\begin{array}{} \displaystyle S^*_i=\begin{cases} -\frac{h^2}{6}(2M_{i-1}+M_i) ,& \quad 1\leq i\leq N-1 \\ -1-\frac{h^2}{3}M_{i-1} ,& \quad i= N \end{cases} \end{array}$$

and

Si=1h2Mi,i=1h2(Mi1+Mi),2iN$$\begin{array}{} \displaystyle S_{*i}=\begin{cases} 1-\frac{h}{2}M'_i ,& \quad i=1 \\ -\frac{h}{2}(M'_{i-1}+M'_i),& \quad 2\leq i \leq N \end{cases} \end{array}$$

sum of the elements in a row of the matrices A11 and A22 respectively. Let Smin=min{Si},1iN$\begin{array}{} \displaystyle S^*_{min}=min\{S^*_i\}, 1\leq i\leq N \end{array}$ and Smax = max{Si}, 1 ≤ iN. Thus

A1111|Smin|andA2211|Smax|.$$\begin{array}{} \displaystyle \|\mathbf{A}^{-1}_{11}\|_\infty\leq \frac{1}{|S^*_{min}|}\quad \text{and}\quad \|\mathbf{A}^{-1}_{22}\|_\infty\leq \frac{1}{|S_{*max}|}. \end{array}$$

So, we have

1Smin=max{1|Smin|,1|Smax|}$$\begin{array}{} \displaystyle \frac{1}{S^*_{min}}= \text{max}\{\frac{1}{|S^*_{min}|},\frac{1}{|S_{*max}|}\} \end{array}$$

But we know in [11] that

D1max{A111,A221}(1+a2)(1+a1)(1+a2)+(1+a1)(1+a2)(1+a1)$$\begin{array}{} \displaystyle \|\mathbf{D}^{-1}\|_\infty\leq\frac{\text{max}\{\|\mathbf{A}^{-1}_{11}\|_\infty,\|\mathbf{A}^{-1}_{22}\|_\infty\}(1+a^*_2)(1+a_{*1})}{(1+a^*_2)+(1+a_{*1})-(1+a^*_2)(1+a_{*1})} \end{array}$$

Each term in (17) is well defined, so from (14)

εmax{A111,A221}(1+a2)(1+a1)(1+a2)+(1+a1)(1+a2)(1+a1)T$$\begin{array}{} \displaystyle \|\boldsymbol{\varepsilon}\|_\infty\leq \frac{\text{max}\{\|\mathbf{A}^{-1}_{11}\|_\infty,\|\mathbf{A}^{-1}_{22}\|_\infty\}(1+a^*_2)(1+a_{*1})}{(1+a^*_2)+(1+a_{*1})-(1+a^*_2)(1+a_{*1})}\|\mathbf{T}\|_\infty \end{array}$$

It follows from (13), (14) and (18) that ∥ε∥ → 0 as h → 0. Thus we conclude that method (4) will converge.

Numerical Results

In this section we have considered model problems to perform the numerical experiment. In these model problems, we consider different number of noddle points for both xi and λj. In computation of maximum absolute error MAE between the analytical solution u(λj) and computed numerical solution uj of the problem, we have used the following formula,

MAE=max1jMu(λj)uj.$$\begin{array}{} \displaystyle MAE= \max_{\substack {1\leq{j}\leq {M}}}{\left\vert u(\lambda_j)-u_j\right\vert }. \end{array}$$

We have respectively applied Gauss-Seidel and Newton-Raphson method to solve the system of linear and nonlinear equations those arise from the method (4). The solutions are computed on different values of N and M. The iteration is continued until either the maximum difference between two successive iterates is less than 10–8 or the number of iterations reached 103. All computations were performed on a Windows 2007 Ultimate operating system in the GNU FORTRAN environment version 99 compiler (2.95 of gcc) on Intel Core i3-2330M, 2.20 Ghz PC.

Problem 1

The model nonlinear problem that arises in mathematical modeling of the isothermal packed-bed reactor [4],

1Npeu(x)+u(x)λun=0,0<x<1$$\begin{array}{} \displaystyle \frac{1}{N_{pe}} u''(x)+u'(x)-\lambda u^n=0,\quad 0 \lt x \lt 1 \end{array}$$

subject to boundary conditions

u(0)=0,andu(1)+1Npeu(1)=1.$$\begin{array}{} \displaystyle u'(0)=0,\quad \text{and}\quad u(1)+\frac{1}{N_{pe}}u'(1)=1. \end{array}$$

The problem is to find solutions corresponding to a given value of Npe and n for a range of values of λ. In this problem we identify λ as a parameter. Let the constructed analytical solution of the problem is u(x)=NpeNpe1exp(x2x3).$\begin{array}{} \displaystyle u(x)= \frac{N_{pe}}{N_{pe}-1}\exp(x^2-x^3). \end{array}$ The MAE for n = 2, different values of N, M and range of values of λ is presented in Tables 1-4.

Maximum absolute error (Problem 1).

MAE
N
Mλ163264128256
.19.82138918(-1).75354241(-1).69477819(-1).93044417(-8).57223819(-1)
.199.86510330(-1).79471337(-1).73395520(-1).66898733(-1).60657050(-1)
8.1999.87102056(-1).79883814(-1).93044417(-8).67304015(-1).61004162(-1)
.20.93044417(-8).93044417(-8).93044417(-8).93044417(-8).93044417(-8)
.201.87558843(-1).80390550(-1).74223734(-1).67704059(-1).61429124(-1)
.21.91972984(-1).84560312(-1).93044417(-8).71391739(-1).93044417(-1)
.19.96539810(-1).89871243(-1).84503368(-1).78302220(-1).71302131(-1)
.199.10187446(0).94899289(-1).89246385(-1).82724325(-1).75411789(-1)
16.1999.10245341(0).95427811(-1).90004981(-1).83180606(-1).75825751(-1)
.20.93044417(-8).93044417(-8).93044417(-8).93044417(-8).93044417(-8)
.201.10313483(0).96064523(-1).90328887(-1).83708838(-1).76336697(-1)
.21.10851809(0).10116192(0).95119081(-1).88291369(-1).80537640(-1)

Maximum absolute error (Problem 1).

MAE
N=M
λ163264128256
.19.96539810(-1).98467313(-1).10002618(0).93044417(-8).93044417(-8)
.199.10187446(0).10409938(0).10581468(0).10681983(0).10737519(0)
.1999.10245141(0).10459718(0).10633237(0).10736809(0).10792833(0)
.20.93044417(-8).93044417(-8).93044417(-8).93044417(-8).93044417(-8)
.201.10313483(0).10540088(0).10712849(0).10813649(0).10870439(0)
.21.10851809(0).11108328(0).11298846(0).93044417(-8).93044417(-8)

Maximum absolute error (Problem 1).

MAE
M
Nλ481632
.19.58880460(-1).82138918(-1).96539810(-1).10463663(0)
.199.61741766(-1).86510330(-1).10187446(0).11056767(0)
16.1999.93044417(-8).87102056(-1).10245341(0).11112830(0)
.20.93044417(-8).93044417(-8).93044417(-8).93044417(-8)
.201.62708415(-1).87558843(-1).10313483(0).11192413(0)
.21.65576933(-1).91972984(-1).10851809(0).11790539(0)

Maximum absolute error (Problem 1).

MAE
M
Nλ64128256
.19.10895841(0).11119245(0).11232845(0)
.199.11521111(0).11761030(0).11882679(0)
16.1999.11581678(0).11824594(0).11947899(0)
.20.93044417(-8).93044417(-8).93044417(-8)
.201.12292860(0).12553489(0).12686017(0)
.21.82138918(-1).75354241(-1).69477819(-1)

Problem 2

The model nonlinear boundary value problem that arises in analysis of the confinement of a plasma column by radiation pressure [12, 13] with different boundary conditions,

u(x)=λsinh(λu(x)),0<x<1$$\begin{array}{} \displaystyle u''(x)=\lambda\sinh(\lambda u(x)),\quad 0 \lt x \lt 1 \end{array}$$

subject to boundary conditions

u(0)=1,andu(1)=0.$$\begin{array}{} \displaystyle u'(0)=1,\quad \text{and}\quad u(1)=0.\end{array}$$

The problem is to find solutions for a range of values of λ. In this problem we identify λ as a parameter. Let the constructed analytical solution of the problem is u(x) = sinh(x). The MAE for different values of N, M and range of values of λ are presented in Table 5.

Maximum absolute error (Problem 2).

MAE
N
Mλ4816
.10.11055857(0).11045857(0).11032658(0)
8.15.17244926(0).17190818(0).17155264(0)
.20.23749650(0).23588327(0)00000

We considered a nonlinear model problem to test the computational result of the proposed method. The numerical results for model problem 1 which is presented in table 1-4, for different values of N, M and range of values of λ . The results are presented in table 1, errors do not grow as either N or M increases for λ = .20. Thus we conclude that proposed method is convergent for λ = .20. However, such convergence is slow for small value of parameter λ. The convergence of the proposed method depends on the value of the parameter λ. Also proposed method produces growing error as either M or λ increase while N remains fixed. Thus we observed that the proposed method does not converge for same parameter λ and fixed N as M increases. We have drawn this observation from the result presented in table 3-4 for considered problem 1. It seems the rate of the convergence is substantially very low. Under these observations, we have found computational result in numerical experiment for the example 2.

Conclusion

A parametric finite difference method to find the numerical solution of two point boundary value problems with uniform mesh has been developed and discussed. The method discretizes the problem (1) at the discrete nodal points and is transformed into a system of algebraic equations given by (4). The propose method produces an approximate numerical solution of the model problems with the uniform step size. We have discussed the convergence of the proposed method, but we have not estimated exact rate of convergence. The numerical results for the model problems showed that the proposed method is convergent for large values of N. The idea presented in this article leads to the possibility to develop efficient computational method for the numerical solution of higher order boundary value problems. Works in these directions are in progress.

eISSN:
2444-8656
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics