Open Access

Solutions and conservation laws of a generalized second extended (3+1)-dimensional Jimbo-Miwa equation


Cite

Introduction

Most natural phenomena of the real world are modelled by nonlinear partial differential equations (NLPDEs). Such equations can seldom be solved by an analytic method. In contrast the linear differential equations have a particularly good algebraic structure to their solutions, which makes them solvable. Unfortunately, for NLPDEs there is no general theory which can be applied to obtain exact closed-form solutions. However, scientists have developed geometric methods and dynamical systems theory which play prominent roles in the study of differential equations. Such theories deal with the long-term qualitative behaviour of dynamical systems and do not focus on finding precise solutions to the equations. Nevertheless, various methods have also been established by the researchers which provide exact solutions to NLPDEs. Some of these methods are Hirota’s bilinear transformation method [1], the inverse scattering method [2], Kudryashov’s method [3, 4], the sine-cosine method [5], the tanh-coth method [6], the simplest equation method [7, 8], the tanh-function method [9], the Darboux transformation [10], the (G′/G)–expansion method [11, 12], the Bäcklund transformation [13], and Lie symmetry methods [14, 15, 16, 17, 18, 19].

One of the NLPDEs is the (3 + 1)-dimensional Jimbo-Miwa equation

uxxxy+3uyuxx+3uxuxy+2uyt3uxz=0,$$\begin{array}{} \displaystyle u_{xxxy}+ 3u_{y}u_{xx}+ 3u_{x}u_{xy}+ 2u_{yt}-3u_{xz} = 0, \end{array} $$

which is the second member of a Kadomtsev-Petviashvili hierarchy. This equation has been studied extensively by researchers because of the fact that it can be used to describe some fascinating (3+1)-dimensional waves in physics. See for example [20, 21, 22, 23] and references therein.

Recently equation (1) has been extended to the equation [24]

uxxxy+3uyuxx+2(uxt+uyt+uzt)3uxz=0,$$\begin{array}{} \displaystyle u_{xxxy}+ 3 \left( u_{y} u_{x}\right) _x + 2 (u_{xt} +u_{yt}+u_{zt})- 3 u_{xz} = 0 , \end{array} $$

where the term uyt was extended to uxt + uyt + uzt and because of this reason it is called the extended (3+1)-dimensional Jimbo-Miwa equation. Applying the simplified Hirota’s method multiple soliton solutions of (2) were derived and it was shown that the dispersion relations and the phase shifts of (2) were distinct compared to the dispersion and shifts of (1). By using bilinear forms Sun and Chen [25] obtained the lump solutions and their dynamics of (1) and (2). Furthermore, the lump-kink solution which contains interaction between a lump and a kink wave were also obtained in [25].

In this paper we consider a generalized version of the second extended (3+1)-dimensional Jimbo-Miwa equation, namely

uxxxy+kuyuxx+h(uxt+uyt+uzt)kuxz=0,$$\begin{array}{} \displaystyle u_{xxxy}+ k \left( u_{y} u_{x}\right) _x + h (u_{xt} +u_{yt}+u_{zt})-k u_{xz} = 0 , \end{array} $$

where h and k are constants. We obtain exact solutions of (3) using symmetry reductions along with simplest equation method. Furthermore, we derive conservation laws for (3) using the conservation theorem due to Ibragimov.

Lie symmetry theory, originally developed by Marius Sophus Lie (1842-1899), a Norwegian mathematician, around the middle of the nineteenth century, is based upon the study of the invariance under one parameter Lie group of point transformations [14, 15, 16, 17, 18, 19] The theory is highly algorithmic and is one of the most powerful methods to find exact solutions of differential equations be it linear or nonlinear. It has been applied to many scientific fields such as classical mechanics, relativity, control theory, quantum mechanics, numerical analysis, to name but a few.

Conservation laws can be described as fundamental laws of nature, which have extensive applications in various fields of scientific study such as physics, chemistry, biology, engineering, and so on. They have many uses in the study of differential equations. Conservation laws have been used to prove global existence theorems and shock wave solutions to hyperbolic systems. They have been applied to problems of stability and have been used in scattering theory and elasticity [17, 26, 27, 28, 29].

The paper is organized as follows. In Section 2 we first perform symmetry reductions of the generalized second extended (3+1)-dimensional Jimbo-Miwa equation (3) and reduce it to a nonlinear fourth-order ordinary differential equation. Thereafter we find the general solution of the ordinary differential equation in terms of the Weierstrass zeta function. We also find travelling wave solutions of (3) using the simplest equation method. Conservation laws of (3) are obtained by employing the conservation theorem due to Ibragimov in Section 3. Finally we present concluding remarks in Section 4.

Exact solutions of (3)

In this section we present exact solutions to the generalized second extended (3+1)-dimensional Jimbo-Miwa equation (3).

Lie point symmetries and symmetry reductions of (3)

We apply the algorithm for computing Lie point symmetries of (3) and then use them to perform symmetry reductions several times until we arrive at an ordinary differential equation (ODE).

The vector field of the form

X=ξ1x+ξ2y+ξ3z+ξ4t+ηu,$$\begin{array}{} \displaystyle X = \xi^1 \frac{\partial }{\partial x} + \xi^2 \frac{\partial }{\partial y} + \xi^3 \frac{\partial }{\partial z}+ \xi^4 \frac{\partial }{\partial t} + \eta \frac{\partial }{\partial u}, \end{array} $$

where ξi, i = 1, 2, 3, 4 and η depend on x, y, z, t and u, will generate a symmetry group of (3) provided

pr(4)X(uxxxy+kuyuxx+h(uxt+uyt+uzt)kuxz)|(3)=0,$$\begin{array}{} \displaystyle \mbox{pr}^{(4)}X(u_{xxxy}+ k \left( u_{y} u_{x}\right) _x + h (u_{xt} +u_{yt}+u_{zt})-k u_{xz} )|_{(3)} =0, \end{array} $$

where pr(4)X is the fourth prolongation of X [17]. Expanding the determining equation (4) and splitting on derivatives of u, we obtain an overdetermined system of linear homogeneous partial differential equations. Solving this resultant system one obtains the values of ξi, i = 1, 2, 3, 4 and η. Consequently, we have the following nine Lie point symmetries of (3):

X1=t,X2=x,X3=y,X4=z,X5=f1(t)u,X6=f2(z)u,X7=3htt+(2kthx+hz)x+(2hx+hy4kz+hu)u,X8=htt(kt+hz)xhzyhzz+(kt+2hz)u,X9=httktx+(hyhz)y+(kthy+2hz)u.$$\begin{array}{} \displaystyle X_1 = \frac{\partial}{\partial t} ,\,\, X_2 = \frac{\partial}{\partial x} ,\,\, X_3 = \frac{\partial}{\partial y} ,\,\, X_4 = \frac{\partial}{\partial z} ,\,\, X_5 = f_1(t) \frac{\partial}{\partial u} ,\,\, X_6 = f_2(z)\frac{\partial}{\partial u} ,\\\displaystyle X_7 =-3ht \frac{\partial}{ \partial t} + (2kt-hx+hz) \frac{\partial}{\partial x} + (2hx+hy -4kz+hu) \frac{\partial}{\partial u} ,\\\displaystyle X_{8} = ht \frac{\partial}{\partial t} - (kt + h z) \frac{\partial}{\partial x} - h z \frac{\partial}{\partial y} - h z \frac{\partial}{\partial z} +(kt+ 2hz) \frac{\partial}{\partial u} ,\\\displaystyle X_{9} = ht \frac{\partial}{\partial t} - kt \frac{\partial}{\partial x} + (hy-hz) \frac{\partial}{\partial y} + (kt-hy+2hz) \frac{\partial}{\partial u} . \end{array} $$

We now make use of the four translation symmetries and perform symmetry reductions. Solving the associated Lagrange system for X = X1 + αX2+ X3+X4, where α is a constant, we obtain four invariants

w=zy,f=ty,g=xαy,θ=u.$$\begin{array}{} \displaystyle w= z-y, \quad f=t-y, \quad g=x-\alpha y, \quad \theta=u. \end{array} $$

Using these invariants the generalized seconded extended (3+1)-dimensional Jimbo-Miwa equation (3) transforms to

θfggg+αθgggg+θgggw+kθggθf+αθg+θw+kθgw+kθgθfg+αθgg+θgw+h(α1)θfg+θff=0,$$\begin{array}{} \displaystyle \theta _{fggg}+\alpha\theta _{gggg}+\theta _{gggw}+k \theta _{gg}\left(\theta _{f}+\alpha \theta _{g}+\theta_{w}\right)+k \theta _{gw}+k \theta _{g} \left(\theta _{fg}+\alpha \theta _{gg}+\theta _{gw}\right) \\\displaystyle +h \left((\alpha -1) \theta _{fg}+\theta _{ff}\right)=0, \end{array} $$

which is a nonlinear PDE in three independent variables. Equation (7) has the following seven Lie point symmetries:

Γ1=w,Γ2=f,Γ3=g,Γ4=θ,Γ5=(wf)θ,Γ6=ww+(2wf)f+(2αwg)g+(2g2αw+θ)θ,Γ7=6hkww+6hkwf+k7aαh+αbh+ah+akbhbk2dhg+(aα2h22aαh22aαhk+ah2+2ahk+ak2+4dhk+2hθk)θ.$$\begin{array}{} \displaystyle \Gamma _1 =\, \frac{\partial}{\partial w}, \,\, \Gamma _2 = \frac{\partial}{\partial f},\,\, \Gamma _3 = \frac{\partial}{\partial g},\,\, \Gamma _4 = \frac{\partial}{\partial \theta},\,\, \Gamma _5 = (w-f)\frac{\partial}{\partial \theta},\\\displaystyle \Gamma _6 =\, w\frac{\partial}{\partial w}+(2w-f)\frac{\partial}{\partial f} +(2\alpha w-g)\frac{\partial}{\partial g}+(2g-2\alpha w+\theta)\frac{\partial}{\partial \theta},\\\displaystyle \Gamma _7 =\, 6hkw\frac{\partial}{\partial w} + 6hkw \frac{\partial}{\partial f} + k \left( 7\,a\alpha\,h+\alpha\,bh+ah+ak-bh-bk-2\,dh \right) \frac{\partial}{\partial g} \\\displaystyle \qquad\,\,\,\,+\,(a{\alpha}^{2}{h}^{2}-2\,a\alpha\,{h}^{2}-2\,a\alpha\,hk+a{h}^{2}+2\,ah k+a{k}^{2}+4\,dhk+2\,h\theta\,k ) \frac{\partial}{\partial \theta}. \end{array} $$

Utilizing the symmetry Γ = Γ1 + Γ2 + βΓ3, where β is a constant, we reduce equation (7) to a PDE in two independent variables. From the associated Lagrange system for Γ, we obtain three invariants

r=gβf,s=wf,ϕ=θ$$\begin{array}{} \displaystyle r= g-\beta f, \quad s= w-f, \quad \phi=\theta \end{array} $$

and these invariants transform equation (7) to

(βα)ϕrrrr+αβhβ2hβhϕrr+αhϕrs2βhϕrshϕrshϕss2αkϕrϕrr+2βkϕrϕrrkϕrs=0,$$\begin{array}{} \displaystyle (\beta-\alpha) \phi _{rrrr}+ \left( \alpha \beta h -\beta ^2 h -\beta h \right) \phi _{rr} +\alpha h \phi _{rs}-2 \beta h \phi _{rs}-h \phi _{rs}-h \phi _{ss}-2 \alpha k \phi _{r} \phi _{rr} \\\displaystyle +2 \beta k \phi _{r} \phi _{rr}-k \phi _{rs}=0, \end{array} $$

which is a nonlinear PDE in two independent variables. We perform further symmetry reduction on equation (9). This equation has five symmetries including the two translation symmetries Σ1 = /r and Σ2 = /s. The combination Σ = ν Σ1 + Σ2, yields the two invariants

q=rνs,F=ϕ,$$\begin{array}{} \displaystyle q= r-\nu s, \quad \displaystyle F=\phi, \end{array} $$

which give rise to a group-invariant solution ϕ = F(q) and consequently, equation (9) is transformed into the fourth-order nonlinear ODE

AF(q)+BF(q)F(q)+CF(q)=0,$$\begin{array}{} \displaystyle A F''''(q)+ B F'(q)F''(q)+CF''(q)=0, \end{array} $$

where A = αβ, B = 2k(αβ), C = h (βν) (−α +βν +1)−kν and q = x+(β - α)yνz +(νβ)t. Integration of the above equation twice with respect to q gives

A2F2+B6F3+C2F2+C1F+C2=0,$$\begin{array}{} \displaystyle \frac{A}{2} F''^2+\frac{B}{6} F'^{3 }+\frac{C}{2}F'^2+C_1F'+C_2=0, \end{array} $$

where C1 and C2 are integration constants. Letting H = F′, the above equation becomes

H2=B3AH3CAH22C1AH2C2A.$$\begin{array}{} \displaystyle H'^2=-\frac{B}{3A} H^{3 }-\frac{C}{A}H^2-\frac{2C_1}{A}H-\frac{2C_2}{A}. \end{array} $$

Now using the transformation

H(q)=12ABqCB,$$\begin{array}{} \displaystyle H(q)=-\frac{12 A }{B} \wp \left(q \right)-\frac{C}{B}, \end{array} $$

we obtain equation for the Weierstrass elliptic function [30]

2=43g1g2,$$\begin{array}{} \displaystyle \wp '^2=4 \wp ^3-g_1\wp -g_2, \end{array} $$

where

g1=C22BC112A2,g2=C3+3B(BC2CC1)216A3.$$\begin{array}{} \displaystyle g_1 = \frac{C^2 - 2BC_1}{12A^2}, \,\, g_2 = \frac{C^3 + 3B(BC_2-CC_1)}{216 A^3}. \end{array} $$

Thus integrating equation (11) and reverting to our original variables we obtain the solution of (3), which is given by

u(x,y,z,t)=12ABζq;g1,g2CBq,$$\begin{array}{} \displaystyle u(x,y,z,t)=\frac{12 A }{B} \, \zeta \left(q;g_1,g_2\right)-\frac{C }{B} \, q, \end{array} $$

where ζ (q;g1,g2) is the Weierstrass zeta function defined as ζ′ (q;g1,g2) = −℘ (q;g1,g2 ) [30] and A = αβ, B = 2k(αβ), C = h (βν) (−α +βν +1)−kν and q = x+(βα)yνz +(νβ)t.

Exact solutions of (3) using simplest equation method

In this subsecrion we use the simplest equation method [7, 8] to solve the ODE (10) and henceforth one obtains the exact solutions of the generalized second extended (3+1)-dimensional Jimbo-Miwa equation (3). We use the Bernoulli and Riccati equations as the simplest equations. The Bernoulli equation

H(q)=cH(q)+dH2(q),$$\begin{array}{} \displaystyle H'(q)=cH(q)+dH^2(q), \end{array} $$

where c and d are constants has solution

H(z)=c{cosh[c(q+C)]+sinh[c(q+C)]1dcosh[c(q+C)]dsinh[c(q+C)]},$$\begin{array}{} \displaystyle H(z)=c\bigg\{\frac{\cosh [c (q+C)]+\sinh [c (q+C)]}{1-d\cosh [c (q+C)]-d \sinh [c (q+C)]} \bigg\}, \end{array} $$

with C being a constant of integration.

The Riccati equation

H(q)=cH(q)+dH2(q)+e,$$\begin{array}{} \displaystyle H'(q)=cH(q)+dH^2(q)+ e, \end{array} $$

where c, d and e are constants, has two solutions, namely

H(q)=c2dθ2dtanh[12θ(q+C)]$$\begin{array}{} \displaystyle H(q)=-\frac{c}{2 d}-\frac{\theta }{2d}\tanh \bigg[\frac{1}{2} \theta (q+C)\bigg] \end{array} $$

and

H(q)=c2dθ2dtanh(12θq)+sechθq2Ccoshθq22dθsinhθq2,$$\begin{array}{} \displaystyle H(q)=-\frac{c}{2 d}-\frac{\theta }{2d}\tanh \bigg(\frac{1}{2} \theta q\bigg)+ \frac{\text{sech}\left(\frac{\theta q}{2}\right)}{C \cosh \left(\frac{\theta q}{2}\right)-\frac{2 d}{\theta} \sinh \left(\frac{\theta q}{2}\right)}, \end{array} $$

with θ2 = c2−4de > 0 and C a constant of integration.

The solutions of the ODE (10) are assumed to be of the form

F(q)=i=0MAi(H(q))i,$$\begin{array}{} \displaystyle F(q)=\sum _{i=0}^M A_{i} (H(q))^{i}, \end{array} $$

where H(z) solves the Bernoulli or Riccati equation, M is a positive integer which is determined by the balancing procedure and Ai, (i = 0, 1, ⋯, M) are parameters to be determined.

Solutions of (3) using Bernoulli as the simplest equation

From equation (10) the balancing procedure yields M = 1, so the solutions of (10) can be written as

F(q)=A0+A1H(q).$$\begin{array}{} \displaystyle F(q)=A_{0}+A_{1}H(q). \end{array} $$

Substituting (15) into (10) and invoking the Bernoulli equation (12) we obtain the algebraic equation

αA1c4H(q)A1βc4H(q)+15αA1c3dH(q)215A1βc3dH(q)2+2αA12c3kH(q)22A12βc3kH(q)2+50αA1c2d2H(q)350A1βc2d2H(q)3+8αA12c2dkH(q)38A12βc2dkH(q)3αA1βc2hH(q)+αA1c2hνH(q)+A1β2c2hH(q)2A1βc2hνH(q)+A1βc2hH(q)+A1c2hν2H(q)A1c2hνH(q)A1c2kνH(q)+60αA1cd3H(q)460A1βcd3H(q)4+10αA12cd2kH(q)410A12βcd2kH(q)43αA1βcdhH(q)2+3αA1cdhνH(q)2+3A1β2cdhH(q)26A1βcdhνH(q)2+3A1βcdhH(q)2+3A1cdhν2H(q)23A1cdhνH(q)23A1cdkνH(q)2+24αA1d4H(q)524A1βd4H(q)5+4αA12d3kH(q)54A12βd3kH(q)52αA1βd2hH(q)3+2αA1d2hνH(q)3+2A1β2d2hH(q)34A1βd2hνH(q)3+2A1βd2hH(q)3+2A1d2hν2H(q)32A1d2hνH(q)32A1d2kνH(q)3=0.$$\begin{array}{} \displaystyle \alpha A_1 c^4 H(q)-A_1 \beta c^4 H(q)+15 \alpha A_1 c^3 d H(q)^2-15 A_1 \beta c^3 d H(q)^2+2 \alpha A_1^2 c^3 k H(q)^2\\\displaystyle \,-\,2 A_1^2 \beta c^3 k H(q)^2+50 \alpha A_1 c^2 d^2H(q)^3-50 A_1 \beta c^2 d^2 H(q)^3+8 \alpha A_1^2 c^2 d k H(q)^3\\\displaystyle \,-\,8 A_1^2 \beta c^2 d k H(q)^3-\alpha A_1 \beta c^2 h H(q)+\alpha A_1 c^2 h \nu H(q)+A_1 \beta ^2 c^2 h H(q)-2 A_1 \beta c^2 h \nu H(q)\\\displaystyle \,+\,A_1 \beta c^2 h H(q)+A_1 c^2 h \nu ^2 H(q)-A_1 c^2 h \nu H(q)-A_1 c^2 k \nu H(q)+60 \alpha A_1 c d^3 H(q)^4\\\displaystyle \,-\,60 A_1 \beta c d^3 H(q)^4+10 \alpha A_1^2 c d^2 k H(q)^4-10 A_1^2 \beta c d^2 k H(q)^4-3 \alpha A_1 \beta c d h H(q)^2\\\displaystyle \,+\,3 \alpha A_1 c d h \nu H(q)^2+3 A_1 \beta ^2 c d h H(q)^2-6 A_1 \beta c d h \nu H(q)^2+3 A_1 \beta c d h H(q)^2\\\displaystyle \,+\,3 A_1 c d h \nu ^2 H(q)^2-3 A_1 c d h \nu H(q)^2-3 A_1 c d k \nu H(q)^2+24 \alpha A_1 d^4 H(q)^5\\\displaystyle \,-\,24 A_1 \beta d^4 H(q)^5+4 \alpha A_1^2 d^3 k H(q)^5-4 A_1^2 \beta d^3 k H(q)^5-2 \alpha A_1 \beta d^2 h H(q)^3\\\displaystyle \,+\,2 \alpha A_1 d^2 h \nu H(q)^3+2 A_1 \beta ^2 d^2 h H(q)^3-4 A_1 \beta d^2 h \nu H(q)^3+2 A_1 \beta d^2 h H(q)^3\\\displaystyle \,+\,2 A_1 d^2 h \nu ^2 H(q)^3-2 A_1 d^2 h \nu H(q)^3-2 A_1 d^2 k \nu H(q)^3=0. \end{array} $$

Equating all coefficients of the function Hi to zero, we obtain the following algebraic system of equations in terms of A0 and A1:

αA1c4A1βc4αA1βc2h+αA1c2hν+A1β2c2h2A1βc2hν+A1βc2h+A1c2hν2A1c2hνA1c2kν=0,15αA1c3d15A1βc3d+2αA12c3k2A12βc3k3αA1βcdh+3αA1cdhν+3A1β2cdh6A1βcdhν+3A1βcdh+3A1cdhν23A1cdhν3A1cdkν=0,50αA1c2d250A1βc2d2+8αA12c2dk8A12βc2dk2αA1βd2h+2αA1d2hν+2A1β2d2h4A1βd2hν+2A1βd2h+2A1d2hν22A1d2hν2A1d2kν=060αA1cd360A1βcd3+10αA12cd2k10A12βcd2k=024αA1d424A1βd4+4αA12d3k4A12βd3k=0.$$\begin{array}{} \displaystyle \alpha A_1 c^4-A_1 \beta c^4-\alpha A_1 \beta c^2 h+\alpha A_1 c^2 h \nu +A_1 \beta ^2 c^2 h-2 A_1 \beta c^2 h \nu +A_1 \beta c^2 h+A_1 c^2 h \nu ^2\\\displaystyle \,-\,A_1 c^2 h \nu -A_1 c^2 k \nu =0,\\\displaystyle 15 \alpha A_1 c^3 d-15 A_1 \beta c^3 d+2 \alpha A_1^2 c^3 k-2 A_1^2 \beta c^3 k-3 \alpha A_1 \beta c d h+3 \alpha A_1 c d h \nu +3 A_1 \beta ^2 c d h\\\displaystyle \,-\,6 A_1 \beta c d h \nu +3 A_1 \beta c d h+3 A_1 c d h \nu ^2-3 A_1 c d h \nu -3 A_1 c d k \nu =0,\\\displaystyle 50 \alpha A_1 c^2 d^2-50 A_1 \beta c^2 d^2+8 \alpha A_1^2 c^2 d k-8 A_1^2 \beta c^2 d k-2 \alpha A_1 \beta d^2 h+2 \alpha A_1 d^2 h \nu \\\displaystyle \,+\,2 A_1 \beta ^2 d^2 h-4 A_1 \beta d^2 h \nu +2 A_1 \beta d^2 h+2 A_1 d^2 h \nu ^2-2 A_1 d^2 h \nu -2 A_1 d^2 k \nu =0\\\displaystyle 60 \alpha A_1 c d^3-60 A_1 \beta c d^3+10 \alpha A_1^2 c d^2 k-10 A_1^2 \beta c d^2 k=0\\\displaystyle 24 \alpha A_1 d^4-24 A_1 \beta d^4+4 \alpha A_1^2 d^3 k-4 A_1^2 \beta d^3 k=0. \end{array} $$

Solving the above system with the aid of Mathematica, we obtain

α=β,k=h(ν1)(νβ)ν,A0=arbitrary,A1=6dk.$$\begin{array}{} \displaystyle \alpha = \beta,\,\,\,\, k=\frac{h (\nu -1) (\nu -\beta )}{\nu },\,\,\,A_0=\text{arbitrary},\,\,\, A_1=-\frac{6 d }{k}. \end{array} $$

Thus a solution of the generalized second extended (3+1)-dimensional Jimbo-Miwa equation (3) using the Bernoulli equation as the simplest equation is

u(x,y,z,t)=A06cdk{cosh[c(q+C)]+sinh[c(q+C)]1dcosh[c(q+C)]dsinh[c(q+C)]},$$\begin{array}{} \displaystyle u(x,y,z,t)=A_0-\frac{6c d}{k}\bigg\{\frac{\cosh [c (q+C)]+\sinh [c (q+C)]}{1-d \cosh [c (q+C)]-d \sinh [c (q+C)]} \bigg\}, \end{array} $$

where q = x+(βα)yνz +(νβ)t and C is an arbitrary constant.

Solutions of (3) using Riccati as the simplest equation

Substituting (15) into (10) and using the Riccati equation (13) we obtain

4d3kαA12H(q)54d3kβA12H(q)5+24d4αA1H(q)524d4βA1H(q)5+10cd2kαA12H(q)410cd2kβA12H(q)4+60cd3αA1H(q)460cd3βA1H(q)4+8c2dkαA12H(q)3+8d2ekαA12H(q)38c2dkβA12H(q)38d2ekβA12H(q)3+2d2hβ2A1H(q)3+2d2hν2A1H(q)3+50c2d2αA1H(q)3+40d3eαA1H(q)350c2d2βA1H(q)340d3eβA1H(q)3+2d2hβA1H(q)32d2hαβA1H(q)32d2hνA1H(q)32d2kνA1H(q)3+2d2hανA1H(q)34d2hβνA1H(q)3+2c3kαA12H(q)2+12cdekαA12H(q)22c3kβA12H(q)212cdekβA12H(q)2+3cdhβ2A1H(q)2+3cdhν2A1H(q)2+15c3dαA1H(q)2+60cd2eαA1H(q)215c3dβA1H(q)260cd2eβA1H(q)2+3cdhβA1H(q)23cdhαβA1H(q)23cdhνA1H(q)23cdkνA1H(q)2+3cdhανA1H(q)26cdhβνA1H(q)2+4de2kαA12H(q)+4c2ekαA12H(q)4de2kβA12H(q)4c2ekβA12H(q)+c2hβ2A1H(q)+2dehβ2A1H(q)+c2hν2A1H(q)+2dehν2A1H(q)+c4αA1H(q)+16d2e2αA1H(q)+22c2deαA1H(q)c4βA1H(q)16d2e2βA1H(q)22c2deβA1H(q)+c2hβA1H(q)+2dehβA1H(q)c2hαβA1H(q)2dehαβA1H(q)c2hνA1H(q)2dehνA1H(q)c2kνA1H(q)2dekνA1H(q)+c2hανA1H(q)+2dehανA1H(q)2c2hβνA1H(q)4dehβνA1H(q)+2ce2kαA122ce2kβA12+cehβ2A1+cehν2A1+8cde2αA1+c3eαA18cde2βA1c3eβA1+cehβA1cehαβA1cehνA1cekνA1+cehανA12cehβνA1=0.$$\begin{array}{} \displaystyle 4 d^3 k \alpha A_1^2 H(q)^5-4 d^3 k \beta A_1^2 H(q)^5+24 d^4 \alpha A_1 H(q)^5-24 d^4 \beta A_1 H(q)^5 \\\displaystyle \,+\,10 c d^2 k \alpha A_1^2 H(q)^4-10 c d^2 k \beta A_1^2 H(q)^4+60 c d^3 \alpha A_1 H(q)^4-60 c d^3 \beta A_1 H(q)^4 \\\displaystyle \,+\,8 c^2 d k \alpha A_1^2 H(q)^3+8 d^2 e k \alpha A_1^2 H(q)^3-8 c^2 d k \beta A_1^2 H(q)^3-8 d^2 e k \beta A_1^2 H(q)^3 \\\displaystyle \,+\,2 d^2 h \beta ^2 A_1 H(q)^3+2 d^2 h \nu ^2 A_1 H(q)^3+50 c^2 d^2 \alpha A_1 H(q)^3+40 d^3 e \alpha A_1 H(q)^3 \\\displaystyle \,-\,50 c^2 d^2 \beta A_1 H(q)^3-40 d^3 e \beta A_1 H(q)^3+2 d^2 h \beta A_1 H(q)^3-2 d^2 h \alpha \beta A_1 H(q)^3 \\\displaystyle \,-\,2 d^2 h \nu A_1 H(q)^3-2 d^2 k \nu A_1 H(q)^3+2 d^2 h \alpha \nu A_1 H(q)^3-4 d^2 h \beta \nu A_1 H(q)^3 \\\displaystyle \,+\,2 c^3 k \alpha A_1^2 H(q)^2+12 c d e k \alpha A_1^2 H(q)^2-2 c^3 k \beta A_1^2 H(q)^2-12 c d e k \beta A_1^2 H(q)^2 \\\displaystyle \,+\,3 c d h \beta ^2 A_1 H(q)^2+3 c d h \nu ^2 A_1 H(q)^2+15 c^3 d \alpha A_1 H(q)^2+60 c d^2 e \alpha A_1 H(q)^2 \\\displaystyle \,-\,15 c^3 d \beta A_1 H(q)^2-60 c d^2 e \beta A_1 H(q)^2+3 c d h \beta A_1 H(q)^2-3 c d h \alpha \beta A_1 H(q)^2 \\\displaystyle \,-\,3 c d h \nu A_1 H(q)^2-3 c d k \nu A_1 H(q)^2+3 c d h \alpha \nu A_1 H(q)^2-6 c d h \beta \nu A_1 H(q)^2 \\\displaystyle \,+\,4 d e^2 k \alpha A_1^2 H(q)+4 c^2 e k \alpha A_1^2 H(q)-4 d e^2 k \beta A_1^2 H(q)-4 c^2 e k \beta A_1^2 H(q) \\\displaystyle \,+\,c^2 h \beta ^2 A_1 H(q)+2 d e h \beta ^2 A_1 H(q)+c^2 h \nu ^2 A_1 H(q)+2 d e h \nu ^2 A_1 H(q)+c^4 \alpha A_1 H(q) \\\displaystyle \,+\,16 d^2 e^2 \alpha A_1 H(q)+22 c^2 d e \alpha A_1 H(q)-c^4 \beta A_1 H(q)-16 d^2 e^2 \beta A_1 H(q) \\\displaystyle \,-\,22 c^2 d e \beta A_1 H(q)+c^2 h \beta A_1 H(q)+2 d e h \beta A_1 H(q)-c^2 h \alpha \beta A_1 H(q) \\\displaystyle \,-\,2 d e h \alpha \beta A_1 H(q)-c^2 h \nu A_1 H(q)-2 d e h \nu A_1 H(q)-c^2 k \nu A_1 H(q)-2 d e k \nu A_1 H(q) \\\displaystyle \,+\,c^2 h \alpha \nu A_1 H(q)+2 d e h \alpha \nu A_1 H(q)-2 c^2 h \beta \nu A_1 H(q)-4 d e h \beta \nu A_1 H(q)+2 c e^2 k \alpha A_1^2 \\\displaystyle \,-\,2 c e^2 k \beta A_1^2+c e h \beta ^2 A_1+c e h \nu ^2 A_1+8 c d e^2 \alpha A_1+c^3 e \alpha A_1-8 c d e^2 \beta A_1-c^3 e \beta A_1 \\\displaystyle \,+\,c e h \beta A_1-c e h \alpha \beta A_1-c e h \nu A_1-c e k \nu A_1+c e h \alpha \nu A_1-2 c e h \beta \nu A_1=0. \end{array} $$

As before, equating coefficients of Hi to zero, we obtain

eαA1c3eβA1c3+2e2kαA12c2e2kβA12c+ehβ2A1c+ehν2A1c+8de2αA1c8de2βA1c+ehβA1cehαβA1cehνA1cekνA1c+ehανA1c2ehβνA1c=0,αA1c4βA1c4+4ekαA12c24ekβA12c2+hβ2A1c2+hν2A1c2+22deαA1c222deβA1c2+hβA1c2hαβA1c2hνA1c2kνA1c2+hανA1c22hβνA1c2+4de2kαA124de2kβA12+2dehβ2A1+2dehν2A1+16d2e2αA116d2e2βA1+2dehβA12dehαβA12dehνA12dekνA1+2dehανA14dehβνA1=0,2kαA12c32kβA12c3+15dαA1c315dβA1c3+12dekαA12c12dekβA12c+3dhβ2A1c+3dhν2A1c+60d2eαA1c60d2eβA1c+3dhβA1c3dhαβA1c3dhνA1c3dkνA1c+3dhανA1c6dhβνA1c=0,40eαA1d340eβA1d3+8ekαA12d28ekβA12d2+2hβ2A1d2+2hν2A1d2+50c2αA1d250c2βA1d2+2hβA1d22hαβA1d22hνA1d22kνA1d2+2hανA1d24hβνA1d2+8c2kαA12d8c2kβA12d=0,60cαA1d360cβA1d3+10ckαA12d210ckβA12d2=0,24αA1d424βA1d4+4kαA12d34kβA12d3=0.$$\begin{array}{} \displaystyle e \alpha A_1 c^3-e \beta A_1 c^3+2 e^2 k \alpha A_1^2 c-2 e^2 k \beta A_1^2 c+e h \beta ^2 A_1 c+e h \nu ^2 A_1 c+8 d e^2 \alpha A_1 c \\\displaystyle \,-\,8 d e^2 \beta A_1 c+e h \beta A_1 c-e h \alpha \beta A_1 c-e h \nu A_1 c-e k \nu A_1 c+e h \alpha \nu A_1 c-2 e h \beta \nu A_1 c=0,\\\displaystyle \alpha A_1 c^4-\beta A_1 c^4+4 e k \alpha A_1^2 c^2-4 e k \beta A_1^2 c^2+h \beta ^2 A_1 c^2+h \nu ^2 A_1 c^2+22 d e \alpha A_1 c^2 \\\displaystyle \,-\,22 d e \beta A_1 c^2+h \beta A_1 c^2-h \alpha \beta A_1 c^2-h \nu A_1 c^2-k \nu A_1 c^2+h \alpha \nu A_1 c^2-2 h \beta \nu A_1 c^2 \\\displaystyle \,+\,4 d e^2 k \alpha A_1^2-4 d e^2 k \beta A_1^2+2 d e h \beta ^2 A_1+2 d e h \nu ^2 A_1+16 d^2 e^2 \alpha A_1-16 d^2 e^2 \beta A_1 \\\displaystyle \,+\,2 d e h \beta A_1-2 d e h \alpha \beta A_1-2 d e h \nu A_1-2 d e k \nu A_1+2 d e h \alpha \nu A_1-4 d e h \beta \nu A_1=0,\\\displaystyle 2 k \alpha A_1^2 c^3-2 k \beta A_1^2 c^3+15 d \alpha A_1 c^3-15 d \beta A_1 c^3+12 d e k \alpha A_1^2 c-12 d e k \beta A_1^2 c \\\displaystyle \,+\,3 d h \beta ^2 A_1 c+3 d h \nu ^2 A_1 c+60 d^2 e \alpha A_1 c-60 d^2 e \beta A_1 c+3 d h \beta A_1 c-3 d h \alpha \beta A_1 c \\\displaystyle \,-\,3 d h \nu A_1 c-3 d k \nu A_1 c+3 d h \alpha \nu A_1 c-6 d h \beta \nu A_1 c=0,\\\displaystyle 40 e \alpha A_1 d^3-40 e \beta A_1 d^3+8 e k \alpha A_1^2 d^2-8 e k \beta A_1^2 d^2+2 h \beta ^2 A_1 d^2+2 h \nu ^2 A_1 d^2 \\\displaystyle \,+\,50 c^2 \alpha A_1 d^2-50 c^2 \beta A_1 d^2+2 h \beta A_1 d^2-2 h \alpha \beta A_1 d^2-2 h \nu A_1 d^2-2 k \nu A_1 d^2 \\\displaystyle \,+\,2 h \alpha \nu A_1 d^2-4 h \beta \nu A_1 d^2+8 c^2 k \alpha A_1^2 d-8 c^2 k \beta A_1^2 d=0,\\\displaystyle 60 c \alpha A_1 d^3-60 c \beta A_1 d^3+10 c k \alpha A_1^2 d^2-10 c k \beta A_1^2 d^2=0,\\\displaystyle 24 \alpha A_1 d^4-24 \beta A_1 d^4+4 k \alpha A_1^2 d^3-4 k \beta A_1^2 d^3=0. \end{array} $$

Solving the above system of algebraic equations we obtain

α=β,k=h(ν1)(νβ)ν,A0=arbitrary,A1=6dk.$$\begin{array}{} \displaystyle \alpha = \beta,\,\,\,\, k=\frac{h (\nu -1) (\nu -\beta )}{\nu },\,\,\,A_0=\text{arbitrary},\,\,\, A_1=-\frac{6 d }{k}. \end{array} $$

Thus solutions of the generalized second extended (3+1)-dimensional Jimbo-Miwa equation (3) using the Riccati equation as the simplest equation are

u(x,y,z,t)=A06dk{c2dθ2dtanh[12θ(q+C)]}$$\begin{array}{} \displaystyle u(x,y,z,t)=A_{0}-\frac{6 d }{k}\bigg \{-\frac{c}{2 d}-\frac{\theta }{2d}\tanh \bigg[\frac{1}{2} \theta (q+C)\bigg]\bigg \} \end{array} $$

and

u(t,x,y,z)=A06dk{c2dθ2dtanh(12θq)+sechθq2Ccoshθq22dθsinhθq2},$$\begin{array}{} \displaystyle u(t,x,y,z)=A_0-\frac{6 d }{k} \bigg\{-\frac{c}{2 d}-\frac{\theta }{2d}\tanh \bigg(\frac{1}{2} \theta q\bigg)+ \frac{\text{sech}\left(\frac{\theta q}{2}\right)}{C \cosh \left(\frac{\theta q}{2}\right)-\frac{2 d}{\theta} \sinh \left(\frac{\theta q}{2}\right)}\bigg\}, \end{array} $$

where q = x+(βα)yνz +(νβ)t, θ2 = c2−4de > 0 and C is an arbitrary constant.

Conservation laws of (3) using Ibragimov’s theorem

In this section we derive the conservation laws of (3) by appealing to Ibragimov’s new conservation theorem [31].

We begin by determining the adjoint equation of (3) by utilizing

Fδδuv(uxxxy+kuyuxx+h(uxt+uyt+uzt)kuxz)=0,$$\begin{array}{} \displaystyle F^* \equiv \frac{\delta}{\delta u} \left(v \big(u_{xxxy}+ k \left( u_{y} u_{x}\right) _x + h (u_{xt} +u_{yt}+u_{zt})-k u_{xz}\big)\right)=0, \end{array} $$

where δ / δu is the Euler-Lagrange operator defined by

δδu=DxuxDyuy+Dx2uxx+DxDtuxt+DyDtuyt+DzDtuzt+DxDzuxz+DxDyuxy+Dx3Dyuxxxy$$\begin{array}{} \displaystyle \frac{\delta}{\delta u}=-\,D_x \frac{\partial }{\partial u_x}-D_y \frac{\partial }{\partial u_y}+ D^2_x\frac{\partial}{\partial u_{xx}}+D_x D_t \frac{\partial }{\partial u_{xt}}+ D_{y}D_t\frac{\partial}{\partial u_{yt}}+ D_{z}D_t\frac{\partial}{\partial u_{zt}}\\\displaystyle \qquad\,\,\,\,+\, D_{x}D_z\frac{\partial}{\partial u_{xz}} + D_{x}D_{y}\frac{\partial}{\partial u_{xy}}+D^3_x D_y\frac{\partial}{\partial u_{xxxy}} \end{array} $$

and the total differential operators Dt, Dx, Dy and Dz are given by

Dt=t+utu+uttut+utxux+utyuy+utzuz+,Dx=x+uxu+uxxux+uxtut+uxyuy+uxzuz+,Dy=y+uyu+uyyuy+uytut+uyxux+uyzuz+,Dz=z+uzu+uzzuz+uztut+uzyuy+uzxux+.$$\begin{array}{} \displaystyle D_t = \frac{\partial}{\partial t} + u_t\frac{\partial}{\partial u}+ u_{tt}\frac{\partial}{\partial u_t}+ u_{tx} \frac{\partial}{\partial u_x}+ u_{ty} \frac{\partial}{\partial u_y}+ u_{tz} \frac{\partial}{\partial u_z}+\cdots, \\\displaystyle D_x = \frac{\partial}{\partial x} + u_x\frac{\partial}{\partial u}+ u_{xx} \frac{\partial}{\partial u_x} + u_{xt}\frac{\partial}{\partial u_t}+u_{xy}\frac{\partial}{\partial u_y}+u_{xz}\frac{\partial}{\partial u_z}+\cdots, \\\displaystyle D_y = \frac{\partial}{\partial y} + u_y\frac{\partial}{\partial u}+ u_{yy} \frac{\partial}{\partial u_y} + u_{yt}\frac{\partial}{\partial u_t}+u_{yx}\frac{\partial}{\partial u_x}+u_{yz}\frac{\partial}{\partial u_z}+\cdots, \\\displaystyle D_z = \frac{\partial}{\partial z} + u_z\frac{\partial}{\partial u}+ u_{zz} \frac{\partial}{\partial u_z} + u_{zt}\frac{\partial}{\partial u_t}+u_{zy}\frac{\partial}{\partial u_y} +u_{zx}\frac{\partial}{\partial u_x}+\cdots. \end{array} $$

Thus the adjoint equation (16) becomes

hvxt+hvyt+hvzt+2kvxuxy+kuxvxy+kuyvxxkvxz+vxxxy=0.$$\begin{array}{} \displaystyle h v_{xt}+h v_{yt}+h v_{zt}+2 k v_{x} u_{xy}+k u_{x} v_{xy}+k u_{y} v_{xx}-k v_{xz}+v_{xxxy}=0. \end{array} $$

The Lagrangian of (3) and its adjoint equation (19) is

L=vhuxt+uyt+uzt+kuxuxy+kuxxuykuxz+uxxxy$$\begin{array}{} \displaystyle \mathcal{L}=v \left(h \left(u_{xt}+u_{yt}+u_{zt}\right)+k u_{x} u_{xy}+k u_{xx} u_{y}-k u_{xz}+u_{xxxy}\right) \end{array} $$

and the extended symmetries [31] are

Y1=t,Y2=x,Y3=y,Y4=z,Y5=f1(t)u,Y6=f2(z)u,Y7=3htt+(2kt+hzhx)x+(2hx+hy4hz+hu)u,Y8=htt(kt+hz)xhzyhzz+(kt+2hz)u,Y9=httktx+(hyhz)y+(kthy+2hz)uhvv.$$\begin{array}{} \displaystyle Y_1 = \frac{\partial}{\partial t} ,\,\, Y_2 = \frac{\partial}{\partial x} ,\,\, Y_3 = \frac{\partial}{\partial y} ,\,\, Y_4 = \frac{\partial}{\partial z} ,\,\, Y_5 = f_1(t) \frac{\partial}{\partial u} ,\,\, Y_6 = f_2(z)\frac{\partial}{\partial u} ,\\\displaystyle Y_7=-3ht \frac{\partial}{\partial t} + (2kt+hz-hx) \frac{\partial}{\partial x} + (2hx+hy -4hz+hu) \frac{\partial}{\partial u} ,\\\displaystyle Y_{8} = ht \frac{\partial}{\partial t} - (kt + h z) \frac{\partial}{\partial x} - h z \frac{\partial}{\partial y} - h z \frac{\partial}{\partial z} +(kt+ 2hz) \frac{\partial}{\partial u} ,\\\displaystyle Y_{9} = ht \frac{\partial}{\partial t} - kt \frac{\partial}{\partial x} + (hy-hz) \frac{\partial}{\partial y} + (kt-hy+2hz) \frac{\partial}{\partial u}- hv \frac{\partial}{\partial v} . \end{array} $$

To obtain the conserved vectors corresponding to the Lie point symmetries (5) and the Lagrangian (20) we use [31]

Ti=ξiL+WαLuiαDkLuikα++Dk(Wα)LuikαDkLuijkα++,$$\begin{array}{} \displaystyle T^i = \xi^i \mathcal{L}+W^{\alpha}\left[\frac{\partial \mathcal{L} }{\partial u^{\alpha}_i}-D_k \frac{\partial \mathcal{L}}{\partial u^{\alpha}_{ik}} + \cdots \right]+D_k (W^{\alpha})\left[\frac{\partial \mathcal{L}}{\partial u^{\alpha}_{ik}}-D_k \frac{\partial \mathcal{L}}{\partial u^{\alpha}_{ijk}} + \cdots \right] + \cdots, \end{array} $$

where Wα is the Lie characteristic function given by Wα=ηαξjujα,$\begin{array}{} W^{\alpha}=\eta^{\alpha}-\xi^ju^{\alpha}_j, \end{array} $α = 1, 2 and j runs from 1, ⋯, 4 in this particular case. Thus the conserved vectors corresponding to the nine Lie point symmetries are given by, respectively

Tx1=12kuztv12huttv12kuxuytvkuyuxtv+12kutuxyv34uxxytv+12hutvt+12kutuxvy+kutuyvx12kutvz12uxtvxy+12vxuxyt14vxxuyt+14vyuxxt+34utvxxy,Ty1=12huttv12kuxuxtv12kutuxxv14uxxxtv+12hutvt+12kutuxvx14vxxuxt+14vxuxxt+14utvxxx,Tz1=12huttv+12kuxtv+12hutvt12kutvx,Tt1=12huztv+12huytv+12huxtvkuxzv+kuxuxyv+kuxxuyv+uxxxyv+12hutvx+12hutvy+12hutvz;Tx2=huztv+huytv+12huxtv+kuxuxyv12kuxzv+14uxxxyv+12hvtux+12kux2vy+kuxuyvx12kuxvz+34uxvxxy12uxxvxy14vxxuxy+12vxuxxy+14uxxxvy,Ty2=12hvtux12huxtvkuxxuxv14uxxxxv+12kux2vx+14uxvxxx14uxxvxx+14uxxxvx,Tz2=12huxtv+12kuxxv+12hvtux12kuxvx,Tt2=12huxzv12huxyv12huxxv+12huxvy+12huxvz+12huxvx;Tx3=12huytv12kuyuxyv+12kuyzv12kuxuyyv34uxxyyv+12hvtuy+kuy2vx+12kuxuyvy12kuyvz+34uyvxxy12uxyvxy+12vxuxyy14uyyvxx+14vyuxxy,Ty3=huztv+12huytv+huxtvkuxzv+12kuxuxyv+12kuxxuyv+34uxxxyv+12hvtuy+12kuxuyvx14vxxuxy+14vxuxxy+14uyvxxx,Tz3=12huytv+12kuxyv+12hvtuy12kuyvx,Tt3=12huyzv12huyyv12huxyv+12huyvx+12huyvz+12huyvy;Tx4=kvxuy2+12hvtuy12kvzuy+12kvyuxuy+kuzvxuy+kuxvxuykvuxzuy12kvuxyuy+34vxxyuy+12kvyux2+12hvtuz12kuzvz+12hvuzt+12kvuzz+12hvuyt+12kvuyz+12hvtux12kvzux+12kuzvyux12kvuyzux12kvuyyux+12hvuxt12kvuxz+12kvuzuxy+kvuxuxy12uxzvxy12uxyvxy+12vxuxyz+12vxuxyy12vxyuxx14uyzvxx14uyyvxx14uxyvxx+14vyuxxz+14vyuxxy+12vxuxxy+34uzvxxy+34uxvxxy34vuxxyz34vuxxyy+14vyuxxx+14vuxxxy,Ty4=12huztv+12huytv+12huxtv12kuxuxzv+12kuxuxyvkuxxuxvkuxzv12kuxxuzv+12kuxxuyv14uxxxzv+34uxxxyv14uxxxxv+12hvtux+12hvtuy+12hvtuz+12kuxuyvx+12kuxuzvx+12kux2vx14vxxuxy+14vxuxxy+14uyvxxx14vxxuxz+14vxuxxz+14uzvxxx+14uxvxxx14uxxvxx+14uxxxvx,Tz4=12huztv+12huytv+12huxtv12kuxzv+12kuxyv+kuxuxyv+12kuxxv+kuxxuyv+uxxxyv+12hvtux+12hvtuy+12hvtuz12kuyvx12kuzvx12kuxvx,Tt4=12huyvx12huzzvhuyzv12huyyvhuxzvhuxyv12huxxv+12huxvy+12huxvz+12huzvx+12huxvx+12huyvz+12huzvy+12huyvy+12huzvz;Tx5=12hf1(t)v+f1(t)12kvz12hvt12kuxvykuyvx34vxxy12kuxyv,Ty5=12kf1(t)uxxv+12hf1(t)v12hf(t)vt12kf(t)uxvx14f(t)vxxx,Tz5=12hf1(t)v12hf1(t)vt+12kf1(t)vx,Tt5=12hf1(t)vx12hf1(t)vy12hf1(t)vz;Tx6=12kf2(z)v+f2(z)12kvz12hvt12kuxvykuyvx34vxxy12kuxyv,Ty6=12kf2(z)uxxv12hf2(z)vt12kf2(z)uxvx14f2(z)vxxx,Tz6=12kf2(z)vx12hf2(z)vt,Tt6=12hf2(z)v12hf2(z)vx12hf2(z)vy12hf2(z)vz;Tx7=2vuth2xvth212yvth2+2zvth212uvth232tutvth2+32tvutth2xvuzth2+zvuzth2xvuyth2+zvuyth212xvtuxh2+12zvtuxh212xvuxth2+12zvuxth212kxvyux2h+12kzvyux2h+2kvh12kvuzh+kxvzh+12kyvzh2kzvzh+12kuvzh+32ktutvzh+12ktvuzth+2kvuyh+2ktvuyth+ktvtuxh+12kxvzuxh12kzvzuxh+52kvuyuxhkxvyuxh12kyvyuxh+2kzvyuxh12kuvyuxh32ktutvyuxh+32ktvuytuxh2kxuyvxhkyuyvxh+4kzuyvxhkuuyvxh3ktutuyvxhkxuyuxvxh+kzuyuxvxh+ktvuxth+3ktvuyuxth+12kxvuxzh12kzvuxzhkxvuxyh12kyvuxyh+2kzvuxyh12kuvuxyh32ktvutuxyhkxvuxuxyh+kzvuxuxyhvxuxyh+uxvxyh+32tuxtvxyh+vxyh32tvxuxyth34vyuxxh+12xvxyuxxh12zvxyuxxh+14uyvxxh+34tuytvxxh+14xuxyvxxh14zuxyvxxh+14vxxh34tvyuxxth+94vuxxyh12xvxuxxyh+12zvxuxxyh32xvxxyh34yvxxyh+3zvxxyh34uvxxyh94tutvxxyh34xuxvxxyh+34zuxvxxyh+94tvuxxyth14xvyuxxxh+14zvyuxxxh14xvuxxxyh+14zvuxxxyh+k2tvyux2k2tvzux+2k2tuyuxvxk2tvuxz+2k2tvuxuxyktvxyuxx12ktuxyvxx+ktvxuxxy+32ktuxvxxy+12ktvyuxxx+12ktvuxxxy,Ty7=2vuth2xvth212yvth2+2zvth212uvth232tutvth2+32tvutth212xvtuxh2+12zvtuxh2+12xvuxth212zvuxth2+kvux2h+ktvtuxh12kxux2vxh+12kzux2vxhkxuxvxh12kyuxvxh+2kzuxvxh12kuuxvxh32ktutuxvxhktvuxth+32ktvuxuxth+kxvuxxh+12kyvuxxh2kzvuxxh+12kuvuxxh+32ktvutuxxh+kxvuxuxxhkzvuxuxxh34vxuxxh+12uxvxxh+34tuxtvxxh+14xuxxvxxh14zuxxvxxh+12vxxh34tvxuxxth+vuxxxh14xvxuxxxh+14zvxuxxxh12xvxxxh14yvxxxh+zvxxxh14uvxxxh34tutvxxxh14xuxvxxxh+14zuxvxxxh+34tvuxxxth+14xvuxxxxh14zvuxxxxh+k2tux2vx2k2tvuxuxx12ktuxxvxx+12ktvxuxxx+12ktuxvxxx12ktvuxxxx,Tz7=2h2utv12h2vtu+32h2tuttv+12h2xuxtv12h2zuxtv2hkuxv+12hkvxu52hktuxtv12hkxuxxv+12hkzuxxv+k2tuxxvhkv+12h2zvtux12h2xvtux32h2tutvth2xvt12h2yvt+2h2zvt+hktvtux+32hktutvx12hkzuxvx+12hkxuxvx+12hkyvx2hkzvx+hkxvxk2tuxvx,Tt7=12vh2+12vuzh2xvzh212yvzh2+2zvzh212uvzh232tutvzh232tvuzth2+12vuyh2xvyh212yvyh2+2zvyh212uvyh232tutvyh232tvuyth2+12vuxh212xvzuxh2+12zvzuxh212xvyuxh2+12zvyuxh2xvxh212yvxh2+2zvxh212uvxh232tutvxh212xuxvxh2+12zuxvxh232tvuxth2+12xvuxzh212zvuxzh2+12xvuxyh212zvuxyh2+12xvuxxh212zvuxxh2+ktvzuxh+ktvyuxh+ktuxvxh+kht2vuxzvuxy3vuxuxyvuxx3vuyuxx3htvuxxxy;Tx8=12tutvth212vuth212tvutth212zvtuzh212zvuzth212zvtuyh212zvuyth212zvtuxh212zvuxth212kzvyux2h12kvh12ktvth12kvuzh+kzvzh12ktutvzh+12kzuzvzh12ktvuzth12kzvuzzh12kvuyh+12kzvzuyhktvuyth12kzvuyzh12ktvtuxh+12kzvzuxhkzvyuxh+12ktutvyuxh12kzuzvyuxh12kzuyvyuxh12ktvuytuxh+12kzvuyzuxh+12kzvuyyuxhkzuy2vxh2kzuyvxh+ktutuyvxhkzuzuyvxhkzuyuxvxh12ktvuxthktvuyuxth+12kzvuxzh+kzvuyuxzhkzvuxyh+12ktvutuxyh12kzvuzuxyh+12kzvuyuxyhkzvuxuxyh12tuxtvxyh+12zuxzvxyh+12zuxyvxyh+12tvxuxyth12zvxuxyzh12zvxuxyyh+12zvxyuxxh14tuytvxxh+14zuyzvxxh+14zuyyvxxh+14zuxyvxxh+14tvyuxxth14zvyuxxzh14zvyuxxyh12zvxuxxyh32zvxxyh+34tutvxxyh34zuzvxxyh34zuyvxxyh34zuxvxxyh34tvuxxyth+34zvuxxyzh+34zvuxxyyh14zvyuxxxh14zvuxxxyh12k2tvyux2+12k2tvz+12k2tvzux12k2tvyuxk2tuyvxk2tuyuxvx+12k2tvuxz12k2tvuxyk2tvuxuxy+12ktvxyuxx+14ktuxyvxx12ktvxuxxy34ktvxxy34ktuxvxxy14ktvyuxxx14ktvuxxxyzvth2,Ty8=12vuth2zvth2+12tutvth212tvutth212zvtuzh212zvuzth212zvtuyh212zvuyth212zvtuxh212zvuxth2+12kvh12ktvth+12kvuxh12ktvtuxh12kzux2vxhkzuxvxh+12ktutuxvxh12kzuzuxvxh12kzuyuxvxh+12ktvuxth12ktvuxuxth+kzvuxzh+12kzvuxuxzh12kzvuxuxyh+kzvuxxh12ktvutuxxh+12kzvuzuxxh12kzvuyuxxh+kzvuxuxxh14tuxtvxxh+14zuxzvxxh+14zuxyvxxh+14zuxxvxxh+14tvxuxxth14zvxuxxzh14zvxuxxyh14zvxuxxxh12zvxxxh+14tutvxxxh14zuzvxxxh14zuyvxxxh14zuxvxxxh14tvuxxxth+14zvuxxxzh34zvuxxxyh+14zvuxxxxh12k2tux2vx12k2tuxvx+12k2tvuxx+k2tvuxuxx+14ktuxxvxxvxuxxxvxxxuxvxxx+vuxxxx,Tz8=12h2utv12h2tuttv12h2zuztv12h2zuytv12h2zuxtv+12hkuxv+hktuxtv+12hkzuxzv12hkzuxyvhkzuxuxyv12hkzuxxvhkzuxxuyvhzuxxxyv12k2tuxxv+12hkv12h2zvtux12h2zvtuy12h2zvtuz+12h2tutvth2zvt12hktvtux12hktutvx12hktvt+12hkzuyvx+12hkzuzvx+12hkzuxvx+hkzvx+12k2tuxvx+12k2tvx,Tt8=vh2+12vuzh2zvzh2+12tutvzh212zuzvzh2+12tvuzth2+12zvuzzh2+12vuyh212zvzuyh2zvyh2+12tutvyh212zuzvyh212zuyvyh2+12tvuyth2+zvuyzh2+12zvuyyh2+12vuxh212zvzuxh212zvyuxh2zvxh2+12tutvxh212zuzvxh212zuyvxh212zuxvxh2+12tvuxth2+zvuxzh2+zvuxyh2+12zvuxxh212ktvzh12ktvyh12ktvzuxh12ktvyuxh12ktvxh12ktuxvxh12ktvuxzh+12ktvuxyh+ktvuxuxyh+12ktvuxxh+ktvuyuxxh+tvuxxxyh;Tx9=12vuth2+12yvth2zvth2+12tutvth212tvutth2+12yvtuyh212zvtuyh212yvuyth2+12zvuyth212kvh12ktvth12kyvzh+kzvzh12ktutvzh12ktvuzth12kvuyh12kyvzuyh+12kzvzuyhktvuyth+12kyvuyzh12kzvuyzh12ktvtuxh12kvuyuxh+12kyvyuxhkzvyuxh+12ktutvyuxh+12kyuyvyuxh12kzuyvyuxh12ktvuytuxh12kyvuyyuxh+12kzvuyyuxh+kyuy2vxhkzuy2vxh+kyuyvxh2kzuyvxh+ktutuyvxh12ktvuxthktvuyuxth+12kyvuxyhkzvuxyh+12ktvutuxyh12kyvuyuxyh+12kzvuyuxyh+12vxuxyh12tuxtvxyh12yuxyvxyh+12zuxyvxyh+12tvxuxyth+12yvxuxyyh12zvxuxyyh14uyvxxh14tuytvxxh14yuyyvxxh+14zuyyvxxh14vxxh+14tvyuxxth34vuxxyh+14yvyuxxyh14zvyuxxyh+34yvxxyh32zvxxyh+34tutvxxyh+34yuyvxxyh34zuyvxxyh34tvuxxyth34yvuxxyyh+34zvuxxyyh12k2tvyux2+12k2tvz+12k2tvzux12k2tvyuxk2tuyvxk2tuyuxvx+12k2tvuxz12k2tvuxyk2tvuxuxy+12ktvxyuxx+14ktuxyvxx12ktvxuxxy34ktvxxy34ktuxvxxy14ktvyuxxx14ktvuxxxy,Ty9=12vuth2+12yvth2zvth2+12tutvth212tvutth2+yvuzth2zvuzth2+12yvtuyh212zvtuyh2+12yvuyth212zvuyth2+yvuxth2zvuxth2+12kvh12ktvth+12kvuxh12ktvtuxh+12kyuxvxhkzuxvxh+12ktutuxvxh+12kyuyuxvxh12kzuyuxvxh+12ktvuxth12ktvuxuxthkyvuxzh+kzvuxzh+12kyvuxuxyh12kzvuxuxyh12kyvuxxh+kzvuxxh12ktvutuxxh+12kyvuyuxxh12kzvuyuxxh14tuxtvxxh14yuxyvxxh+14zuxyvxxh+14tvxuxxth+14yvxuxxyh14zvxuxxyh+14yvxxxh12zvxxxh+14tutvxxxh+14yuyvxxxh14zuyvxxxh14tvuxxxth+34yvuxxxyh34zvuxxxyh12k2tux2vx12k2tuxvx+12k2tvuxx+k2tvuxuxx+14ktuxxvxx14ktvxuxxx14ktvxxx14ktuxvxxx+14ktvuxxxx,Tz9=12h2utv12h2tuttv12h2yuytv+12h2zuytv+12hkuxv+hktuxtv+12hkyuxyv12hkzuxyv12k2tuxxv+12hkv12h2zvtuy+12h2yvtuy+12h2tutvt+12h2yvth2zvt12hktvtux12hktutvx12hktvt+12hkzuyvx12hkyuyvx12hkyvx+hkzvx+12k2tuxvx+12k2tvx,Tt9=12vh2+12yvzh2zvzh2+12tutvzh2+12tvuzth2+12yvzuyh212zvzuyh2+12yvyh2zvyh2+12tutvyh2+12yuyvyh212zuyvyh2+12tvuyth212yvuyzh2+12zvuyzh212yvuyyh2+12zvuyyh2+12yvxh2zvxh2+12tutvxh2+12yuyvxh212zuyvxh2+12tvuxth212yvuxyh2+12zvuxyh212ktvzh12ktvyh12ktvzuxh12ktvyuxh12ktvxh12ktuxvxh12ktvuxzh+12ktvuxyh+ktvuxuxyh+12ktvuxxh+ktvuyuxxh+tvuxxxyh.$$\begin{array}{} \displaystyle T _x^1 =\, \frac{1}{2} k u_{zt} v-\frac{1}{2} h u_{tt} v-\frac{1}{2} k u_{x} u_{yt} v-k u_{y} u_{xt} v+\frac{1}{2} k u_{t} u_{xy} v-\frac{3}{4} u_{xxyt} v+\frac{1}{2} h u_{t} v_{t} \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} k u_{t} u_{x} v_{y}+k u_{t} u_{y} v_{x}-\frac{1}{2} k u_{t} v_{z}-\frac{1}{2} u_{xt} v_{xy}+\frac{1}{2} v_{x} u_{xyt}-\frac{1}{4} v_{xx} u_{yt} \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{4} v_{y} u_{xxt}+\frac{3}{4} u_{t} v_{xxy} , \\\displaystyle T _y^1 =\, -\frac{1}{2} h u_{tt} v-\frac{1}{2} k u_{x} u_{xt} v-\frac{1}{2} k u_{t} u_{xx} v-\frac{1}{4} u_{xxxt} v+\frac{1}{2} h u_{t} v_{t}+\frac{1}{2} k u_{t} u_{x} v_{x} \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{4} v_{xx} u_{xt}+\frac{1}{4} v_{x} u_{xxt}+\frac{1}{4} u_{t} v_{xxx} , \\\displaystyle T _z^1 =\, -\frac{1}{2} h u_{tt} v+\frac{1}{2} k u_{xt} v+\frac{1}{2} h u_{t} v_{t}-\frac{1}{2} k u_{t} v_{x} , \\\displaystyle T _t^1 =\, \frac{1}{2} h u_{zt} v+\frac{1}{2} h u_{yt} v+\frac{1}{2} h u_{xt} v-k u_{xz} v+k u_{x} u_{xy} v+k u_{xx} u_{y} v+u_{xxxy} v \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} h u_{t} v_{x}+\frac{1}{2} h u_{t} v_{y}+\frac{1}{2} h u_{t} v_{z} ; \\\\\\\\\\\displaystyle T _x^2 =\, h u_{zt} v+h u_{yt} v+\frac{1}{2} h u_{xt} v+k u_{x} u_{xy} v-\frac{1}{2} k u_{xz} v+\frac{1}{4} u_{xxxy} v+\frac{1}{2} h v_{t} u_{x} \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} k u_{x}^2 v_{y}+k u_{x} u_{y} v_{x}-\frac{1}{2} k u_{x} v_{z}+\frac{3}{4} u_{x} v_{xxy}-\frac{1}{2} u_{xx} v_{xy}-\frac{1}{4} v_{xx} u_{xy} \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} v_{x} u_{xxy}+\frac{1}{4} u_{xxx} v_{y} , \\\displaystyle T _y^2 =\, \frac{1}{2} h v_{t} u_{x}-\frac{1}{2} h u_{xt} v-k u_{xx} u_{x} v-\frac{1}{4} u_{xxxx} v+\frac{1}{2} k u_{x}^2 v_{x}+\frac{1}{4} u_{x} v_{xxx} \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{4} u_{xx} v_{xx}+\frac{1}{4} u_{xxx} v_{x} , \\\displaystyle T _z^2 =\, -\frac{1}{2} h u_{xt} v+\frac{1}{2} k u_{xx} v+\frac{1}{2} h v_{t} u_{x}-\frac{1}{2} k u_{x} v_{x} , \\\displaystyle T _t^2 =\, -\frac{1}{2} h u_{xz} v-\frac{1}{2} h u_{xy} v-\frac{1}{2} h u_{xx} v+\frac{1}{2} h u_{x} v_{y}+\frac{1}{2} h u_{x} v_{z}+\frac{1}{2} h u_{x} v_{x} ; \\\\\\\\\\\displaystyle T _x^3 =\, -\frac{1}{2} h u_{yt} v-\frac{1}{2} k u_{y} u_{xy} v+\frac{1}{2} k u_{yz} v-\frac{1}{2} k u_{x} u_{yy} v-\frac{3}{4} u_{xxyy} v+\frac{1}{2} h v_{t} u_{y} \\\displaystyle \qquad\,\,\,\,+\,k u_{y}^2 v_{x}+\frac{1}{2} k u_{x} u_{y} v_{y}-\frac{1}{2} k u_{y} v_{z}+\frac{3}{4} u_{y} v_{xxy}-\frac{1}{2} u_{xy} v_{xy}+\frac{1}{2} v_{x} u_{xyy} \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{4} u_{yy} v_{xx}+\frac{1}{4} v_{y} u_{xxy} , \\\displaystyle T _y^3 =\, h u_{zt} v+\frac{1}{2} h u_{yt} v+h u_{xt} v-k u_{xz} v+\frac{1}{2} k u_{x} u_{xy} v+\frac{1}{2} k u_{xx} u_{y} v+\frac{3}{4} u_{xxxy} v \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} h v_{t} u_{y}+\frac{1}{2} k u_{x} u_{y} v_{x}-\frac{1}{4} v_{xx} u_{xy}+\frac{1}{4} v_{x} u_{xxy}+\frac{1}{4} u_{y} v_{xxx} , \\\displaystyle T _z^3 =\, -\frac{1}{2} h u_{yt} v+\frac{1}{2} k u_{xy} v+\frac{1}{2} h v_{t} u_{y}-\frac{1}{2} k u_{y} v_{x} , \\\displaystyle T _t^3 =\, -\frac{1}{2} h u_{yz} v-\frac{1}{2} h u_{yy} v-\frac{1}{2} h u_{xy} v+\frac{1}{2} h u_{y} v_{x}+\frac{1}{2} h u_{y} v_{z}+\frac{1}{2} h u_{y} v_{y} ; \\\\\\\\\\\displaystyle T _x^4 =\, k v_{x} u_{y}^2+\frac{1}{2} h v_{t} u_{y}-\frac{1}{2} k v_{z} u_{y}+\frac{1}{2} k v_{y} u_{x} u_{y}+k u_{z} v_{x} u_{y}+k u_{x} v_{x} u_{y}-k v u_{xz} u_{y} \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} k v u_{xy} u_{y}+\frac{3}{4} v_{xxy} u_{y}+\frac{1}{2} k v_{y} u_{x}^2+\frac{1}{2} h v_{t} u_{z}-\frac{1}{2} k u_{z} v_{z}+\frac{1}{2} h v u_{zt} \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} k v u_{zz}+\frac{1}{2} h v u_{yt}+\frac{1}{2} k v u_{yz}+\frac{1}{2} h v_{t} u_{x}-\frac{1}{2} k v_{z} u_{x}+\frac{1}{2} k u_{z} v_{y} u_{x} \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} k v u_{yz} u_{x}-\frac{1}{2} k v u_{yy} u_{x}+\frac{1}{2} h v u_{xt}-\frac{1}{2} k v u_{xz}+\frac{1}{2} k v u_{z} u_{xy}+k v u_{x} u_{xy} \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} u_{xz} v_{xy}-\frac{1}{2} u_{xy} v_{xy}+\frac{1}{2} v_{x} u_{xyz}+\frac{1}{2} v_{x} u_{xyy}-\frac{1}{2} v_{xy} u_{xx}-\frac{1}{4} u_{yz} v_{xx} \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{4} u_{yy} v_{xx}-\frac{1}{4} u_{xy} v_{xx}+\frac{1}{4} v_{y} u_{xxz}+\frac{1}{4} v_{y} u_{xxy}+\frac{1}{2} v_{x} u_{xxy}+\frac{3}{4} u_{z} v_{xxy} \\\displaystyle \qquad\,\,\,\,+\,\frac{3}{4} u_{x} v_{xxy}-\frac{3}{4} v u_{xxyz}-\frac{3}{4} v u_{xxyy}+\frac{1}{4} v_{y} u_{xxx}+\frac{1}{4} v u_{xxxy} , \\\displaystyle T _y^4 =\, \frac{1}{2} h u_{zt} v+\frac{1}{2} h u_{yt} v+\frac{1}{2} h u_{xt} v-\frac{1}{2} k u_{x} u_{xz} v+\frac{1}{2} k u_{x} u_{xy} v-k u_{xx} u_{x} v \\\displaystyle \qquad\,\,\,\,-\,k u_{xz} v-\frac{1}{2} k u_{xx} u_{z} v+\frac{1}{2} k u_{xx} u_{y} v-\frac{1}{4} u_{xxxz} v+\frac{3}{4} u_{xxxy} v-\frac{1}{4} u_{xxxx} v \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} h v_{t} u_{x}+\frac{1}{2} h v_{t} u_{y}+\frac{1}{2} h v_{t} u_{z}+\frac{1}{2} k u_{x} u_{y} v_{x}+\frac{1}{2} k u_{x} u_{z} v_{x}+\frac{1}{2} k u_{x}^2 v_{x} \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{4} v_{xx} u_{xy}+\frac{1}{4} v_{x} u_{xxy}+\frac{1}{4} u_{y} v_{xxx}-\frac{1}{4} v_{xx} u_{xz}+\frac{1}{4} v_{x} u_{xxz}+\frac{1}{4} u_{z} v_{xxx} \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{4} u_{x} v_{xxx}-\frac{1}{4} u_{xx} v_{xx}+\frac{1}{4} u_{xxx} v_{x} , \\\displaystyle T _z^4 =\, \frac{1}{2} h u_{zt} v+\frac{1}{2} h u_{yt} v+\frac{1}{2} h u_{xt} v-\frac{1}{2} k u_{xz} v+\frac{1}{2} k u_{xy} v+k u_{x} u_{xy} v+\frac{1}{2} k u_{xx} v \\\displaystyle \qquad\,\,\,\,+\,k u_{xx} u_{y} v+u_{xxxy} v+\frac{1}{2} h v_{t} u_{x}+\frac{1}{2} h v_{t} u_{y}+\frac{1}{2} h v_{t} u_{z}-\frac{1}{2} k u_{y} v_{x} \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} k u_{z} v_{x}-\frac{1}{2} k u_{x} v_{x} , \\\displaystyle T _t^4 =\, \frac{1}{2} h u_{y} v_{x}-\frac{1}{2} h u_{zz} v-h u_{yz} v-\frac{1}{2} h u_{yy} v-h u_{xz} v-h u_{xy} v-\frac{1}{2} h u_{xx} v+\frac{1}{2} h u_{x} v_{y} \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} h u_{x} v_{z}+\frac{1}{2} h u_{z} v_{x}+\frac{1}{2} h u_{x} v_{x}+\frac{1}{2} h u_{y} v_{z}+\frac{1}{2} h u_{z} v_{y}+\frac{1}{2} h u_{y} v_{y}+\frac{1}{2} h u_{z} v_{z} ;\\\\\\\\\\\displaystyle T _x^5 =\, \frac{1}{2} h f_1'(t) v+ f_1(t) \left( \frac{1}{2} k v_{{}z}-\frac{1}{2} h v_{t} -\frac{1}{2} k u_{x} v_{y}-k u_{y} v_{x} -\frac{3}{4} v_{xxy}-\frac{1}{2} k u_{xy} v \right) , \\\displaystyle T _y^5 =\, \frac{1}{2} k f_1(t) u_{xx} v+\frac{1}{2} h f_1'(t) v-\frac{1}{2} h f(t) v_{t}-\frac{1}{2} k f(t) u_{x} v_{x}-\frac{1}{4} f(t) v_{xxx} , \\\displaystyle T _z^5 =\, \frac{1}{2} h f_1'(t) v-\frac{1}{2} h f_1(t) v_{t}+\frac{1}{2} k f_1(t) v_{x} , \\\displaystyle T _t^5 =\, -\frac{1}{2} h f_1(t) v_{x}-\frac{1}{2} h f_1(t) v_{y}-\frac{1}{2} h f_1(t) v_{z} ; \\\\\\\\\\\displaystyle T _x^6 =\, -\frac{1}{2} k f_2'(z) v+ f_2(z)\left( \frac{1}{2} k v_{{}z}-\frac{1}{2} h v_{t}-\frac{1}{2} k u_{x} v_{y}-k u_{y} v_{x} -\frac{3}{4} v_{xxy}-\frac{1}{2} k u_{xy} v\right) , \\\displaystyle T _y^6=\, \frac{1}{2} k f_2(z) u_{xx} v-\frac{1}{2} h f_2(z) v_{t}-\frac{1}{2} k f_2(z) u_{x} v_{x}-\frac{1}{4} f_2(z) v_{xxx} , \\\displaystyle T _z^6 =\, \frac{1}{2} k f_2(z) v_{x}-\frac{1}{2} h f_2(z) v_{t} , \\\displaystyle T _t^6 =\, \frac{1}{2} h f_2'(z) v-\frac{1}{2} h f_2(z) v_{x}-\frac{1}{2} h f_2(z) v_{y}-\frac{1}{2} h f_2(z) v_{z} ; \\\\\\\\\\\displaystyle T _x^7 =\, 2 v u_{t} h^2-x v_{t} h^2-\frac{1}{2} y v_{t} h^2+2 z v_{t} h^2-\frac{1}{2} u v_{t} h^2-\frac{3}{2} t u_{t} v_{t} h^2+\frac{3}{2} t v u_{tt} h^2 \\\displaystyle \qquad\,\,\,\,-\,x v u_{zt} h^2+z v u_{zt} h^2-x v u_{yt} h^2+z v u_{yt} h^2-\frac{1}{2} x v_{t} u_{x} h^2+\frac{1}{2} z v_{t} u_{x} h^2 \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} x v u_{xt} h^2+\frac{1}{2} z v u_{xt} h^2-\frac{1}{2} k x v_{y} u_{x}^2 h+\frac{1}{2} k z v_{y} u_{x}^2 h+2 k v h \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} k v u_{z} h+k x v_{z} h+\frac{1}{2} k y v_{z} h-2 k z v_{z} h+\frac{1}{2} k u v_{z} h+\frac{3}{2} k t u_{t} v_{z} h \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} k t v u_{zt} h+2 k v u_{y} h+2 k t v u_{yt} h+k t v_{t} u_{x} h+\frac{1}{2} k x v_{z} u_{x} h \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} k z v_{z} u_{x} h+\frac{5}{2} k v u_{y} u_{x} h-k x v_{y} u_{x} h-\frac{1}{2} k y v_{y} u_{x} h+2 k z v_{y} u_{x} h \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} k u v_{y} u_{x} h-\frac{3}{2} k t u_{t} v_{y} u_{x} h+\frac{3}{2} k t v u_{yt} u_{x} h-2 k x u_{y} v_{x} h-k y u_{y} v_{x} h \\\displaystyle \qquad\,\,\,\,+\,4 k z u_{y} v_{x} h-k u u_{y} v_{x} h-3 k t u_{t} u_{y} v_{x} h-k x u_{y} u_{x} v_{x} h+k z u_{y} u_{x} v_{x} h \\\displaystyle \qquad\,\,\,\,+\,k t v u_{xt} h+3 k t v u_{y} u_{xt} h+\frac{1}{2} k x v u_{xz} h-\frac{1}{2} k z v u_{xz} h-k x v u_{xy} h \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} k y v u_{xy} h+2 k z v u_{xy} h-\frac{1}{2} k u v u_{xy} h-\frac{3}{2} k t v u_{t} u_{xy} h-k x v u_{x} u_{xy} h \\\displaystyle \qquad\,\,\,\,+\,k z v u_{x} u_{xy} h-v_{x} u_{xy} h+u_{x} v_{xy} h+\frac{3}{2} t u_{xt} v_{xy} h+v_{xy} h-\frac{3}{2} t v_{x} u_{xyt} h \\\displaystyle \qquad\,\,\,\,-\,\frac{3}{4} v_{y} u_{xx} h+\frac{1}{2} x v_{xy} u_{xx} h-\frac{1}{2} z v_{xy} u_{xx} h+\frac{1}{4} u_{y} v_{xx} h+\frac{3}{4} t u_{yt} v_{xx} h \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{4} x u_{xy} v_{xx} h-\frac{1}{4} z u_{xy} v_{xx} h+\frac{1}{4} v_{xx} h-\frac{3}{4} t v_{y} u_{xxt} h+\frac{9}{4} v u_{xxy} h \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} x v_{x} u_{xxy} h+\frac{1}{2} z v_{x} u_{xxy} h-\frac{3}{2} x v_{xxy} h-\frac{3}{4} y v_{xxy} h+3 z v_{xxy} h \\\displaystyle \qquad\,\,\,\,-\,\frac{3}{4} u v_{xxy} h-\frac{9}{4} t u_{t} v_{xxy} h-\frac{3}{4} x u_{x} v_{xxy} h+\frac{3}{4} z u_{x} v_{xxy} h+\frac{9}{4} t v u_{xxyt} h \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{4} x v_{y} u_{xxx} h+\frac{1}{4} z v_{y} u_{xxx} h-\frac{1}{4} x v u_{xxxy} h+\frac{1}{4} z v u_{xxxy} h+k^2 t v_{y} u_{x}^2 \\\displaystyle \qquad\,\,\,\,-\,k^2 t v_{z} u_{x}+2 k^2 t u_{y} u_{x} v_{x}-k^2 t v u_{xz}+2 k^2 t v u_{x} u_{xy}-k t v_{xy} u_{xx} \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} k t u_{xy} v_{xx}+k t v_{x} u_{xxy}+\frac{3}{2} k t u_{x} v_{xxy}+\frac{1}{2} k t v_{y} u_{xxx}+\frac{1}{2} k t v u_{xxxy} , \\\displaystyle T _y^7 =\, 2 v u_{t} h^2-x v_{t} h^2-\frac{1}{2} y v_{t} h^2+2 z v_{t} h^2-\frac{1}{2} u v_{t} h^2-\frac{3}{2} t u_{t} v_{t} h^2+\frac{3}{2} t v u_{tt} h^2 \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} x v_{t} u_{x} h^2+\frac{1}{2} z v_{t} u_{x} h^2+\frac{1}{2} x v u_{xt} h^2-\frac{1}{2} z v u_{xt} h^2+k v u_{x}^2 h+k t v_{t} u_{x} h \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} k x u_{x}^2 v_{x} h+\frac{1}{2} k z u_{x}^2 v_{x} h-k x u_{x} v_{x} h-\frac{1}{2} k y u_{x} v_{x} h+2 k z u_{x} v_{x} h \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} k u u_{x} v_{x} h-\frac{3}{2} k t u_{t} u_{x} v_{x} h-k t v u_{xt} h+\frac{3}{2} k t v u_{x} u_{xt} h+k x v u_{xx} h \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} k y v u_{xx} h-2 k z v u_{xx} h+\frac{1}{2} k u v u_{xx} h+\frac{3}{2} k t v u_{t} u_{xx} h+k x v u_{x} u_{xx} h \\\displaystyle \qquad\,\,\,\,-\,k z v u_{x} u_{xx} h-\frac{3}{4} v_{x} u_{xx} h+\frac{1}{2} u_{x} v_{xx} h+\frac{3}{4} t u_{xt} v_{xx} h+\frac{1}{4} x u_{xx} v_{xx} h \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{4} z u_{xx} v_{xx} h+\frac{1}{2} v_{xx} h -\frac{3}{4} t v_{x} u_{xxt} h+v u_{xxx} h -\frac{1}{4} x v_{x} u_{xxx} h+\frac{1}{4} z v_{x} u_{xxx} h \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} x v_{xxx} h-\frac{1}{4} y v_{xxx} h+z v_{xxx} h-\frac{1}{4} u v_{xxx} h-\frac{3}{4} t u_{t} v_{xxx} h-\frac{1}{4} x u_{x} v_{xxx} h \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{4} z u_{x} v_{xxx} h+\frac{3}{4} t v u_{xxxt} h+\frac{1}{4} x v u_{xxxx} h-\frac{1}{4} z v u_{xxxx} h+k^2 t u_{x}^2 v_{x} \\\displaystyle \qquad\,\,\,\,-\,2 k^2 t v u_{x} u_{xx}-\frac{1}{2} k t u_{xx} v_{xx}+\frac{1}{2} k t v_{x} u_{xxx}+\frac{1}{2} k t u_{x} v_{xxx}-\frac{1}{2} k t v u_{xxxx} , \\\displaystyle T _z^7 =\, 2 h^2 u_{t} v-\frac{1}{2} h^2 v_{t} u+\frac{3}{2} h^2 t u_{tt} v+\frac{1}{2} h^2 x u_{xt} v-\frac{1}{2} h^2 z u_{xt} v-2 h ku_{x} v \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} h k v_{x} u-\frac{5}{2} h k t u_{xt} v-\frac{1}{2} h k x u_{xx} v+\frac{1}{2} h k z u_{xx} v+k^2 t u_{xx} v-h k v \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} h^2 z v_{t} u_{x}-\frac{1}{2} h^2 x v_{t} u_{x}-\frac{3}{2} h^2 t u_{t} v_{t}-h^2 x v_{t}-\frac{1}{2} h^2 y v_{t}+2 h^2 z v_{t}+h k t v_{t} u_{x} \\\displaystyle \qquad\,\,\,\,+\,\frac{3}{2} h k t u_{t} v_{x} -\frac{1}{2} h k z u_{x} v_{x}+\frac{1}{2} h k x u_{x} v_{x} +\frac{1}{2} h k y v_{x}-2 h k z v_{x}+h k x v_{x}-k^2 t u_{x} v_{x} , \\\displaystyle T _t^7 =\, -\frac{1}{2} v h^2+\frac{1}{2} v u_{z} h^2-x v_{z} h^2-\frac{1}{2} y v_{z} h^2+2 z v_{z} h^2-\frac{1}{2} u v_{z} h^2-\frac{3}{2} t u_{t} v_{z} h^2 \\\displaystyle \qquad\,\,\,\,-\,\frac{3}{2} t v u_{zt} h^2+\frac{1}{2} v u_{y} h^2-x v_{y} h^2-\frac{1}{2} y v_{y} h^2+2 z v_{y} h^2-\frac{1}{2} u v_{y} h^2-\frac{3}{2} t u_{t} v_{y} h^2 \\\displaystyle \qquad\,\,\,\,-\,\frac{3}{2} t v u_{yt} h^2+\frac{1}{2} v u_{x} h^2-\frac{1}{2} x v_{z} u_{x} h^2 + \frac{1}{2} z v_{z} u_{x} h^2-\frac{1}{2} x v_{y} u_{x} h^2+\frac{1}{2} z v_{y} u_{x} h^2 \\\displaystyle \qquad\,\,\,\,-\,x v_{x} h^2-\frac{1}{2} y v_{x} h^2+2 z v_{x} h^2- \frac{1}{2} uv_{x} h^2-\frac{3}{2} t u_{t} v_{x} h^2-\frac{1}{2} x u_{x} v_{x} h^2 \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} z u_{x} v_{x} h^2-\frac{3}{2} t v u_{xt} h^2+\frac{1}{2} x v u_{xz} h^2-\frac{1}{2} z v u_{xz} h^2+\frac{1}{2} x v u_{xy} h^2 \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} z v u_{xy} h^2+\frac{1}{2} x v u_{xx}h^2- \frac{1}{2} z v u_{xx} h^2+k t v_{z} u_{x} h+k t v_{y} u_{x} h+k t u_{x} v_{x} h \\\displaystyle \qquad\,\,\,\,+\,kht\left( 2 v u_{xz} - v u_{xy} -3 v u_{x} u_{xy} - v u_{xx} -3 v u_{y} u_{xx} \right) -3 ht v u_{xxxy} ; \\\\\\\\\\\displaystyle T _x^{8} =\, \frac{1}{2} t u_{t} v_{t} h^2-\frac{1}{2} v u_{t} h^2 -\frac{1}{2} t v u_{tt} h^2-\frac{1}{2} z v_{t} u_{z} h^2 - \frac{1}{2} z v u_{zt} h^2-\frac{1}{2} z v_{t} u_{y} h^2 \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} z v u_{yt} h^2-\frac{1}{2} z v_{t} u_{x} h^2-\frac{1}{2} z v u_{xt} h^2-\frac{1}{2} k z v_{y} u_{x}^2 h-\frac{1}{2} k v h-\frac{1}{2} k t v_{t} h \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} k v u_{z} h+k z v_{z} h-\frac{1}{2} k t u_{t} v_{z} h+\frac{1}{2} k z u_{z} v_{z} h-\frac{1}{2} k t v u_{zt} h-\frac{1}{2} k z v u_{zz} h \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} k v u_{y} h+\frac{1}{2} k z v_{z} u_{y} h-k t v u_{yt} h-\frac{1}{2} k z v u_{yz} h-\frac{1}{2} k t v_{t} u_{x} h+\frac{1}{2} k z v_{z} u_{x} h \\\displaystyle \qquad\,\,\,\,-\,k z v_{y} u_{x} h+\frac{1}{2} k t u_{t} v_{y} u_{x} h-\frac{1}{2} k z u_{z} v_{y} u_{x} h-\frac{1}{2} k z u_{y} v_{y} u_{x} h-\frac{1}{2} k t v u_{yt} u_{x} h \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} k z v u_{yz} u_{x} h+\frac{1}{2} k z v u_{yy} u_{x} h-k z u_{y}^2 v_{x} h-2 k z u_{y} v_{x} h+k t u_{t} u_{y} v_{x} h \\\displaystyle \qquad\,\,\,\,-\,k z u_{z} u_{y} v_{x} h-k z u_{y} u_{x} v_{x} h-\frac{1}{2} k t v u_{xt} h-k t v u_{y} u_{xt} h+\frac{1}{2} k z v u_{xz} h \\\displaystyle \qquad\,\,\,\,+\,k z v u_{y} u_{xz} h-k z v u_{xy} h+\frac{1}{2} k t v u_{t} u_{xy} h-\frac{1}{2} k z v u_{z} u_{xy} h+\frac{1}{2} k z v u_{y} u_{xy} h \\\displaystyle \qquad\,\,\,\,-\,k z v u_{x} u_{xy} h-\frac{1}{2} t u_{xt} v_{xy} h+\frac{1}{2} z u_{xz} v_{xy} h+\frac{1}{2} z u_{xy} v_{xy} h+\frac{1}{2} t v_{x} u_{xyt} h \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} z v_{x} u_{xyz} h-\frac{1}{2} z v_{x} u_{xyy} h+\frac{1}{2} z v_{xy} u_{xx} h-\frac{1}{4} t u_{yt} v_{xx} h+\frac{1}{4} z u_{yz} v_{xx} h \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{4} z u_{yy} v_{xx} h+\frac{1}{4} z u_{xy} v_{xx} h+\frac{1}{4} t v_{y} u_{xxt} h-\frac{1}{4} z v_{y} u_{xxz} h-\frac{1}{4} z v_{y} u_{xxy} h \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} z v_{x} u_{xxy} h-\frac{3}{2} z v_{xxy} h+\frac{3}{4} t u_{t} v_{xxy} h-\frac{3}{4} z u_{z} v_{xxy} h-\frac{3}{4} z u_{y} v_{xxy} h \\\displaystyle \qquad\,\,\,\,-\,\frac{3}{4} z u_{x} v_{xxy} h-\frac{3}{4} t v u_{xxyt} h+\frac{3}{4} z v u_{xxyz} h+\frac{3}{4} z v u_{xxyy} h-\frac{1}{4} z v_{y} u_{xxx} h \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{4} z v u_{xxxy} h-\frac{1}{2} k^2 t v_{y} u_{x}^2+\frac{1}{2} k^2 t v_{z}+\frac{1}{2} k^2 t v_{z} u_{x}-\frac{1}{2} k^2 tv_{y} u_{x}-k^2 t u_{y} v_{x} \\\displaystyle \qquad\,\,\,\,-\,k^2 t u_{y} u_{x} v_{x}+\frac{1}{2} k^2 t v u_{xz}-\frac{1}{2} k^2 t v u_{xy}-k^2 t v u_{x} u_{xy}+\frac{1}{2} k t v_{xy} u_{xx}+\frac{1}{4} k t u_{xy} v_{xx} \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} k t v_{x} u_{xxy}-\frac{3}{4} k t v_{xxy}-\frac{3}{4} k t u_{x} v_{xxy}-\frac{1}{4} k t v_{y} u_{xxx}-\frac{1}{4} k t v u_{xxxy}-z v_{t} h^2 , \\\displaystyle T _y^{8} =\, -\frac{1}{2} v u_{t} h^2-z v_{t} h^2+\frac{1}{2} t u_{t} v_{t} h^2-\frac{1}{2} t v u_{tt} h^2-\frac{1}{2} z v_{t} u_{z} h^2-\frac{1}{2} z v u_{zt} h^2-\frac{1}{2} z v_{t} u_{y} h^2 \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} z v u_{yt} h^2-\frac{1}{2} z v_{t} u_{x} h^2-\frac{1}{2} z v u_{xt} h^2+\frac{1}{2} k v h-\frac{1}{2} k t v_{t} h+\frac{1}{2} k v u_{x} h-\frac{1}{2} k t v_{t} u_{x} h \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} k z u_{x}^2 v_{x} h-k z u_{x} v_{x} h+\frac{1}{2} k t u_{t} u_{x} v_{x} h-\frac{1}{2} k z u_{z} u_{x} v_{x} h-\frac{1}{2} k z u_{y} u_{x} v_{x} h \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} k t v u_{xt} h-\frac{1}{2} k t v u_{x} u_{xt} h+k z v u_{xz} h+\frac{1}{2} k z v u_{x} u_{xz} h-\frac{1}{2} k z v u_{x} u_{xy} h+k z v u_{xx} h \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} k t v u_{t} u_{xx} h+\frac{1}{2} k z v u_{z} u_{xx} h-\frac{1}{2} k z v u_{y} u_{xx} h+k z v u_{x} u_{xx} h-\frac{1}{4} t u_{xt} v_{xx} h \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{4} z u_{xz} v_{xx} h+\frac{1}{4} z u_{xy} v_{xx} h+\frac{1}{4} z u_{xx} v_{xx} h+\frac{1}{4} t v_{x} u_{xxt} h-\frac{1}{4} z v_{x} u_{xxz} h-\frac{1}{4} z v_{x} u_{xxy} h \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{4} z v_{x} u_{xxx} h-\frac{1}{2} z v_{xxx} h+\frac{1}{4} t u_{t} v_{xxx} h - \frac{1}{4} z u_{z} v_{xxx} h-\frac{1}{4} z u_{y} v_{xxx} h-\frac{1}{4} z u_{x} v_{xxx} h \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{4} t v u_{xxxt} h+\frac{1}{4} z v u_{xxxz} h-\frac{3}{4} z v u_{xxxy} h+\frac{1}{4} z v u_{xxxx} h-\frac{1}{2} k^2 t u_{x}^2 v_{x}-\frac{1}{2} k^2 t u_{x} v_{x} \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} k^2 t v u_{xx}+k^2 t v u_{x} u_{xx}+\frac{1}{4} k t \left( u_{xx} v_{xx}- v_{x} u_{xxx}- v_{xxx}- u_{x} v_{xxx}+ v u_{xxxx}\right) , \\\displaystyle T _z^{8} =\, -\frac{1}{2} h^2 u_{t} v - \frac{1}{2} h^2 t u_{tt} v-\frac{1}{2} h^2 z u_{zt} v-\frac{1}{2} h^2 z u_{yt} v-\frac{1}{2} h^2 z u_{xt} v+\frac{1}{2} h k u_{x} v+h k t u_{xt} v \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} h k z u_{xz} v-\frac{1}{2} h k z u_{xy} v-h k z u_{x} u_{xy} v -\frac{1}{2} h k z u_{xx} v-h k z u_{xx} u_{y} v-h z u_{xxxy} v \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} k^2 t u_{xx} v+\frac{1}{2} h k v-\frac{1}{2} h^2 z v_{t} u_{x}-\frac{1}{2} h^2 z v_{t} u_{y} -\frac{1}{2} h^2 z v_{t} u_{z} + \frac{1}{2} h^2 t u_{t} v_{t}-h^2 z v_{t} \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} h k t v_{t} u_{x}-\frac{1}{2} h k t u_{t} v_{x}-\frac{1}{2} h k t v_{t}+\frac{1}{2} h k z u_{y} v_{x}+\frac{1}{2} h k z u_{z} v_{x} + \frac{1}{2} h k z u_{x} v_{x} \\\displaystyle \qquad\,\,\,\,+\,h k z v_{x}+\frac{1}{2} k^2 t u_{x} v_{x}+\frac{1}{2} k^2 t v_{x} , \\\displaystyle T _t^{8} =\, v h^2+\frac{1}{2} v u_{z} h^2-z v_{z} h^2+\frac{1}{2} t u_{t} v_{z} h^2-\frac{1}{2} z u_{z} v_{z} h^2+\frac{1}{2} t v u_{zt} h^2+\frac{1}{2} z v u_{zz} h^2+\frac{1}{2} v u_{y} h^2 \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} z v_{z} u_{y} h^2-z v_{y} h^2+\frac{1}{2} t u_{t} v_{y} h^2-\frac{1}{2} z u_{z} v_{y} h^2-\frac{1}{2} z u_{y} v_{y} h^2+\frac{1}{2} t v u_{yt} h^2+z v u_{yz} h^2 \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} z v u_{yy} h^2+\frac{1}{2} v u_{x} h^2-\frac{1}{2} z v_{z} u_{x} h^2-\frac{1}{2} z v_{y} u_{x} h^2-z v_{x} h^2+\frac{1}{2} t u_{t} v_{x} h^2-\frac{1}{2} z u_{z} v_{x} h^2 \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} z u_{y} v_{x} h^2-\frac{1}{2} z u_{x} v_{x} h^2+\frac{1}{2} t v u_{xt} h^2+z v u_{xz} h^2+z v u_{xy} h^2+\frac{1}{2} z v u_{xx} h^2-\frac{1}{2} k t v_{z} h \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} k t v_{y} h-\frac{1}{2} k t v_{z} u_{x} h-\frac{1}{2} k t v_{y} u_{x} h - \frac{1}{2} k t v_{x} h-\frac{1}{2} k t u_{x} v_{x} h-\frac{1}{2} k t v u_{xz} h \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} k t v u_{xy} h+k t v u_{x} u_{xy} h+\frac{1}{2} k t v u_{xx} h+k t v u_{y} u_{xx} h+t v u_{xxxy} h ; \\\\\\\\\\\displaystyle T _x^{9} =\, -\frac{1}{2} v u_{t} h^2+\frac{1}{2} y v_{t} h^2-z v_{t} h^2+\frac{1}{2} t u_{t} v_{t} h^2-\frac{1}{2} t v u_{tt} h^2+\frac{1}{2} y v_{t} u_{y} h^2-\frac{1}{2} z v_{t} u_{y} h^2 \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} y v u_{yt} h^2+\frac{1}{2} z v u_{yt} h^2-\frac{1}{2} k v h-\frac{1}{2} k t v_{t} h-\frac{1}{2} k y v_{z} h+k z v_{z} h-\frac{1}{2} k t u_{t} v_{z} h \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} k t v u_{zt} h-\frac{1}{2} k v u_{y} h-\frac{1}{2} k y v_{z} u_{y} h+\frac{1}{2} k z v_{z} u_{y} h-k t v u_{yt} h+\frac{1}{2} k y v u_{yz} h \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} k z v u_{yz} h-\frac{1}{2} k t v_{t} u_{x} h-\frac{1}{2} k v u_{y} u_{x} h+\frac{1}{2} k y v_{y} u_{x} h-k z v_{y} u_{x} h+\frac{1}{2} k t u_{t} v_{y} u_{x} h \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} k y u_{y} v_{y} u_{x} h-\frac{1}{2} k z u_{y} v_{y} u_{x} h-\frac{1}{2} k t v u_{yt} u_{x} h-\frac{1}{2} k y v u_{yy} u_{x} h+ \frac{1}{2} k z v u_{yy} u_{x} h \\\displaystyle \qquad\,\,\,\,+\,k y u_{y}^2 v_{x} h-k z u_{y}^2 v_{x} h+k y u_{y} v_{x} h-2 k z u_{y} v_{x} h+k t u_{t} u_{y} v_{x} h-\frac{1}{2} k t v u_{xt} h \\\displaystyle \qquad\,\,\,\,-\,k t v u_{y} u_{xt} h+\frac{1}{2} k y v u_{xy} h -k z v u_{xy} h+\frac{1}{2} k t v u_{t} u_{xy} h-\frac{1}{2} k y v u_{y} u_{xy} h \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} k z v u_{y} u_{xy} h+\frac{1}{2} v_{x} u_{xy} h-\frac{1}{2} t u_{xt} v_{xy} h-\frac{1}{2} y u_{xy} v_{xy} h+\frac{1}{2} z u_{xy} v_{xy} h+\frac{1}{2} t v_{x} u_{xyt} h \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} y v_{x} u_{xyy} h-\frac{1}{2} z v_{x} u_{xyy} h-\frac{1}{4} u_{y} v_{xx} h-\frac{1}{4} t u_{yt} v_{xx} h-\frac{1}{4} y u_{yy} v_{xx} h+\frac{1}{4} z u_{yy} v_{xx} h \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{4} v_{xx} h+\frac{1}{4} t v_{y} u_{xxt} h-\frac{3}{4} v u_{xxy} h+\frac{1}{4} y v_{y} u_{xxy} h-\frac{1}{4} z v_{y} u_{xxy} h+\frac{3}{4} y v_{xxy} h \\\displaystyle \qquad\,\,\,\,-\,\frac{3}{2} z v_{xxy} h+\frac{3}{4} t u_{t} v_{xxy} h+\frac{3}{4} y u_{y} v_{xxy} h-\frac{3}{4} z u_{y} v_{xxy} h-\frac{3}{4} t v u_{xxyt} h-\frac{3}{4} y v u_{xxyy} h \\\displaystyle \qquad\,\,\,\,+\,\frac{3}{4} z v u_{xxyy} h-\frac{1}{2} k^2 t v_{y} u_{x}^2+\frac{1}{2} k^2 t v_{z}+\frac{1}{2} k^2 t v_{z} u_{x}-\frac{1}{2} k^2 t v_{y} u_{x}-k^2 t u_{y} v_{x} \\\displaystyle \qquad\,\,\,\,-\,k^2 t u_{y} u_{x} v_{x}+\frac{1}{2} k^2 t v u_{xz}-\frac{1}{2} k^2 t v u_{xy}-k^2 t v u_{x} u_{xy}+\frac{1}{2} k t v_{xy} u_{xx} +\frac{1}{4} k t u_{xy} v_{xx} \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} k t v_{x} u_{xxy}-\frac{3}{4} k t v_{xxy}-\frac{3}{4} k t u_{x} v_{xxy}-\frac{1}{4} k t v_{y} u_{xxx}-\frac{1}{4} k t v u_{xxxy} , \\\displaystyle T _y^{9} =\, -\frac{1}{2} v u_{t} h^2+\frac{1}{2} y v_{t} h^2-z v_{t} h^2+\frac{1}{2} t u_{t} v_{t} h^2-\frac{1}{2} t v u_{tt} h^2+y v u_{zt} h^2-z v u_{zt} h^2 \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} y v_{t} u_{y} h^2-\frac{1}{2} z v_{t} u_{y} h^2+\frac{1}{2} y v u_{yt} h^2-\frac{1}{2} z v u_{yt} h^2+y v u_{xt} h^2-z v u_{xt} h^2 \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} k v h-\frac{1}{2} k t v_{t} h+\frac{1}{2} k v u_{x} h-\frac{1}{2} k t v_{t} u_{x} h+\frac{1}{2} k y u_{x} v_{x} h-k z u_{x} v_{x} h \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} k t u_{t} u_{x} v_{x} h+\frac{1}{2} k y u_{y} u_{x} v_{x} h-\frac{1}{2} k z u_{y} u_{x} v_{x} h+\frac{1}{2} k t v u_{xt} h-\frac{1}{2} k t v u_{x} u_{xt} h \\\displaystyle \qquad\,\,\,\,-\,k y v u_{xz} h+k z v u_{xz} h+\frac{1}{2} k y v u_{x} u_{xy} h-\frac{1}{2} k z v u_{x} u_{xy} h-\frac{1}{2} k y v u_{xx} h+k z v u_{xx} h \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} k t v u_{t} u_{xx} h+\frac{1}{2} k y v u_{y} u_{xx} h-\frac{1}{2} k z v u_{y} u_{xx} h-\frac{1}{4} t u_{xt} v_{xx} h-\frac{1}{4} y u_{xy} v_{xx} h \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{4} z u_{xy} v_{xx} h+\frac{1}{4} t v_{x} u_{xxt} h+\frac{1}{4} y v_{x} u_{xxy} h-\frac{1}{4} z v_{x} u_{xxy} h+\frac{1}{4} y v_{xxx} h-\frac{1}{2} z v_{xxx} h \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{4} t u_{t} v_{xxx} h+\frac{1}{4} y u_{y} v_{xxx} h-\frac{1}{4} z u_{y} v_{xxx} h-\frac{1}{4} t v u_{xxxt} h+\frac{3}{4} y v u_{xxxy} h \\\displaystyle \qquad\,\,\,\,-\,\frac{3}{4} z v u_{xxxy} h-\frac{1}{2} k^2 t u_{x}^2 v_{x}-\frac{1}{2} k^2 t u_{x} v_{x}+\frac{1}{2} k^2 t v u_{xx}+k^2 t v u_{x} u_{xx}+\frac{1}{4} k t u_{xx} v_{xx} \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{4} k t v_{x} u_{xxx}-\frac{1}{4} k t v_{xxx}-\frac{1}{4} k t u_{x} v_{xxx}+\frac{1}{4} k t v u_{xxxx} , \\\displaystyle T _z^{9} =\, -\frac{1}{2} h^2 u_{t} v-\frac{1}{2} h^2 t u_{tt} v-\frac{1}{2} h^2 y u_{yt} v+\frac{1}{2} h^2 z u_{yt} v+\frac{1}{2} h k u_{x} v+h k t u_{xt} v \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} h k y u_{xy} v-\frac{1}{2} h k z u_{xy} v-\frac{1}{2} k^2 t u_{xx} v+\frac{1}{2} h k v-\frac{1}{2} h^2 z v_{t} u_{y}+\frac{1}{2} h^2 y v_{t} u_{y} \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} h^2 t u_{t} v_{t}+\frac{1}{2} h^2 y v_{t}-h^2 z v_{t}-\frac{1}{2} h k t v_{t} u_{x}-\frac{1}{2} h k t u_{t} v_{x}-\frac{1}{2} h k t v_{t}+\frac{1}{2} h k z u_{y} v_{x} \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} h k y u_{y} v_{x}-\frac{1}{2} h k y v_{x}+h k z v_{x}+\frac{1}{2} k^2 t u_{x} v_{x}+\frac{1}{2} k^2 t v_{x} , \\\displaystyle T _t^{9} =\, \frac{1}{2} v h^2+\frac{1}{2} y v_{z} h^2-z v_{z} h^2+\frac{1}{2} t u_{t} v_{z} h^2+\frac{1}{2} t v u_{zt} h^2+\frac{1}{2} y v_{z} u_{y} h^2-\frac{1}{2} z v_{z} u_{y} h^2 \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} y v_{y} h^2-z v_{y} h^2+\frac{1}{2} t u_{t} v_{y} h^2+\frac{1}{2} y u_{y} v_{y} h^2-\frac{1}{2} z u_{y} v_{y} h^2+\frac{1}{2} t v u_{yt} h^2-\frac{1}{2} y v u_{yz} h^2 \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} z v u_{yz} h^2-\frac{1}{2} y v u_{yy} h^2+\frac{1}{2} z v u_{yy} h^2+\frac{1}{2} y v_{x} h^2-z v_{x} h^2+\frac{1}{2} t u_{t} v_{x} h^2 \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} y u_{y} v_{x} h^2-\frac{1}{2} z u_{y} v_{x} h^2+\frac{1}{2} t v u_{xt} h^2-\frac{1}{2} y v u_{xy} h^2+\frac{1}{2} z v u_{xy} h^2-\frac{1}{2} k t v_{z} h \\\displaystyle \qquad\,\,\,\,-\,\frac{1}{2} k t v_{y} h-\frac{1}{2} k t v_{z} u_{x} h-\frac{1}{2} k t v_{y} u_{x} h-\frac{1}{2} k t v_{x} h-\frac{1}{2} k t u_{x} v_{x} h-\frac{1}{2} k t v u_{xz} h \\\displaystyle \qquad\,\,\,\,+\,\frac{1}{2} k t v u_{xy} h+k t v u_{x} u_{xy} h+\frac{1}{2} k t v u_{xx} h+k t v u_{y} u_{xx} h+t v u_{xxxy} h . \end{array} $$

Remark. It should be noted that the above conservation laws include the energy conservation law, which corresponds to the time translation and three momentum conservation laws, which correspond to the three space translations.

Conclusions

In this paper we studied the generalized second extended (3+1)-dimensional Jimbo-Miwa equation (3). Symmetry reductions of this equation were performed several times until it was reduced to a nonlinear fourth-order ordinary differential equation. The general solution of this ordinary differential equation was obtained in terms of the Weierstrass zeta function. Travelling wave solutions of (3) were also derived using the simplest equation method. Finally, the conservation laws of (3) were computed by invoking the conservation theorem due to Ibragimov. These conservation laws included an energy conservation law, which corresponded to the time translation and three momentum conservation laws that corresponded to the three space translations.

eISSN:
2444-8656
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics